audk/OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c

1598 lines
40 KiB
C
Raw Normal View History

/** @file
Platform BDS customizations.
Copyright (c) 2004 - 2014, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "BdsPlatform.h"
#include <Library/QemuBootOrderLib.h>
//
// Global data
//
VOID *mEfiDevPathNotifyReg;
EFI_EVENT mEfiDevPathEvent;
VOID *mEmuVariableEventReg;
EFI_EVENT mEmuVariableEvent;
BOOLEAN mDetectVgaOnly;
UINT16 mHostBridgeDevId;
//
// Table of host IRQs matching PCI IRQs A-D
// (for configuring PCI Interrupt Line register)
//
CONST UINT8 PciHostIrqs[] = {
0x0a, 0x0a, 0x0b, 0x0b
};
//
// Array Size macro
//
#define ARRAY_SIZE(array) (sizeof (array) / sizeof (array[0]))
//
// Type definitions
//
typedef
EFI_STATUS
(EFIAPI *PROTOCOL_INSTANCE_CALLBACK)(
IN EFI_HANDLE Handle,
IN VOID *Instance,
IN VOID *Context
);
/**
@param[in] Handle - Handle of PCI device instance
@param[in] PciIo - PCI IO protocol instance
@param[in] Pci - PCI Header register block
**/
typedef
EFI_STATUS
(EFIAPI *VISIT_PCI_INSTANCE_CALLBACK)(
IN EFI_HANDLE Handle,
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN PCI_TYPE00 *Pci
);
//
// Function prototypes
//
EFI_STATUS
VisitAllInstancesOfProtocol (
IN EFI_GUID *Id,
IN PROTOCOL_INSTANCE_CALLBACK CallBackFunction,
IN VOID *Context
);
EFI_STATUS
VisitAllPciInstancesOfProtocol (
IN VISIT_PCI_INSTANCE_CALLBACK CallBackFunction
);
VOID
InstallDevicePathCallback (
VOID
);
//
// BDS Platform Functions
//
VOID
EFIAPI
PlatformBdsInit (
VOID
)
/*++
Routine Description:
Platform Bds init. Incude the platform firmware vendor, revision
and so crc check.
Arguments:
Returns:
None.
--*/
{
DEBUG ((EFI_D_INFO, "PlatformBdsInit\n"));
InstallDevicePathCallback ();
}
EFI_STATUS
EFIAPI
ConnectRootBridge (
IN EFI_HANDLE RootBridgeHandle,
IN VOID *Instance,
IN VOID *Context
)
{
EFI_STATUS Status;
//
// Make the PCI bus driver connect the root bridge, non-recursively. This
// will produce a number of child handles with PciIo on them.
//
Status = gBS->ConnectController (
RootBridgeHandle, // ControllerHandle
NULL, // DriverImageHandle
NULL, // RemainingDevicePath -- produce all
// children
FALSE // Recursive
);
return Status;
}
EFI_STATUS
PrepareLpcBridgeDevicePath (
IN EFI_HANDLE DeviceHandle
)
/*++
Routine Description:
Add IsaKeyboard to ConIn,
add IsaSerial to ConOut, ConIn, ErrOut.
LPC Bridge: 06 01 00
Arguments:
DeviceHandle - Handle of PCIIO protocol.
Returns:
EFI_SUCCESS - LPC bridge is added to ConOut, ConIn, and ErrOut.
EFI_STATUS - No LPC bridge is added.
