audk/DynamicTablesPkg/Library/Acpi/Arm/AcpiPpttLibArm/PpttGenerator.c

1397 lines
45 KiB
C
Raw Normal View History

/** @file
PPTT Table Generator
Copyright (c) 2021, ARM Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
@par Reference(s):
- ACPI 6.4 Specification, January 2021
@par Glossary:
- Cm or CM - Configuration Manager
- Obj or OBJ - Object
**/
#include <Library/AcpiLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Protocol/AcpiTable.h>
// Module specific include files.
#include <AcpiTableGenerator.h>
#include <ConfigurationManagerObject.h>
#include <ConfigurationManagerHelper.h>
#include <Library/TableHelperLib.h>
#include <Protocol/ConfigurationManagerProtocol.h>
#include "PpttGenerator.h"
/**
ARM standard PPTT Generator
Requirements:
The following Configuration Manager Object(s) are used by this Generator:
- EArmObjProcHierarchyInfo (REQUIRED)
- EArmObjCacheInfo
- EArmObjCmRef
- EArmObjGicCInfo (REQUIRED)
*/
/**
This macro expands to a function that retrieves the Processor Hierarchy
information from the Configuration Manager.
*/
GET_OBJECT_LIST (
EObjNameSpaceArm,
EArmObjProcHierarchyInfo,
CM_ARM_PROC_HIERARCHY_INFO
);
/**
This macro expands to a function that retrieves the cache information
from the Configuration Manager.
*/
GET_OBJECT_LIST (
EObjNameSpaceArm,
EArmObjCacheInfo,
CM_ARM_CACHE_INFO
);
/**
This macro expands to a function that retrieves the cross-CM-object-
reference information from the Configuration Manager.
*/
GET_OBJECT_LIST (
EObjNameSpaceArm,
EArmObjCmRef,
CM_ARM_OBJ_REF
);
/**
This macro expands to a function that retrieves the GIC CPU interface
information from the Configuration Manager.
*/
GET_OBJECT_LIST (
EObjNameSpaceArm,
EArmObjGicCInfo,
CM_ARM_GICC_INFO
);
/**
Returns the size of the PPTT Processor Hierarchy Node (Type 0) given a
Processor Hierarchy Info CM object.
@param [in] Node Pointer to Processor Hierarchy Info CM object which
represents the Processor Hierarchy Node to be generated.
@retval Size of the Processor Hierarchy Node in bytes.
**/
STATIC
UINT32
GetProcHierarchyNodeSize (
IN CONST CM_ARM_PROC_HIERARCHY_INFO *Node
)
{
ASSERT (Node != NULL);
// <size of Processor Hierarchy Node> + <size of Private Resources array>
return sizeof (EFI_ACPI_6_4_PPTT_STRUCTURE_PROCESSOR) +
(Node->NoOfPrivateResources * sizeof (UINT32));
}
/**
This macro expands to a function that retrieves the amount of memory required
to store the Processor Hierarchy Nodes (Type 0) and updates the Node Indexer.
*/
GET_SIZE_OF_PPTT_STRUCTS (
ProcHierarchyNodes,
GetProcHierarchyNodeSize (NodesToIndex),
CM_ARM_PROC_HIERARCHY_INFO
);
/**
This macro expands to a function that retrieves the amount of memory required
to store the Cache Type Structures (Type 1) and updates the Node Indexer.
*/
GET_SIZE_OF_PPTT_STRUCTS (
CacheTypeStructs,
sizeof (EFI_ACPI_6_4_PPTT_STRUCTURE_CACHE),
CM_ARM_CACHE_INFO
);
/**
Search the Node Indexer and return the indexed PPTT node with the given
Token.
@param [in] NodeIndexer Pointer to the Node Indexer array.
@param [in] NodeCount Number of elements in Node Indexer.
@param [in] SearchToken Token used for Node Indexer lookup.
@param [out] IndexedNodeFound Pointer to the Node Indexer array element
with the given Token.
@retval EFI_SUCCESS Success.
@retval EFI_NOT_FOUND No element with a matching token was
found in the Node Indexer array.
**/
STATIC
EFI_STATUS
GetPpttNodeReferencedByToken (
IN PPTT_NODE_INDEXER *NodeIndexer,
IN UINT32 NodeCount,
IN CONST CM_OBJECT_TOKEN SearchToken,
OUT PPTT_NODE_INDEXER **IndexedNodeFound
)
{
EFI_STATUS Status;
ASSERT (NodeIndexer != NULL);
DEBUG ((
DEBUG_INFO,
"PPTT: Node Indexer: SearchToken = %p\n",
SearchToken
));
while (NodeCount-- != 0) {
DEBUG ((
DEBUG_INFO,
"PPTT: Node Indexer: NodeIndexer->Token = %p. Offset = %d\n",
NodeIndexer->Token,
NodeIndexer->Offset
));
if (NodeIndexer->Token == SearchToken) {
*IndexedNodeFound = NodeIndexer;
Status = EFI_SUCCESS;
DEBUG ((
DEBUG_INFO,
"PPTT: Node Indexer: Token = %p. Found, Status = %r\n",
SearchToken,
Status
));
return Status;
}
NodeIndexer++;
}
Status = EFI_NOT_FOUND;
DEBUG ((
DEBUG_ERROR,
"PPTT: Node Indexer: SearchToken = %p. Status = %r\n",
SearchToken,
Status
));
return Status;
}
/**
Detect cycles in the processor and cache topology graph represented in
the PPTT table.
@param [in] Generator Pointer to the PPTT Generator.
@retval EFI_SUCCESS There are no cyclic references in the graph.
