OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
/** @file
|
|
|
|
Provide constructor and GetTick for BaseRom instance of ACPI Timer Library
|
|
|
|
|
|
|
|
Copyright (c) 2008 - 2012, Intel Corporation. All rights reserved.
|
|
|
|
Copyright (c) 2011, Andrei Warkentin <andreiw@motorola.com>
|
|
|
|
|
2019-04-04 01:06:33 +02:00
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
**/
|
|
|
|
|
|
|
|
#include <Library/DebugLib.h>
|
|
|
|
#include <Library/IoLib.h>
|
|
|
|
#include <Library/PciLib.h>
|
|
|
|
#include <OvmfPlatforms.h>
|
|
|
|
|
|
|
|
/**
|
|
|
|
The constructor function enables ACPI IO space.
|
|
|
|
|
|
|
|
If ACPI I/O space not enabled, this function will enable it.
|
|
|
|
It will always return RETURN_SUCCESS.
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS The constructor always returns RETURN_SUCCESS.
|
|
|
|
|
|
|
|
**/
|
|
|
|
RETURN_STATUS
|
|
|
|
EFIAPI
|
|
|
|
AcpiTimerLibConstructor (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
2021-12-05 23:54:09 +01:00
|
|
|
UINT16 HostBridgeDevId;
|
|
|
|
UINTN Pmba;
|
|
|
|
UINT32 PmbaAndVal;
|
|
|
|
UINT32 PmbaOrVal;
|
|
|
|
UINTN AcpiCtlReg;
|
|
|
|
UINT8 AcpiEnBit;
|
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
|
|
|
|
//
|
|
|
|
// Query Host Bridge DID to determine platform type
|
|
|
|
//
|
|
|
|
HostBridgeDevId = PciRead16 (OVMF_HOSTBRIDGE_DID);
|
|
|
|
switch (HostBridgeDevId) {
|
|
|
|
case INTEL_82441_DEVICE_ID:
|
2015-05-13 11:31:49 +02:00
|
|
|
Pmba = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMBA);
|
OvmfPkg: determine PMBA value dependent on host bridge device ID
In this patch, the AcpiTimerLib instances, ResetSystemLib, and PlatformPei
are modified together in order to keep VMs functional across a bisection:
they all must agree on the PMBA value used.
ResetSystemLib must not use dynamic PCDs. With SOURCE_DEBUG_ENABLE, it
gets linked into the debug agent, therefore the same restrictions apply to
it as to BaseRomAcpiTimerLib. Luckily, AcpiPmControl() is only used for
powering off the virtual machine, thus the extra cost of a PCI config
space read, compared to a PcdGet16(), should be negligible.
This is the patch that moves the PMBA to IO port 0x0600 on Q35 in
practice.
The ResetSystemLib change is easiest to verify with the "reset -s" command
in the UEFI shell (which goes through gRT->ResetSystem() and, in OVMF,
PcAtChipsetPkg/KbcResetDxe).
Cc: Gabriel Somlo <somlo@cmu.edu>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Ref: https://bugzilla.redhat.com/show_bug.cgi?id=1333238
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Tested-by: Gabriel Somlo <somlo@cmu.edu>
2016-05-09 21:04:47 +02:00
|
|
|
PmbaAndVal = ~(UINT32)PIIX4_PMBA_MASK;
|
|
|
|
PmbaOrVal = PIIX4_PMBA_VALUE;
|
2015-05-13 11:31:49 +02:00
|
|
|
AcpiCtlReg = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMREGMISC);
|
|
|
|
AcpiEnBit = PIIX4_PMREGMISC_PMIOSE;
|
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
break;
|
|
|
|
case INTEL_Q35_MCH_DEVICE_ID:
|
2015-05-13 11:31:44 +02:00
|
|
|
Pmba = POWER_MGMT_REGISTER_Q35 (ICH9_PMBASE);
|
OvmfPkg: determine PMBA value dependent on host bridge device ID
In this patch, the AcpiTimerLib instances, ResetSystemLib, and PlatformPei
are modified together in order to keep VMs functional across a bisection:
they all must agree on the PMBA value used.
ResetSystemLib must not use dynamic PCDs. With SOURCE_DEBUG_ENABLE, it
gets linked into the debug agent, therefore the same restrictions apply to
it as to BaseRomAcpiTimerLib. Luckily, AcpiPmControl() is only used for
powering off the virtual machine, thus the extra cost of a PCI config
space read, compared to a PcdGet16(), should be negligible.
This is the patch that moves the PMBA to IO port 0x0600 on Q35 in
practice.
The ResetSystemLib change is easiest to verify with the "reset -s" command
in the UEFI shell (which goes through gRT->ResetSystem() and, in OVMF,
PcAtChipsetPkg/KbcResetDxe).
