audk/OvmfPkg/Csm/CsmSupportLib/LegacyRegion.h

204 lines
8.7 KiB
C
Raw Normal View History

/** @file
Legacy Region Support
Copyright (c) 2008 - 2016, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef _LEGACY_REGION_DXE_H_
#define _LEGACY_REGION_DXE_H_
#include <PiDxe.h>
#include <Protocol/LegacyRegion2.h>
#include <IndustryStandard/Pci.h>
#include <IndustryStandard/Q35MchIch9.h>
#include <IndustryStandard/I440FxPiix4.h>
#include <Library/PciLib.h>
#include <Library/PcdLib.h>
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#define PAM_BASE_ADDRESS 0xc0000
#define PAM_LIMIT_ADDRESS BASE_1MB
//
// Describes Legacy Region blocks and status.
//
typedef struct {
UINT32 Start;
UINT32 Length;
BOOLEAN ReadEnabled;
BOOLEAN WriteEnabled;
} LEGACY_MEMORY_SECTION_INFO;
//
// Provides a map of the PAM registers and bits used to set Read/Write access.
//
typedef struct {
OvmfPkg/CsmSupportLib: move PAM register addresses to IndustryStandard * Introduce the PIIX4_PAM* and MCH_PAM* macros under "OvmfPkg/Include/IndustryStandard". These macros capture the PAM register offsets (in PCI config space) on the respective Memory Controller B/D/F, from the respective data sheets. * Under IndustryStandard, introduce the PMC_REGISTER_PIIX4() macro for PIIX4. (For Q35, we already have DRAMC_REGISTER_Q35().) In both cases, the B/D/F is 0/0/0. * Under CsmSupportLib, replace the "PAMRegOffset" field (UINT8) in the PAM_REGISTER_VALUE structure with "PAMRegPciLibAddress" (UINTN). The new field contains the return value of the PCI_LIB_ADDRESS() macro. * Under CsmSupportLib, replace the "mRegisterValues440" elements as follows: REG_PAMx_OFFSET_440, ReadEnableData, WriteEnableData --> PMC_REGISTER_PIIX4 (PIIX4_PAMx), ReadEnableData, WriteEnableData * Under CsmSupportLib, replace the "mRegisterValuesQ35" elements as follows: REG_PAMx_OFFSET_Q35, ReadEnableData, WriteEnableData --> DRAMC_REGISTER_Q35 (MCH_PAMx), ReadEnableData, WriteEnableData * Under CsmSupportLib, update the register address calculations as follows (for all of PciOr8(), PciAnd8() and PciRead8()): PCI_LIB_ADDRESS ( PAM_PCI_BUS, PAM_PCI_DEV, PAM_PCI_FUNC, mRegisterValues[Index].PAMRegOffset ) --> mRegisterValues[Index].PAMRegPciLibAddress * Under CsmSupportLib, remove the PAM_PCI_* and REG_PAM*_OFFSET_* macros. Technically speaking, these changes could be split into three patches (IndustryStandard macro additions, CsmSupportLib code updates, CsmSupportLib macro removals). However, the patch is not big, and in this case it is actually helpful to present the code movement / refactoring in one step, for easier verification. Cc: Aleksei Kovura <alex3kov@zoho.com> Cc: Gerd Hoffmann <kraxel@redhat.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Ref: https://bugs.launchpad.net/qemu/+bug/1715700 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Tested-by: Aleksei Kovura <alex3kov@zoho.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-09-19 15:50:39 +02:00
UINTN PAMRegPciLibAddress;
UINT8 ReadEnableData;
UINT8 WriteEnableData;
} PAM_REGISTER_VALUE;
/**
Modify the hardware to allow (decode) or disallow (not decode) memory reads in a region.
If the On parameter evaluates to TRUE, this function enables memory reads in the address range
Start to (Start + Length - 1).
If the On parameter evaluates to FALSE, this function disables memory reads in the address range
Start to (Start + Length - 1).
@param This[in] Indicates the EFI_LEGACY_REGION_PROTOCOL instance.
@param Start[in] The beginning of the physical address of the region whose attributes
should be modified.
@param Length[in] The number of bytes of memory whose attributes should be modified.
The actual number of bytes modified may be greater than the number
specified.
@param Granularity[out] The number of bytes in the last region affected. This may be less
than the total number of bytes affected if the starting address
was not aligned to a region's starting address or if the length
was greater than the number of bytes in the first region.
@param On[in] Decode / Non-Decode flag.
@retval EFI_SUCCESS The region's attributes were successfully modified.
@retval EFI_INVALID_PARAMETER If Start or Length describe an address not in the Legacy Region.