@retval EFI_INVALID_PARAMETER Processor or cache references form a cycle.
**/
STATIC
EFI_STATUS
DetectCyclesInTopology (
IN CONST ACPI_PPTT_GENERATOR *CONST Generator
)
{
EFI_STATUS Status;
PPTT_NODE_INDEXER *Iterator;
PPTT_NODE_INDEXER *CycleDetector;
UINT32 NodesRemaining;
ASSERT (Generator != NULL);
Iterator = Generator->NodeIndexer;
NodesRemaining = Generator->ProcTopologyStructCount;
while (NodesRemaining != 0) {
DEBUG ((
DEBUG_INFO,
"INFO: PPTT: Cycle detection for element with index %d\n",
Generator->ProcTopologyStructCount - NodesRemaining
));
CycleDetector = Iterator;
// Walk the topology tree
while (CycleDetector->TopologyParent != NULL) {
DEBUG ((
DEBUG_INFO,
"INFO: PPTT: %p -> %p\n",
CycleDetector->Token,
CycleDetector->TopologyParent->Token
));
// Check if we have already visited this node
if (CycleDetector->CycleDetectionStamp == NodesRemaining) {
Status = EFI_INVALID_PARAMETER;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Cycle in processor and cache topology detected for " \
"a chain of references originating from a node with: Token = %p " \
"Status = %r\n",
Iterator->Token,
Status
));
return Status;
}
// Stamp the visited node
CycleDetector->CycleDetectionStamp = NodesRemaining;
CycleDetector = CycleDetector->TopologyParent;
} // Continue topology tree walk
Iterator++;
NodesRemaining--;
} // Next Node Indexer
return EFI_SUCCESS;
}
/**
Update the array of private resources for a given Processor Hierarchy Node.
@param [in] Generator Pointer to the PPTT Generator.
@param [in] CfgMgrProtocol Pointer to the Configuration Manager
Protocol Interface.
@param [in] PrivResArray Pointer to the array of private resources.
@param [in] PrivResCount Number of private resources.
@param [in] PrivResArrayToken Reference Token for the CM_ARM_OBJ_REF
array describing node's private resources.
@retval EFI_SUCCESS Array updated successfully.
@retval EFI_INVALID_PARAMETER A parameter is invalid.
@retval EFI_NOT_FOUND A private resource was not found.
**/
STATIC
EFI_STATUS
AddPrivateResources (
IN CONST ACPI_PPTT_GENERATOR *CONST Generator,
IN CONST EDKII_CONFIGURATION_MANAGER_PROTOCOL *CONST CfgMgrProtocol,
IN UINT32 *PrivResArray,
IN UINT32 PrivResCount,
IN CONST CM_OBJECT_TOKEN PrivResArrayToken
)
{
EFI_STATUS Status;
CM_ARM_OBJ_REF *CmObjRefs;
UINT32 CmObjRefCount;
PPTT_NODE_INDEXER *PpttNodeFound;
ASSERT (
(Generator != NULL) &&
(CfgMgrProtocol != NULL) &&
(PrivResArray != NULL) &&
(PrivResCount != 0)
);
// Validate input arguments
if (PrivResArrayToken == CM_NULL_TOKEN) {
Status = EFI_INVALID_PARAMETER;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: The number of private resources is %d while " \
"PrivResToken = CM_NULL_TOKEN. Status = %r\n",
PrivResCount,
Status
));
return Status;
}
CmObjRefCount = 0;
// Get the CM Object References
Status = GetEArmObjCmRef (
CfgMgrProtocol,
PrivResArrayToken,
&CmObjRefs,
&CmObjRefCount
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to get CM Object References. " \
"PrivResToken = %p. Status = %r\n",
PrivResArrayToken,
Status
));
return Status;
}
if (CmObjRefCount != PrivResCount) {
Status = EFI_INVALID_PARAMETER;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: The number of CM Object References retrieved and the " \
"number of private resources don't match. CmObjRefCount = %d. " \
"PrivResourceCount = %d. PrivResToken = %p. Status = %r\n",
CmObjRefCount,
PrivResCount,
PrivResArrayToken,
Status
));
return Status;
}
while (PrivResCount-- != 0) {
if (CmObjRefs->ReferenceToken == CM_NULL_TOKEN) {
Status = EFI_INVALID_PARAMETER;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: CM_NULL_TOKEN provided as reference token for a " \
"private resource. Status = %r\n",
Status
));
return Status;
}
// The Node indexer has the Processor hierarchy nodes at the begining
// followed by the cache structs. Therefore we can skip the Processor
// hierarchy nodes in the node indexer search.
Status = GetPpttNodeReferencedByToken (
Generator->CacheStructIndexedList,
(Generator->ProcTopologyStructCount -
Generator->ProcHierarchyNodeCount),
CmObjRefs->ReferenceToken,
&PpttNodeFound
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to get a private resource with Token = %p from " \
"Node Indexer. Status = %r\n",
CmObjRefs->ReferenceToken,
Status
));
return Status;
}
// Update the offset of the private resources in the Processor
// Hierarchy Node structure
*(PrivResArray++) = PpttNodeFound->Offset;
CmObjRefs++;
}
return EFI_SUCCESS;
}
/**
Function to test if two indexed Processor Hierarchy Info objects map to the
same GIC CPU Interface Info object.
This is a callback function that can be invoked by FindDuplicateValue ().
@param [in] Object1 Pointer to the first indexed Processor Hierarchy
Info object.
@param [in] Object2 Pointer to the second indexed Processor Hierarchy
Info object.