--*/
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *TempDevicePath;
CHAR16 *DevPathStr;
DevicePath = NULL;
Status = gBS->HandleProtocol (
DeviceHandle,
&gEfiDevicePathProtocolGuid,
(VOID*)&DevicePath
);
if (EFI_ERROR (Status)) {
return Status;
}
TempDevicePath = DevicePath;
//
// Register Keyboard
//
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gPnpPs2KeyboardDeviceNode);
BdsLibUpdateConsoleVariable (VarConsoleInp, DevicePath, NULL);
//
// Register COM1
//
DevicePath = TempDevicePath;
gPnp16550ComPortDeviceNode.UID = 0;
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gPnp16550ComPortDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gUartDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gTerminalTypeDeviceNode);
//
// Print Device Path
//
DevPathStr = DevicePathToStr(DevicePath);
if (DevPathStr != NULL) {
DEBUG((
EFI_D_INFO,
"BdsPlatform.c+%d: COM%d DevPath: %s\n",
__LINE__,
gPnp16550ComPortDeviceNode.UID + 1,
DevPathStr
));
FreePool(DevPathStr);
}
BdsLibUpdateConsoleVariable (VarConsoleOut, DevicePath, NULL);
BdsLibUpdateConsoleVariable (VarConsoleInp, DevicePath, NULL);
BdsLibUpdateConsoleVariable (VarErrorOut, DevicePath, NULL);
//
// Register COM2
//
DevicePath = TempDevicePath;
gPnp16550ComPortDeviceNode.UID = 1;
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gPnp16550ComPortDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gUartDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gTerminalTypeDeviceNode);
//
// Print Device Path
//
DevPathStr = DevicePathToStr(DevicePath);
if (DevPathStr != NULL) {
DEBUG((
EFI_D_INFO,
"BdsPlatform.c+%d: COM%d DevPath: %s\n",
__LINE__,
gPnp16550ComPortDeviceNode.UID + 1,
DevPathStr
));
FreePool(DevPathStr);
}
BdsLibUpdateConsoleVariable (VarConsoleOut, DevicePath, NULL);
BdsLibUpdateConsoleVariable (VarConsoleInp, DevicePath, NULL);
BdsLibUpdateConsoleVariable (VarErrorOut, DevicePath, NULL);
return EFI_SUCCESS;
}
EFI_STATUS
GetGopDevicePath (
IN EFI_DEVICE_PATH_PROTOCOL *PciDevicePath,
OUT EFI_DEVICE_PATH_PROTOCOL **GopDevicePath
)
{
UINTN Index;
EFI_STATUS Status;
EFI_HANDLE PciDeviceHandle;
EFI_DEVICE_PATH_PROTOCOL *TempDevicePath;
EFI_DEVICE_PATH_PROTOCOL *TempPciDevicePath;
UINTN GopHandleCount;
EFI_HANDLE *GopHandleBuffer;
if (PciDevicePath == NULL || GopDevicePath == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Initialize the GopDevicePath to be PciDevicePath
//
*GopDevicePath = PciDevicePath;
TempPciDevicePath = PciDevicePath;
Status = gBS->LocateDevicePath (
&gEfiDevicePathProtocolGuid,
&TempPciDevicePath,
&PciDeviceHandle
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Try to connect this handle, so that GOP dirver could start on this
// device and create child handles with GraphicsOutput Protocol installed
// on them, then we get device paths of these child handles and select
// them as possible console device.
//
gBS->ConnectController (PciDeviceHandle, NULL, NULL, FALSE);
Status = gBS->LocateHandleBuffer (
ByProtocol,
&gEfiGraphicsOutputProtocolGuid,
NULL,
&GopHandleCount,
&GopHandleBuffer
);
if (!EFI_ERROR (Status)) {
//
// Add all the child handles as possible Console Device
//
for (Index = 0; Index < GopHandleCount; Index++) {
Status = gBS->HandleProtocol (GopHandleBuffer[Index], &gEfiDevicePathProtocolGuid, (VOID*)&TempDevicePath);
if (EFI_ERROR (Status)) {
continue;
}
if (CompareMem (
PciDevicePath,
TempDevicePath,
GetDevicePathSize (PciDevicePath) - END_DEVICE_PATH_LENGTH
) == 0) {
//
// In current implementation, we only enable one of the child handles
// as console device, i.e. sotre one of the child handle's device
// path to variable "ConOut"
// In futhure, we could select all child handles to be console device
//
*GopDevicePath = TempDevicePath;
//
// Delete the PCI device's path that added by GetPlugInPciVgaDevicePath()
// Add the integrity GOP device path.
//
BdsLibUpdateConsoleVariable (VarConsoleOutDev, NULL, PciDevicePath);
BdsLibUpdateConsoleVariable (VarConsoleOutDev, TempDevicePath, NULL);
}
}
gBS->FreePool (GopHandleBuffer);
}
return EFI_SUCCESS;
}
EFI_STATUS
PreparePciVgaDevicePath (
IN EFI_HANDLE DeviceHandle
)
/*++
Routine Description:
Add PCI VGA to ConOut.
PCI VGA: 03 00 00
Arguments:
DeviceHandle - Handle of PCIIO protocol.
Returns:
EFI_SUCCESS - PCI VGA is added to ConOut.
EFI_STATUS - No PCI VGA device is added.