Cc: Gabriel Somlo <somlo@cmu.edu>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Ref: https://bugzilla.redhat.com/show_bug.cgi?id=1333238
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Tested-by: Gabriel Somlo <somlo@cmu.edu>
2016-05-09 21:04:47 +02:00
|
|
|
PmbaAndVal = ~(UINT32)ICH9_PMBASE_MASK;
|
|
|
|
PmbaOrVal = ICH9_PMBASE_VALUE;
|
2015-05-13 11:31:44 +02:00
|
|
|
AcpiCtlReg = POWER_MGMT_REGISTER_Q35 (ICH9_ACPI_CNTL);
|
|
|
|
AcpiEnBit = ICH9_ACPI_CNTL_ACPI_EN;
|
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
break;
|
|
|
|
default:
|
2021-12-05 23:54:09 +01:00
|
|
|
DEBUG ((
|
|
|
|
DEBUG_ERROR,
|
|
|
|
"%a: Unknown Host Bridge Device ID: 0x%04x\n",
|
|
|
|
__FUNCTION__,
|
|
|
|
HostBridgeDevId
|
|
|
|
));
|
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
ASSERT (FALSE);
|
|
|
|
return RETURN_UNSUPPORTED;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Check to see if the Power Management Base Address is already enabled
|
|
|
|
//
|
OvmfPkg: Q35: Use correct ACPI PM control register:bit
On PIIX4, function 3, the PMREGMISC register at offset 0x80, with
default value 0x00 has its bit 0 (PMIOSE) indicate whether the PM
IO space given in the PMBA register (offset 0x40) is enabled.
PMBA must be configured *before* setting this bit.
On Q35/ICH9+, function 0x1f, the equivalent role is fulfilled by
bit 7 (ACPI_EN) in the ACPI Control Register (ACPI_CNTL) at offset
0x44, also with a default value of 0x00.
Currently, OVMF hangs when Q35 reboots, because while PMBA is reset
by QEMU, the register at offset 0x80 (matching PMREGMISC on PIIX4)
is not reset, since it has a completely different meaning on LPC.
As such, the power management initialization logic in OVMF finds
the "PMIOSE" bit enabled after a reboot and decides to skip setting
PMBA. This causes the ACPI timer tick routine to read a constant
value from the wrong register, which in turn causes the ACPI delay
loop to hang indefinitely.
This patch modifies the Base[Rom]AcpiTimerLib constructors and the
PlatformPei ACPI PM init routines to use ACPI_CNTL:ACPI_EN instead
of PMREGMISC:PMIOSE when running on Q35.
Reported-by: Reza Jelveh <reza.jelveh@tuhh.de>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17076 6f19259b-4bc3-4df7-8a09-765794883524
2015-03-26 20:06:07 +01:00
|
|
|
if ((PciRead8 (AcpiCtlReg) & AcpiEnBit) == 0) {
|
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
//
|
|
|
|
// If the Power Management Base Address is not programmed,
|
2016-05-09 19:26:37 +02:00
|
|
|
// then program it now.
|
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
//
|
OvmfPkg: determine PMBA value dependent on host bridge device ID
In this patch, the AcpiTimerLib instances, ResetSystemLib, and PlatformPei
are modified together in order to keep VMs functional across a bisection:
they all must agree on the PMBA value used.
ResetSystemLib must not use dynamic PCDs. With SOURCE_DEBUG_ENABLE, it
gets linked into the debug agent, therefore the same restrictions apply to
it as to BaseRomAcpiTimerLib. Luckily, AcpiPmControl() is only used for
powering off the virtual machine, thus the extra cost of a PCI config
space read, compared to a PcdGet16(), should be negligible.
This is the patch that moves the PMBA to IO port 0x0600 on Q35 in
practice.
The ResetSystemLib change is easiest to verify with the "reset -s" command
in the UEFI shell (which goes through gRT->ResetSystem() and, in OVMF,
PcAtChipsetPkg/KbcResetDxe).
Cc: Gabriel Somlo <somlo@cmu.edu>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Ref: https://bugzilla.redhat.com/show_bug.cgi?id=1333238
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Tested-by: Gabriel Somlo <somlo@cmu.edu>
2016-05-09 21:04:47 +02:00
|
|
|
PciAndThenOr32 (Pmba, PmbaAndVal, PmbaOrVal);
|
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
|
|
|
|
//
|
OvmfPkg: Q35: Use correct ACPI PM control register:bit
On PIIX4, function 3, the PMREGMISC register at offset 0x80, with
default value 0x00 has its bit 0 (PMIOSE) indicate whether the PM
IO space given in the PMBA register (offset 0x40) is enabled.
PMBA must be configured *before* setting this bit.
On Q35/ICH9+, function 0x1f, the equivalent role is fulfilled by
bit 7 (ACPI_EN) in the ACPI Control Register (ACPI_CNTL) at offset
0x44, also with a default value of 0x00.
Currently, OVMF hangs when Q35 reboots, because while PMBA is reset
by QEMU, the register at offset 0x80 (matching PMREGMISC on PIIX4)
is not reset, since it has a completely different meaning on LPC.
As such, the power management initialization logic in OVMF finds
the "PMIOSE" bit enabled after a reboot and decides to skip setting
PMBA. This causes the ACPI timer tick routine to read a constant
value from the wrong register, which in turn causes the ACPI delay
loop to hang indefinitely.