@param [in] Index1 Index of Object1 to be displayed for debugging
purposes.
@param [in] Index2 Index of Object2 to be displayed for debugging
purposes.
@retval TRUE Object1 and Object2 have the same GicCToken.
@retval FALSE Object1 and Object2 have different GicCTokens.
**/
BOOLEAN
EFIAPI
IsGicCTokenEqual (
IN CONST VOID *Object1,
IN CONST VOID *Object2,
IN UINTN Index1,
IN UINTN Index2
)
{
PPTT_NODE_INDEXER *IndexedObject1;
PPTT_NODE_INDEXER *IndexedObject2;
CM_ARM_PROC_HIERARCHY_INFO *ProcNode1;
CM_ARM_PROC_HIERARCHY_INFO *ProcNode2;
ASSERT (
(Object1 != NULL) &&
(Object2 != NULL)
);
IndexedObject1 = (PPTT_NODE_INDEXER *)Object1;
IndexedObject2 = (PPTT_NODE_INDEXER *)Object2;
ProcNode1 = (CM_ARM_PROC_HIERARCHY_INFO *)IndexedObject1->Object;
ProcNode2 = (CM_ARM_PROC_HIERARCHY_INFO *)IndexedObject2->Object;
if (IS_ACPI_PROC_ID_VALID (ProcNode1) &&
IS_ACPI_PROC_ID_VALID (ProcNode2) &&
(ProcNode1->GicCToken != CM_NULL_TOKEN) &&
(ProcNode2->GicCToken != CM_NULL_TOKEN) &&
(ProcNode1->GicCToken == ProcNode2->GicCToken))
{
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Two Processor Hierarchy Info objects (%d and %d) map to " \
"the same GICC Info object. ACPI Processor IDs are not unique. " \
"GicCToken = %p.\n",
Index1,
IndexedObject1->Token,
Index2,
ProcNode1->GicCToken
));
return TRUE;
}
return FALSE;
}
/**
Update the Processor Hierarchy Node (Type 0) information.
This function populates the Processor Hierarchy Nodes with information from
the Configuration Manager and adds this information to the PPTT table.
@param [in] Generator Pointer to the PPTT Generator.
@param [in] CfgMgrProtocol Pointer to the Configuration Manager
Protocol Interface.
@param [in] Pptt Pointer to PPTT table structure.
@param [in] NodesStartOffset Offset from the start of PPTT table to the
start of Processor Hierarchy Nodes.
@retval EFI_SUCCESS Node updated successfully.
@retval EFI_INVALID_PARAMETER A parameter is invalid.
@retval EFI_NOT_FOUND The required object was not found.
**/
STATIC
EFI_STATUS
AddProcHierarchyNodes (
IN CONST ACPI_PPTT_GENERATOR *CONST Generator,
IN CONST EDKII_CONFIGURATION_MANAGER_PROTOCOL *CONST CfgMgrProtocol,
IN CONST EFI_ACPI_6_4_PROCESSOR_PROPERTIES_TOPOLOGY_TABLE_HEADER *Pptt,
IN CONST UINT32 NodesStartOffset
)
{
EFI_STATUS Status;
EFI_ACPI_6_4_PPTT_STRUCTURE_PROCESSOR *ProcStruct;
UINT32 *PrivateResources;
BOOLEAN IsGicCTokenDuplicated;
CM_ARM_GICC_INFO *GicCInfoList;
UINT32 GicCInfoCount;
UINT32 UniqueGicCRefCount;
PPTT_NODE_INDEXER *PpttNodeFound;
CM_ARM_PROC_HIERARCHY_INFO *ProcInfoNode;
PPTT_NODE_INDEXER *ProcNodeIterator;
UINT32 NodeCount;
UINT32 Length;
ASSERT (
(Generator != NULL) &&
(CfgMgrProtocol != NULL) &&
(Pptt != NULL)
);
ProcStruct = (EFI_ACPI_6_4_PPTT_STRUCTURE_PROCESSOR *)((UINT8 *)Pptt +
NodesStartOffset);
ProcNodeIterator = Generator->ProcHierarchyNodeIndexedList;
NodeCount = Generator->ProcHierarchyNodeCount;
// Check if every GICC Object is referenced by onlu one Proc Node
IsGicCTokenDuplicated = FindDuplicateValue (
ProcNodeIterator,
NodeCount,
sizeof (PPTT_NODE_INDEXER),
IsGicCTokenEqual
);
// Duplicate GIC CPU Interface Token was found so two PPTT Processor Hierarchy
// Nodes map to the same MADT GICC structure
if (IsGicCTokenDuplicated) {
return EFI_INVALID_PARAMETER;
}
UniqueGicCRefCount = 0;
while (NodeCount-- != 0) {
ProcInfoNode = (CM_ARM_PROC_HIERARCHY_INFO *)ProcNodeIterator->Object;
// Check if the private resource count is within the size limit
// imposed on the Processor Hierarchy node by the specification.
// Note: The length field is 8 bit wide while the number of private
// resource field is 32 bit wide.