--*/
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *GopDevicePath;
DevicePath = NULL;
GopDevicePath = NULL;
Status = gBS->HandleProtocol (
DeviceHandle,
&gEfiDevicePathProtocolGuid,
(VOID*)&DevicePath
);
if (EFI_ERROR (Status)) {
return Status;
}
GetGopDevicePath (DevicePath, &GopDevicePath);
DevicePath = GopDevicePath;
BdsLibUpdateConsoleVariable (VarConsoleOut, DevicePath, NULL);
return EFI_SUCCESS;
}
EFI_STATUS
PreparePciSerialDevicePath (
IN EFI_HANDLE DeviceHandle
)
/*++
Routine Description:
Add PCI Serial to ConOut, ConIn, ErrOut.
PCI Serial: 07 00 02
Arguments:
DeviceHandle - Handle of PCIIO protocol.
Returns:
EFI_SUCCESS - PCI Serial is added to ConOut, ConIn, and ErrOut.
EFI_STATUS - No PCI Serial device is added.
--*/
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
DevicePath = NULL;
Status = gBS->HandleProtocol (
DeviceHandle,
&gEfiDevicePathProtocolGuid,
(VOID*)&DevicePath
);
if (EFI_ERROR (Status)) {
return Status;
}
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gUartDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gTerminalTypeDeviceNode);
BdsLibUpdateConsoleVariable (VarConsoleOut, DevicePath, NULL);
BdsLibUpdateConsoleVariable (VarConsoleInp, DevicePath, NULL);
BdsLibUpdateConsoleVariable (VarErrorOut, DevicePath, NULL);
return EFI_SUCCESS;
}
EFI_STATUS
VisitAllInstancesOfProtocol (
IN EFI_GUID *Id,
IN PROTOCOL_INSTANCE_CALLBACK CallBackFunction,
IN VOID *Context
)
{
EFI_STATUS Status;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN Index;
VOID *Instance;
//
// Start to check all the PciIo to find all possible device
//
HandleCount = 0;
HandleBuffer = NULL;
Status = gBS->LocateHandleBuffer (
ByProtocol,
Id,
NULL,
&HandleCount,
&HandleBuffer
);
if (EFI_ERROR (Status)) {
return Status;
}
for (Index = 0; Index < HandleCount; Index++) {
Status = gBS->HandleProtocol (HandleBuffer[Index], Id, &Instance);
if (EFI_ERROR (Status)) {
continue;
}
Status = (*CallBackFunction) (
HandleBuffer[Index],
Instance,
Context
);
}
gBS->FreePool (HandleBuffer);
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
VisitingAPciInstance (
IN EFI_HANDLE Handle,
IN VOID *Instance,
IN VOID *Context
)
{
EFI_STATUS Status;
EFI_PCI_IO_PROTOCOL *PciIo;
PCI_TYPE00 Pci;
PciIo = (EFI_PCI_IO_PROTOCOL*) Instance;
//
// Check for all PCI device
//
Status = PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint32,
0,
sizeof (Pci) / sizeof (UINT32),
&Pci
);
if (EFI_ERROR (Status)) {
return Status;
}
return (*(VISIT_PCI_INSTANCE_CALLBACK)(UINTN) Context) (
Handle,
PciIo,
&Pci
);
}
EFI_STATUS
VisitAllPciInstances (
IN VISIT_PCI_INSTANCE_CALLBACK CallBackFunction
)
{
return VisitAllInstancesOfProtocol (
&gEfiPciIoProtocolGuid,
VisitingAPciInstance,
(VOID*)(UINTN) CallBackFunction
);
}
/**
Do platform specific PCI Device check and add them to
ConOut, ConIn, ErrOut.
@param[in] Handle - Handle of PCI device instance
@param[in] PciIo - PCI IO protocol instance
@param[in] Pci - PCI Header register block
@retval EFI_SUCCESS - PCI Device check and Console variable update successfully.
@retval EFI_STATUS - PCI Device check or Console variable update fail.
**/
EFI_STATUS
EFIAPI
DetectAndPreparePlatformPciDevicePath (
IN EFI_HANDLE Handle,
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN PCI_TYPE00 *Pci
)
{
EFI_STATUS Status;
Status = PciIo->Attributes (
PciIo,
EfiPciIoAttributeOperationEnable,
EFI_PCI_DEVICE_ENABLE,
NULL
);
ASSERT_EFI_ERROR (Status);
if (!mDetectVgaOnly) {
//
// Here we decide whether it is LPC Bridge
//
if ((IS_PCI_LPC (Pci)) ||
((IS_PCI_ISA_PDECODE (Pci)) &&
(Pci->Hdr.VendorId == 0x8086) &&
(Pci->Hdr.DeviceId == 0x7000)
)
) {
//
// Add IsaKeyboard to ConIn,
// add IsaSerial to ConOut, ConIn, ErrOut
//
DEBUG ((EFI_D_INFO, "Found LPC Bridge device\n"));
PrepareLpcBridgeDevicePath (Handle);
return EFI_SUCCESS;
}
//
// Here we decide which Serial device to enable in PCI bus
//
if (IS_PCI_16550SERIAL (Pci)) {
//
// Add them to ConOut, ConIn, ErrOut.