This patch modifies the Base[Rom]AcpiTimerLib constructors and the
PlatformPei ACPI PM init routines to use ACPI_CNTL:ACPI_EN instead
of PMREGMISC:PMIOSE when running on Q35.
Reported-by: Reza Jelveh <reza.jelveh@tuhh.de>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17076 6f19259b-4bc3-4df7-8a09-765794883524
2015-03-26 20:06:07 +01:00
|
|
|
// Enable PMBA I/O port decodes
|
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
//
|
OvmfPkg: Q35: Use correct ACPI PM control register:bit
On PIIX4, function 3, the PMREGMISC register at offset 0x80, with
default value 0x00 has its bit 0 (PMIOSE) indicate whether the PM
IO space given in the PMBA register (offset 0x40) is enabled.
PMBA must be configured *before* setting this bit.
On Q35/ICH9+, function 0x1f, the equivalent role is fulfilled by
bit 7 (ACPI_EN) in the ACPI Control Register (ACPI_CNTL) at offset
0x44, also with a default value of 0x00.
Currently, OVMF hangs when Q35 reboots, because while PMBA is reset
by QEMU, the register at offset 0x80 (matching PMREGMISC on PIIX4)
is not reset, since it has a completely different meaning on LPC.
As such, the power management initialization logic in OVMF finds
the "PMIOSE" bit enabled after a reboot and decides to skip setting
PMBA. This causes the ACPI timer tick routine to read a constant
value from the wrong register, which in turn causes the ACPI delay
loop to hang indefinitely.
This patch modifies the Base[Rom]AcpiTimerLib constructors and the
PlatformPei ACPI PM init routines to use ACPI_CNTL:ACPI_EN instead
of PMREGMISC:PMIOSE when running on Q35.
Reported-by: Reza Jelveh <reza.jelveh@tuhh.de>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17076 6f19259b-4bc3-4df7-8a09-765794883524
2015-03-26 20:06:07 +01:00
|
|
|
PciOr8 (AcpiCtlReg, AcpiEnBit);
|
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
return RETURN_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Internal function to read the current tick counter of ACPI.
|
|
|
|
|
|
|
|
Dynamically compute the address of the ACPI tick counter based on the
|
|
|
|
properties of the underlying platform, to avoid relying on global variables.
|
|
|
|
|
|
|
|
@return The tick counter read.
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINT32
|
|
|
|
InternalAcpiGetTimerTick (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
2021-12-05 23:54:09 +01:00
|
|
|
UINT16 HostBridgeDevId;
|
|
|
|
UINTN Pmba;
|
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
|
|
|
|
//
|
|
|
|
// Query Host Bridge DID to determine platform type
|
|
|
|
//
|
|
|
|
HostBridgeDevId = PciRead16 (OVMF_HOSTBRIDGE_DID);
|
|
|
|
switch (HostBridgeDevId) {
|
|
|
|
case INTEL_82441_DEVICE_ID:
|
2015-05-13 11:31:49 +02:00
|
|
|
Pmba = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMBA);
|
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
break;
|
|
|
|
case INTEL_Q35_MCH_DEVICE_ID:
|
2015-05-13 11:31:44 +02:00
|
|
|
Pmba = POWER_MGMT_REGISTER_Q35 (ICH9_PMBASE);
|
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
break;
|
|
|
|
default:
|
2021-12-05 23:54:09 +01:00
|
|
|
DEBUG ((
|
|
|
|
DEBUG_ERROR,
|
|
|
|
"%a: Unknown Host Bridge Device ID: 0x%04x\n",
|
|
|
|
__FUNCTION__,
|
|
|
|
HostBridgeDevId
|
|
|
|
));
|
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances
Remove local power management register access macros in favor of
factored-out ones in OvmfPkg/Include/OvmfPlatforms.h
Next, AcpiTimerLib is split out into three instances, for use during
various stages:
- BaseRom: used during SEC, PEI_CORE, and PEIM;
- Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER;
- Base: used by default during all other stages.
Most of the code remains in AcpiTimerLib.c, to be shared by all
instances. The two platform-dependent methods (constructor and
InternalAcpiGetTimerTick) are provided separately by source files
specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c.
Since pre-DXE stages can't rely on storing data in global variables,
methods specific to the "BaseRom" instance will call platform
detection macros each time they're invoked.
The "Base" instance calls platform detection macros only from its
constructor, and caches the address required by InternalAcpiTimerTick
in a global variable.
The "Dxe" instance is very similar to "Base", except no platform
detection macros are called at all; instead, the platform type is
read via a dynamic PCD set from PlatformPei.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
|
|
|
ASSERT (FALSE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Read PMBA to read and return the current ACPI timer value.
|
|
|
|
//
|
|
|
|
return IoRead32 ((PciRead32 (Pmba) & ~PMBA_RTE) + ACPI_TIMER_OFFSET);
|
|
|
|
}
|