Length = GetProcHierarchyNodeSize (ProcInfoNode);
if (Length > MAX_UINT8) {
Status = EFI_INVALID_PARAMETER;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Too many private resources. Count = %d. " \
"Maximum supported Processor Node size exceeded. " \
"Token = %p. Status = %r\n",
ProcInfoNode->NoOfPrivateResources,
ProcInfoNode->ParentToken,
Status
));
return Status;
}
// Populate the node header
ProcStruct->Type = EFI_ACPI_6_4_PPTT_TYPE_PROCESSOR;
ProcStruct->Length = (UINT8)Length;
ProcStruct->Reserved[0] = EFI_ACPI_RESERVED_BYTE;
ProcStruct->Reserved[1] = EFI_ACPI_RESERVED_BYTE;
// Populate the flags
ProcStruct->Flags.PhysicalPackage = ProcInfoNode->Flags & BIT0;
ProcStruct->Flags.AcpiProcessorIdValid = (ProcInfoNode->Flags & BIT1) >> 1;
ProcStruct->Flags.ProcessorIsAThread = (ProcInfoNode->Flags & BIT2) >> 2;
ProcStruct->Flags.NodeIsALeaf = (ProcInfoNode->Flags & BIT3) >> 3;
ProcStruct->Flags.IdenticalImplementation =
(ProcInfoNode->Flags & BIT4) >> 4;
ProcStruct->Flags.Reserved = 0;
// Populate the parent reference
if (ProcInfoNode->ParentToken == CM_NULL_TOKEN) {
ProcStruct->Parent = 0;
} else {
Status = GetPpttNodeReferencedByToken (
Generator->ProcHierarchyNodeIndexedList,
Generator->ProcHierarchyNodeCount,
ProcInfoNode->ParentToken,
&PpttNodeFound
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to get parent processor hierarchy node " \
"reference. Token = %p, Status = %r\n",
ProcInfoNode->ParentToken,
ProcInfoNode->Token,
Status
));
return Status;
}
// Test if the reference is to a 'leaf' node
if (IS_PROC_NODE_LEAF (
((CM_ARM_PROC_HIERARCHY_INFO *)PpttNodeFound->Object)
))
{
Status = EFI_INVALID_PARAMETER;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Reference to a leaf Processor Hierarchy Node. " \
"ParentToken = %p. ChildToken = %p. Status = %r\n",
ProcInfoNode->ParentToken,
ProcInfoNode->Token,
Status
));
return Status;
}
// Update Proc Structure with the offset of the parent node
ProcStruct->Parent = PpttNodeFound->Offset;
// Store the reference for the parent node in the Node Indexer
// so that this can be used later for cycle detection
ProcNodeIterator->TopologyParent = PpttNodeFound;
}
// Populate ACPI Processor ID
if (!IS_ACPI_PROC_ID_VALID (ProcInfoNode)) {
// Default invalid ACPI Processor ID to 0
ProcStruct->AcpiProcessorId = 0;
} else if (ProcInfoNode->GicCToken == CM_NULL_TOKEN) {
Status = EFI_INVALID_PARAMETER;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: The 'ACPI Processor ID valid' flag is set but no GICC " \
"structure token was provided. GicCToken = %p. RequestorToken = %p. " \
"Status = %r\n",
ProcInfoNode->GicCToken,
ProcInfoNode->Token,
Status
));
return Status;
} else {
Status = GetEArmObjGicCInfo (
CfgMgrProtocol,
ProcInfoNode->GicCToken,
&GicCInfoList,
&GicCInfoCount
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to get GICC structure. ACPI Processor ID " \
"can't be populated. GicCToken = %p. RequestorToken = %p. " \
"Status = %r\n",
ProcInfoNode->GicCToken,
ProcInfoNode->Token,
Status
));
return Status;
}
if (GicCInfoCount != 1) {
Status = EFI_INVALID_PARAMETER;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to find a unique GICC structure. " \
"ACPI Processor ID can't be populated. " \
"GICC Structure Count = %d. GicCToken = %p. RequestorToken = %p " \
"Status = %r\n",
GicCInfoCount,
ProcInfoNode->GicCToken,
ProcInfoNode->Token,
Status
));
return Status;
}
// Update the ACPI Processor Id
ProcStruct->AcpiProcessorId = GicCInfoList->AcpiProcessorUid;
// Increment the reference count for the number of
// Unique GICC objects that were retrieved.
UniqueGicCRefCount++;
}
ProcStruct->NumberOfPrivateResources = ProcInfoNode->NoOfPrivateResources;
PrivateResources = (UINT32 *)((UINT8 *)ProcStruct +
sizeof (EFI_ACPI_6_4_PPTT_STRUCTURE_PROCESSOR));
if (ProcStruct->NumberOfPrivateResources != 0) {
// Populate the private resources array
Status = AddPrivateResources (
Generator,
CfgMgrProtocol,
PrivateResources,
ProcStruct->NumberOfPrivateResources,
ProcInfoNode->PrivateResourcesArrayToken
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to populate the private resources array. " \
"Status = %r\n",
Status
));
return Status;
}
}
// Next Processor Hierarchy Node
ProcStruct = (EFI_ACPI_6_4_PPTT_STRUCTURE_PROCESSOR *)((UINT8 *)ProcStruct +
ProcStruct->Length);
ProcNodeIterator++;
} // Processor Hierarchy Node
// Knowing the total number of GICC references made and that all GICC Token
// references are unique, we can test if no GICC instances have been left out.
Status = GetEArmObjGicCInfo (
CfgMgrProtocol,
CM_NULL_TOKEN,
&GicCInfoList,
&GicCInfoCount
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to get GICC Info. Status = %r\n",
Status
));
return Status;
}
// MADT - PPTT cross validation
// This checks that one and only one GICC structure is referenced by a
// Processor Hierarchy Node in the PPTT.
// Since we have already checked that the GICC objects referenced by the
// Proc Nodes are unique, the UniqueGicCRefCount cannot be greater than
// the total number of GICC objects in the platform.
if (GicCInfoCount > UniqueGicCRefCount) {
Status = EFI_INVALID_PARAMETER;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: %d GICC structure(s) exposed by MADT don't have " \
"a corresponding Processor Hierarchy Node. Status = %r\n",
GicCInfoCount - UniqueGicCRefCount,
Status
));
}
return Status;
}
/**
Update the Cache Type Structure (Type 1) information.