//
DEBUG ((EFI_D_INFO, "Found PCI 16550 SERIAL device\n"));
PreparePciSerialDevicePath (Handle);
return EFI_SUCCESS;
}
}
//
// Here we decide which VGA device to enable in PCI bus
//
if (IS_PCI_VGA (Pci)) {
//
// Add them to ConOut.
//
DEBUG ((EFI_D_INFO, "Found PCI VGA device\n"));
PreparePciVgaDevicePath (Handle);
return EFI_SUCCESS;
}
return Status;
}
/**
Do platform specific PCI Device check and add them to ConOut, ConIn, ErrOut
@param[in] DetectVgaOnly - Only detect VGA device if it's TRUE.
@retval EFI_SUCCESS - PCI Device check and Console variable update successfully.
@retval EFI_STATUS - PCI Device check or Console variable update fail.
**/
EFI_STATUS
DetectAndPreparePlatformPciDevicePaths (
BOOLEAN DetectVgaOnly
)
{
mDetectVgaOnly = DetectVgaOnly;
return VisitAllPciInstances (DetectAndPreparePlatformPciDevicePath);
}
EFI_STATUS
PlatformBdsConnectConsole (
IN BDS_CONSOLE_CONNECT_ENTRY *PlatformConsole
)
/*++
Routine Description:
Connect the predefined platform default console device. Always try to find
and enable the vga device if have.
Arguments:
PlatformConsole - Predfined platform default console device array.
Returns:
EFI_SUCCESS - Success connect at least one ConIn and ConOut
device, there must have one ConOut device is
active vga device.
EFI_STATUS - Return the status of
BdsLibConnectAllDefaultConsoles ()
--*/
{
EFI_STATUS Status;
UINTN Index;
EFI_DEVICE_PATH_PROTOCOL *VarConout;
EFI_DEVICE_PATH_PROTOCOL *VarConin;
UINTN DevicePathSize;
//
// Connect RootBridge
//
VarConout = BdsLibGetVariableAndSize (
VarConsoleOut,
&gEfiGlobalVariableGuid,
&DevicePathSize
);
VarConin = BdsLibGetVariableAndSize (
VarConsoleInp,
&gEfiGlobalVariableGuid,
&DevicePathSize
);
if (VarConout == NULL || VarConin == NULL) {
//
// Do platform specific PCI Device check and add them to ConOut, ConIn, ErrOut
//
DetectAndPreparePlatformPciDevicePaths (FALSE);
//
// Have chance to connect the platform default console,
// the platform default console is the minimue device group
// the platform should support
//
for (Index = 0; PlatformConsole[Index].DevicePath != NULL; ++Index) {
//
// Update the console variable with the connect type
//
if ((PlatformConsole[Index].ConnectType & CONSOLE_IN) == CONSOLE_IN) {
BdsLibUpdateConsoleVariable (VarConsoleInp, PlatformConsole[Index].DevicePath, NULL);
}
if ((PlatformConsole[Index].ConnectType & CONSOLE_OUT) == CONSOLE_OUT) {
BdsLibUpdateConsoleVariable (VarConsoleOut, PlatformConsole[Index].DevicePath, NULL);
}
if ((PlatformConsole[Index].ConnectType & STD_ERROR) == STD_ERROR) {
BdsLibUpdateConsoleVariable (VarErrorOut, PlatformConsole[Index].DevicePath, NULL);
}
}
} else {
//
// Only detect VGA device and add them to ConOut
//
DetectAndPreparePlatformPciDevicePaths (TRUE);
}
//
// Connect the all the default console with current cosole variable
//
Status = BdsLibConnectAllDefaultConsoles ();
if (EFI_ERROR (Status)) {
return Status;
}
return EFI_SUCCESS;
}
/**
Configure PCI Interrupt Line register for applicable devices
Ported from SeaBIOS, src/fw/pciinit.c, *_pci_slot_get_irq()
@param[in] Handle - Handle of PCI device instance
@param[in] PciIo - PCI IO protocol instance
@param[in] PciHdr - PCI Header register block
@retval EFI_SUCCESS - PCI Interrupt Line register configured successfully.