**/
EFI_STATUS
EFIAPI
LegacyRegion2Decode (
IN EFI_LEGACY_REGION2_PROTOCOL *This,
IN UINT32 Start,
IN UINT32 Length,
OUT UINT32 *Granularity,
IN BOOLEAN *On
);
/**
Modify the hardware to disallow memory writes in a region.
This function changes the attributes of a memory range to not allow writes.
@param This[in] Indicates the EFI_LEGACY_REGION_PROTOCOL instance.
@param Start[in] The beginning of the physical address of the region whose
attributes should be modified.
@param Length[in] The number of bytes of memory whose attributes should be modified.
The actual number of bytes modified may be greater than the number
specified.
@param Granularity[out] The number of bytes in the last region affected. This may be less
than the total number of bytes affected if the starting address was
not aligned to a region's starting address or if the length was
greater than the number of bytes in the first region.
@retval EFI_SUCCESS The region's attributes were successfully modified.
@retval EFI_INVALID_PARAMETER If Start or Length describe an address not in the Legacy Region.
**/
EFI_STATUS
EFIAPI
LegacyRegion2Lock (
IN EFI_LEGACY_REGION2_PROTOCOL *This,
IN UINT32 Start,
IN UINT32 Length,
OUT UINT32 *Granularity
);
/**
Modify the hardware to disallow memory attribute changes in a region.
This function makes the attributes of a region read only. Once a region is boot-locked with this
function, the read and write attributes of that region cannot be changed until a power cycle has
reset the boot-lock attribute. Calls to Decode(), Lock() and Unlock() will have no effect.
@param This[in] Indicates the EFI_LEGACY_REGION_PROTOCOL instance.
@param Start[in] The beginning of the physical address of the region whose
attributes should be modified.
@param Length[in] The number of bytes of memory whose attributes should be modified.
The actual number of bytes modified may be greater than the number
specified.
@param Granularity[out] The number of bytes in the last region affected. This may be less
than the total number of bytes affected if the starting address was
not aligned to a region's starting address or if the length was
greater than the number of bytes in the first region.
@retval EFI_SUCCESS The region's attributes were successfully modified.
@retval EFI_INVALID_PARAMETER If Start or Length describe an address not in the Legacy Region.
@retval EFI_UNSUPPORTED The chipset does not support locking the configuration registers in
a way that will not affect memory regions outside the legacy memory
region.
**/
EFI_STATUS
EFIAPI
LegacyRegion2BootLock (
IN EFI_LEGACY_REGION2_PROTOCOL *This,
IN UINT32 Start,
IN UINT32 Length,
OUT UINT32 *Granularity
);
/**
Modify the hardware to allow memory writes in a region.
This function changes the attributes of a memory range to allow writes.
@param This[in] Indicates the EFI_LEGACY_REGION_PROTOCOL instance.
@param Start[in] The beginning of the physical address of the region whose
attributes should be modified.
@param Length[in] The number of bytes of memory whose attributes should be modified.
The actual number of bytes modified may be greater than the number
specified.
@param Granularity[out] The number of bytes in the last region affected. This may be less
than the total number of bytes affected if the starting address was
not aligned to a region's starting address or if the length was
greater than the number of bytes in the first region.
@retval EFI_SUCCESS The region's attributes were successfully modified.
@retval EFI_INVALID_PARAMETER If Start or Length describe an address not in the Legacy Region.
**/
EFI_STATUS
EFIAPI
LegacyRegion2Unlock (
IN EFI_LEGACY_REGION2_PROTOCOL *This,
IN UINT32 Start,
IN UINT32 Length,
OUT UINT32 *Granularity
);
/**
Get region information for the attributes of the Legacy Region.
This function is used to discover the granularity of the attributes for the memory in the legacy
region. Each attribute may have a different granularity and the granularity may not be the same
for all memory ranges in the legacy region.
@param This[in] Indicates the EFI_LEGACY_REGION_PROTOCOL instance.
@param DescriptorCount[out] The number of region descriptor entries returned in the Descriptor
buffer.
@param Descriptor[out] A pointer to a pointer used to return a buffer where the legacy
region information is deposited. This buffer will contain a list of
DescriptorCount number of region descriptors. This function will
provide the memory for the buffer.
@retval EFI_SUCCESS The region's attributes were successfully modified.
@retval EFI_INVALID_PARAMETER If Start or Length describe an address not in the Legacy Region.
**/
EFI_STATUS
EFIAPI
LegacyRegionGetInfo (
IN EFI_LEGACY_REGION2_PROTOCOL *This,
OUT UINT32 *DescriptorCount,
OUT EFI_LEGACY_REGION_DESCRIPTOR **Descriptor
);
#endif