This function populates the Cache Type Structures with information from
the Configuration Manager and adds this information to the PPTT table.
@param [in] Generator Pointer to the PPTT Generator.
@param [in] CfgMgrProtocol Pointer to the Configuration Manager
Protocol Interface.
@param [in] Pptt Pointer to PPTT table structure.
@param [in] NodesStartOffset Offset from the start of PPTT table to the
start of Cache Type Structures.
@retval EFI_SUCCESS Structures updated successfully.
@retval EFI_INVALID_PARAMETER A parameter is invalid.
@retval EFI_NOT_FOUND A required object was not found.
**/
STATIC
EFI_STATUS
AddCacheTypeStructures (
IN CONST ACPI_PPTT_GENERATOR *CONST Generator,
IN CONST EDKII_CONFIGURATION_MANAGER_PROTOCOL *CONST CfgMgrProtocol,
IN CONST EFI_ACPI_6_4_PROCESSOR_PROPERTIES_TOPOLOGY_TABLE_HEADER *Pptt,
IN CONST UINT32 NodesStartOffset
)
{
EFI_STATUS Status;
EFI_ACPI_6_4_PPTT_STRUCTURE_CACHE *CacheStruct;
PPTT_NODE_INDEXER *PpttNodeFound;
CM_ARM_CACHE_INFO *CacheInfoNode;
PPTT_NODE_INDEXER *CacheNodeIterator;
UINT32 NodeCount;
ASSERT (
(Generator != NULL) &&
(CfgMgrProtocol != NULL) &&
(Pptt != NULL)
);
CacheStruct = (EFI_ACPI_6_4_PPTT_STRUCTURE_CACHE *)((UINT8 *)Pptt +
NodesStartOffset);
CacheNodeIterator = Generator->CacheStructIndexedList;
NodeCount = Generator->CacheStructCount;
while (NodeCount-- != 0) {
CacheInfoNode = (CM_ARM_CACHE_INFO *)CacheNodeIterator->Object;
// Populate the node header
CacheStruct->Type = EFI_ACPI_6_4_PPTT_TYPE_CACHE;
CacheStruct->Length = sizeof (EFI_ACPI_6_4_PPTT_STRUCTURE_CACHE);
CacheStruct->Reserved[0] = EFI_ACPI_RESERVED_BYTE;
CacheStruct->Reserved[1] = EFI_ACPI_RESERVED_BYTE;
// "On Arm-based systems, all cache properties must be provided in the
// table." (ACPI 6.4, Section 5.2.29.2)
CacheStruct->Flags.SizePropertyValid = 1;
CacheStruct->Flags.NumberOfSetsValid = 1;
CacheStruct->Flags.AssociativityValid = 1;
CacheStruct->Flags.AllocationTypeValid = 1;
CacheStruct->Flags.CacheTypeValid = 1;
CacheStruct->Flags.WritePolicyValid = 1;
CacheStruct->Flags.LineSizeValid = 1;
CacheStruct->Flags.Reserved = 0;
// Populate the reference to the next level of cache
if (CacheInfoNode->NextLevelOfCacheToken == CM_NULL_TOKEN) {
CacheStruct->NextLevelOfCache = 0;
} else {
Status = GetPpttNodeReferencedByToken (
Generator->CacheStructIndexedList,
Generator->CacheStructCount,
CacheInfoNode->NextLevelOfCacheToken,
&PpttNodeFound
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to get the reference to the Next Level of " \
"Cache. NextLevelOfCacheToken = %p. RequestorToken = %p. " \
"Status = %r\n",
CacheInfoNode->NextLevelOfCacheToken,
CacheInfoNode->Token,
Status
));
return Status;
}
// Update Cache Structure with the offset for the next level of cache
CacheStruct->NextLevelOfCache = PpttNodeFound->Offset;
// Store the next level of cache information in the Node Indexer
// so that this can be used later for cycle detection
CacheNodeIterator->TopologyParent = PpttNodeFound;
}
CacheStruct->Size = CacheInfoNode->Size;
// Validate and populate the 'Number of sets' field
if (CacheInfoNode->NumberOfSets > PPTT_ARM_CCIDX_CACHE_NUMBER_OF_SETS_MAX) {
Status = EFI_INVALID_PARAMETER;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: When ARMv8.3-CCIDX is implemented the maximum number " \
"of sets can be %d. NumberOfSets = %d. Status = %r\n",
PPTT_ARM_CCIDX_CACHE_NUMBER_OF_SETS_MAX,
CacheInfoNode->NumberOfSets,
Status
));
return Status;
}
if (CacheInfoNode->NumberOfSets > PPTT_ARM_CACHE_NUMBER_OF_SETS_MAX) {
DEBUG ((
DEBUG_INFO,
"INFO: PPTT: When ARMv8.3-CCIDX is not implemented the maximum " \
"number of sets can be %d. NumberOfSets = %d\n",
PPTT_ARM_CACHE_NUMBER_OF_SETS_MAX,
CacheInfoNode->NumberOfSets
));
}
CacheStruct->NumberOfSets = CacheInfoNode->NumberOfSets;
// Validate Associativity field based on maximum associativity
// supported by ACPI Cache type structure.
if (CacheInfoNode->Associativity > MAX_UINT8) {
Status = EFI_INVALID_PARAMETER;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: The maximum associativity supported by ACPI " \
"Cache type structure is %d. Associativity = %d, Status = %r\n",
MAX_UINT8,
CacheInfoNode->Associativity,
Status
));
return Status;
}
// Validate the Associativity field based on the architecture specification
// The architecture supports much larger associativity values than the
// current ACPI specification.
// These checks will be needed in the future when the ACPI specification
// is extended. Disabling this code for now.
#if 0
if (CacheInfoNode->Associativity > PPTT_ARM_CCIDX_CACHE_ASSOCIATIVITY_MAX) {
Status = EFI_INVALID_PARAMETER;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: When ARMv8.3-CCIDX is implemented the maximum cache " \
"associativity can be %d. Associativity = %d. Status = %r\n",
PPTT_ARM_CCIDX_CACHE_ASSOCIATIVITY_MAX,
CacheInfoNode->Associativity,
Status
));
return Status;
}
if (CacheInfoNode->Associativity > PPTT_ARM_CACHE_ASSOCIATIVITY_MAX) {
DEBUG ((
DEBUG_INFO,
"INFO: PPTT: When ARMv8.3-CCIDX is not implemented the maximum " \
"cache associativity can be %d. Associativity = %d\n",
PPTT_ARM_CACHE_ASSOCIATIVITY_MAX,
CacheInfoNode->Associativity
));
}
#endif
// Note a typecast is needed as the maximum associativity
// supported by ACPI Cache type structure is MAX_UINT8.
CacheStruct->Associativity = (UINT8)CacheInfoNode->Associativity;
// Populate cache attributes
CacheStruct->Attributes.AllocationType =
CacheInfoNode->Attributes & (BIT0 | BIT1);
CacheStruct->Attributes.CacheType =
(CacheInfoNode->Attributes & (BIT2 | BIT3)) >> 2;
CacheStruct->Attributes.WritePolicy =
(CacheInfoNode->Attributes & BIT4) >> 4;
CacheStruct->Attributes.Reserved = 0;
// Validate and populate cache line size
if ((CacheInfoNode->LineSize < PPTT_ARM_CACHE_LINE_SIZE_MIN) ||
(CacheInfoNode->LineSize > PPTT_ARM_CACHE_LINE_SIZE_MAX))
{
Status = EFI_INVALID_PARAMETER;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: The cache line size must be between %d and %d bytes " \
"on ARM Platforms. LineSize = %d. Status = %r\n",
PPTT_ARM_CACHE_LINE_SIZE_MIN,
PPTT_ARM_CACHE_LINE_SIZE_MAX,
CacheInfoNode->LineSize,
Status
));
return Status;
}
if ((CacheInfoNode->LineSize & (CacheInfoNode->LineSize - 1)) != 0) {
Status = EFI_INVALID_PARAMETER;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: The cache line size is not a power of 2. " \
"LineSize = %d. Status = %r\n",
CacheInfoNode->LineSize,
Status
));
return Status;
}
CacheStruct->LineSize = CacheInfoNode->LineSize;
// Next Cache Type Structure
CacheStruct = (EFI_ACPI_6_4_PPTT_STRUCTURE_CACHE *)((UINT8 *)CacheStruct +
CacheStruct->Length);
CacheNodeIterator++;
} // Cache Type Structure
return EFI_SUCCESS;
}
/**
Construct the PPTT ACPI table.
This function invokes the Configuration Manager protocol interface
to get the required hardware information for generating the ACPI
table.
If this function allocates any resources then they must be freed
in the FreeXXXXTableResources function.
@param [in] This Pointer to the table generator.
@param [in] AcpiTableInfo Pointer to the ACPI table generator to be used.
@param [in] CfgMgrProtocol Pointer to the Configuration Manager
Protocol Interface.
@param [out] Table Pointer to the constructed ACPI Table.
@retval EFI_SUCCESS Table generated successfully.
@retval EFI_INVALID_PARAMETER A parameter is invalid.
@retval EFI_NOT_FOUND The required object was not found.
@retval EFI_BAD_BUFFER_SIZE The size returned by the Configuration
Manager is less than the Object size for
the requested object.
**/
STATIC
EFI_STATUS
EFIAPI
BuildPpttTable (
IN CONST ACPI_TABLE_GENERATOR *CONST This,
IN CONST CM_STD_OBJ_ACPI_TABLE_INFO *CONST AcpiTableInfo,
IN CONST EDKII_CONFIGURATION_MANAGER_PROTOCOL *CONST CfgMgrProtocol,
OUT EFI_ACPI_DESCRIPTION_HEADER **CONST Table
)
{
EFI_STATUS Status;
UINT32 TableSize;
UINT32 ProcTopologyStructCount;
UINT32 ProcHierarchyNodeCount;
UINT32 CacheStructCount;
UINT32 ProcHierarchyNodeOffset;
UINT32 CacheStructOffset;
CM_ARM_PROC_HIERARCHY_INFO *ProcHierarchyNodeList;
CM_ARM_CACHE_INFO *CacheStructList;
ACPI_PPTT_GENERATOR *Generator;
// Pointer to the Node Indexer array
PPTT_NODE_INDEXER *NodeIndexer;
EFI_ACPI_6_4_PROCESSOR_PROPERTIES_TOPOLOGY_TABLE_HEADER *Pptt;
ASSERT (
(This != NULL) &&
(AcpiTableInfo != NULL) &&
(CfgMgrProtocol != NULL) &&
(Table != NULL) &&
(AcpiTableInfo->TableGeneratorId == This->GeneratorID) &&
(AcpiTableInfo->AcpiTableSignature == This->AcpiTableSignature)
);
if ((AcpiTableInfo->AcpiTableRevision < This->MinAcpiTableRevision) ||
(AcpiTableInfo->AcpiTableRevision > This->AcpiTableRevision))
{
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Requested table revision = %d is not supported. "
"Supported table revisions: Minimum = %d. Maximum = %d\n",
AcpiTableInfo->AcpiTableRevision,
This->MinAcpiTableRevision,
This->AcpiTableRevision
));
return EFI_INVALID_PARAMETER;
}
Generator = (ACPI_PPTT_GENERATOR *)This;
*Table = NULL;
// Get the processor hierarchy info and update the processor topology
// structure count with Processor Hierarchy Nodes (Type 0)
Status = GetEArmObjProcHierarchyInfo (
CfgMgrProtocol,
CM_NULL_TOKEN,
&ProcHierarchyNodeList,
&ProcHierarchyNodeCount
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to get processor hierarchy info. Status = %r\n",
Status
));
goto error_handler;
}
ProcTopologyStructCount = ProcHierarchyNodeCount;
Generator->ProcHierarchyNodeCount = ProcHierarchyNodeCount;
// Get the cache info and update the processor topology structure count with
// Cache Type Structures (Type 1)
Status = GetEArmObjCacheInfo (
CfgMgrProtocol,
CM_NULL_TOKEN,
&CacheStructList,
&CacheStructCount
);
if (EFI_ERROR (Status) && (Status != EFI_NOT_FOUND)) {
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to get cache info. Status = %r\n",
Status
));
goto error_handler;
}
ProcTopologyStructCount += CacheStructCount;
Generator->CacheStructCount = CacheStructCount;
// Allocate Node Indexer array
NodeIndexer = (PPTT_NODE_INDEXER *)AllocateZeroPool (
sizeof (PPTT_NODE_INDEXER) *
ProcTopologyStructCount
);
if (NodeIndexer == NULL) {
Status = EFI_OUT_OF_RESOURCES;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to allocate memory for Node Indexer. Status = %r\n ",
Status
));
goto error_handler;
}
DEBUG ((DEBUG_INFO, "INFO: NodeIndexer = %p\n", NodeIndexer));
Generator->ProcTopologyStructCount = ProcTopologyStructCount;
Generator->NodeIndexer = NodeIndexer;
// Calculate the size of the PPTT table
TableSize = sizeof (EFI_ACPI_6_4_PROCESSOR_PROPERTIES_TOPOLOGY_TABLE_HEADER);
// Include the size of Processor Hierarchy Nodes and index them
if (Generator->ProcHierarchyNodeCount != 0) {
ProcHierarchyNodeOffset = TableSize;
Generator->ProcHierarchyNodeIndexedList = NodeIndexer;
TableSize += GetSizeofProcHierarchyNodes (
ProcHierarchyNodeOffset,
ProcHierarchyNodeList,
Generator->ProcHierarchyNodeCount,
&NodeIndexer
);
DEBUG ((
DEBUG_INFO,
" ProcHierarchyNodeCount = %d\n" \
" ProcHierarchyNodeOffset = 0x%x\n" \
" ProcHierarchyNodeIndexedList = 0x%p\n",
Generator->ProcHierarchyNodeCount,
ProcHierarchyNodeOffset,
Generator->ProcHierarchyNodeIndexedList
));
}
// Include the size of Cache Type Structures and index them
if (Generator->CacheStructCount != 0) {
CacheStructOffset = TableSize;
Generator->CacheStructIndexedList = NodeIndexer;
TableSize += GetSizeofCacheTypeStructs (
CacheStructOffset,
CacheStructList,
Generator->CacheStructCount,
&NodeIndexer
);
DEBUG ((
DEBUG_INFO,
" CacheStructCount = %d\n" \
" CacheStructOffset = 0x%x\n" \
" CacheStructIndexedList = 0x%p\n",
Generator->CacheStructCount,
CacheStructOffset,
Generator->CacheStructIndexedList
));
}
DEBUG ((
DEBUG_INFO,
"INFO: PPTT:\n" \
" ProcTopologyStructCount = %d\n" \
" TableSize = %d\n",
ProcTopologyStructCount,
TableSize
));
// Allocate the Buffer for the PPTT table
*Table = (EFI_ACPI_DESCRIPTION_HEADER *)AllocateZeroPool (TableSize);
if (*Table == NULL) {
Status = EFI_OUT_OF_RESOURCES;
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to allocate memory for PPTT Table. " \
"Size = %d. Status = %r\n",
TableSize,
Status
));
goto error_handler;
}
Pptt = (EFI_ACPI_6_4_PROCESSOR_PROPERTIES_TOPOLOGY_TABLE_HEADER *)*Table;
DEBUG ((
DEBUG_INFO,
"PPTT: Pptt = 0x%p. TableSize = 0x%x\n",
Pptt,
TableSize
));
// Add ACPI header
Status = AddAcpiHeader (
CfgMgrProtocol,
This,
&Pptt->Header,
AcpiTableInfo,
TableSize
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to add ACPI header. Status = %r\n",
Status
));
goto error_handler;
}
// Add Processor Hierarchy Nodes (Type 0) to the generated table
if (Generator->ProcHierarchyNodeCount != 0) {
Status = AddProcHierarchyNodes (
Generator,
CfgMgrProtocol,
Pptt,
ProcHierarchyNodeOffset
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to add Processor Hierarchy Nodes. Status = %r\n",
Status
));
goto error_handler;
}
}
// Add Cache Type Structures (Type 1) to the generated table
if (Generator->CacheStructCount != 0) {
Status = AddCacheTypeStructures (
Generator,
CfgMgrProtocol,
Pptt,
CacheStructOffset
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Failed to add Cache Type Structures. Status = %r\n",
Status
));
goto error_handler;
}
}
// Validate CM object cross-references in PPTT
Status = DetectCyclesInTopology (Generator);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"ERROR: PPTT: Invalid processor and cache topology. Status = %r\n",
Status
));
goto error_handler;
}
return Status;
error_handler:
if (Generator->NodeIndexer != NULL) {
FreePool (Generator->NodeIndexer);
Generator->NodeIndexer = NULL;
}
if (*Table != NULL) {
FreePool (*Table);
*Table = NULL;
}
return Status;
}
/**
Free any resources allocated for constructing the PPTT
@param [in] This Pointer to the table generator.
@param [in] AcpiTableInfo Pointer to the ACPI Table Info.
@param [in] CfgMgrProtocol Pointer to the Configuration Manager
Protocol Interface.
@param [in, out] Table Pointer to the ACPI Table.
@retval EFI_SUCCESS The resources were freed successfully.
@retval EFI_INVALID_PARAMETER The table pointer is NULL or invalid.
**/
STATIC
EFI_STATUS
FreePpttTableResources (
IN CONST ACPI_TABLE_GENERATOR *CONST This,
IN CONST CM_STD_OBJ_ACPI_TABLE_INFO *CONST AcpiTableInfo,
IN CONST EDKII_CONFIGURATION_MANAGER_PROTOCOL *CONST CfgMgrProtocol,
IN OUT EFI_ACPI_DESCRIPTION_HEADER **CONST Table
)
{
ACPI_PPTT_GENERATOR *Generator;
ASSERT (
(This != NULL) &&
(AcpiTableInfo != NULL) &&
(CfgMgrProtocol != NULL) &&
(AcpiTableInfo->TableGeneratorId == This->GeneratorID) &&
(AcpiTableInfo->AcpiTableSignature == This->AcpiTableSignature)
);
Generator = (ACPI_PPTT_GENERATOR *)This;
// Free any memory allocated by the generator
if (Generator->NodeIndexer != NULL) {
FreePool (Generator->NodeIndexer);
Generator->NodeIndexer = NULL;
}
if ((Table == NULL) || (*Table == NULL)) {
DEBUG ((DEBUG_ERROR, "ERROR: PPTT: Invalid Table Pointer\n"));
ASSERT (
(Table != NULL) &&
(*Table != NULL)
);
return EFI_INVALID_PARAMETER;
}
FreePool (*Table);
*Table = NULL;
return EFI_SUCCESS;
}
/** The PPTT Table Generator revision.
*/
#define PPTT_GENERATOR_REVISION CREATE_REVISION (1, 0)
/** The interface for the PPTT Table Generator.
*/
STATIC
ACPI_PPTT_GENERATOR PpttGenerator = {
// ACPI table generator header
{
// Generator ID
CREATE_STD_ACPI_TABLE_GEN_ID (EStdAcpiTableIdPptt),
// Generator Description
L"ACPI.STD.PPTT.GENERATOR",
// ACPI Table Signature
EFI_ACPI_6_4_PROCESSOR_PROPERTIES_TOPOLOGY_TABLE_STRUCTURE_SIGNATURE,
// ACPI Table Revision supported by this Generator
EFI_ACPI_6_4_PROCESSOR_PROPERTIES_TOPOLOGY_TABLE_REVISION,
// Minimum supported ACPI Table Revision
EFI_ACPI_6_3_PROCESSOR_PROPERTIES_TOPOLOGY_TABLE_REVISION,
// Creator ID
TABLE_GENERATOR_CREATOR_ID_ARM,
// Creator Revision
PPTT_GENERATOR_REVISION,
// Build Table function
BuildPpttTable,
// Free Resource function
FreePpttTableResources,
// Extended build function not needed
NULL,
// Extended build function not implemented by the generator.
// Hence extended free resource function is not required.
NULL
},
// PPTT Generator private data
// Processor topology node count
0,
// Count of Processor Hierarchy Nodes
0,
// Count of Cache Structures
0,
// Pointer to PPTT Node Indexer
NULL
};
/**
Register the Generator with the ACPI Table Factory.
@param [in] ImageHandle The handle to the image.
@param [in] SystemTable Pointer to the System Table.
@retval EFI_SUCCESS The Generator is registered.
@retval EFI_INVALID_PARAMETER A parameter is invalid.
@retval EFI_ALREADY_STARTED The Generator for the Table ID
is already registered.
**/
EFI_STATUS
EFIAPI
AcpiPpttLibConstructor (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
Status = RegisterAcpiTableGenerator (&PpttGenerator.Header);
DEBUG ((DEBUG_INFO, "PPTT: Register Generator. Status = %r\n", Status));
ASSERT_EFI_ERROR (Status);
return Status;
}
/**
Deregister the Generator from the ACPI Table Factory.
@param [in] ImageHandle The handle to the image.
@param [in] SystemTable Pointer to the System Table.
@retval EFI_SUCCESS The Generator is deregistered.
@retval EFI_INVALID_PARAMETER A parameter is invalid.
@retval EFI_NOT_FOUND The Generator is not registered.
**/
EFI_STATUS
EFIAPI
AcpiPpttLibDestructor (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
Status = DeregisterAcpiTableGenerator (&PpttGenerator.Header);
DEBUG ((DEBUG_INFO, "PPTT: Deregister Generator. Status = %r\n", Status));
ASSERT_EFI_ERROR (Status);
return Status;
}