**/
EFI_STATUS
EFIAPI
SetPciIntLine (
IN EFI_HANDLE Handle,
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN PCI_TYPE00 *PciHdr
)
{
EFI_DEVICE_PATH_PROTOCOL *DevPathNode;
EFI_DEVICE_PATH_PROTOCOL *DevPath;
UINTN RootSlot;
UINTN Idx;
UINT8 IrqLine;
EFI_STATUS Status;
UINT32 RootBusNumber;
Status = EFI_SUCCESS;
if (PciHdr->Device.InterruptPin != 0) {
DevPathNode = DevicePathFromHandle (Handle);
ASSERT (DevPathNode != NULL);
DevPath = DevPathNode;
RootBusNumber = 0;
if (DevicePathType (DevPathNode) == ACPI_DEVICE_PATH &&
DevicePathSubType (DevPathNode) == ACPI_DP &&
((ACPI_HID_DEVICE_PATH *)DevPathNode)->HID == EISA_PNP_ID(0x0A03)) {
RootBusNumber = ((ACPI_HID_DEVICE_PATH *)DevPathNode)->UID;
}
//
// Compute index into PciHostIrqs[] table by walking
// the device path and adding up all device numbers
//
Status = EFI_NOT_FOUND;
RootSlot = 0;
Idx = PciHdr->Device.InterruptPin - 1;
while (!IsDevicePathEnd (DevPathNode)) {
if (DevicePathType (DevPathNode) == HARDWARE_DEVICE_PATH &&
DevicePathSubType (DevPathNode) == HW_PCI_DP) {
Idx += ((PCI_DEVICE_PATH *)DevPathNode)->Device;
//
// Unlike SeaBIOS, which starts climbing from the leaf device
// up toward the root, we traverse the device path starting at
// the root moving toward the leaf node.
// The slot number of the top-level parent bridge is needed for
// Q35 cases with more than 24 slots on the root bus.
//
if (Status != EFI_SUCCESS) {
Status = EFI_SUCCESS;
RootSlot = ((PCI_DEVICE_PATH *)DevPathNode)->Device;
}
}
DevPathNode = NextDevicePathNode (DevPathNode);
}
if (EFI_ERROR (Status)) {
return Status;
}
if (RootBusNumber == 0 && RootSlot == 0) {
DEBUG((
EFI_D_ERROR,
"%a: PCI host bridge (00:00.0) should have no interrupts!\n",
__FUNCTION__
));
ASSERT (FALSE);
}
//
// Final PciHostIrqs[] index calculation depends on the platform
// and should match SeaBIOS src/fw/pciinit.c *_pci_slot_get_irq()
//
switch (mHostBridgeDevId) {
case INTEL_82441_DEVICE_ID:
Idx -= 1;
break;
case INTEL_Q35_MCH_DEVICE_ID:
//
// SeaBIOS contains the following comment:
// "Slots 0-24 rotate slot:pin mapping similar to piix above, but
// with a different starting index - see q35-acpi-dsdt.dsl.
//
// Slots 25-31 all use LNKA mapping (or LNKE, but A:D = E:H)"
//
if (RootSlot > 24) {
//
// in this case, subtract back out RootSlot from Idx
// (SeaBIOS never adds it to begin with, but that would make our
// device path traversal loop above too awkward)
//
Idx -= RootSlot;
}
break;
default:
ASSERT (FALSE); // should never get here
}
Idx %= ARRAY_SIZE (PciHostIrqs);
IrqLine = PciHostIrqs[Idx];
DEBUG_CODE_BEGIN ();
{
CHAR16 *DevPathString;
STATIC CHAR16 Fallback[] = L"<failed to convert>";
UINTN Segment, Bus, Device, Function;
DevPathString = ConvertDevicePathToText (DevPath, FALSE, FALSE);
if (DevPathString == NULL) {
DevPathString = Fallback;
}
Status = PciIo->GetLocation (PciIo, &Segment, &Bus, &Device, &Function);
ASSERT_EFI_ERROR (Status);
DEBUG ((EFI_D_VERBOSE, "%a: [%02x:%02x.%x] %s -> 0x%02x\n", __FUNCTION__,
(UINT32)Bus, (UINT32)Device, (UINT32)Function, DevPathString,
IrqLine));
if (DevPathString != Fallback) {
FreePool (DevPathString);
}
}
DEBUG_CODE_END ();
//
// Set PCI Interrupt Line register for this device to PciHostIrqs[Idx]
//
Status = PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint8,
PCI_INT_LINE_OFFSET,
1,
&IrqLine
);
}
return Status;
}
VOID
PciAcpiInitialization (
)
{
UINTN Pmba;
//
// Query Host Bridge DID to determine platform type
//
mHostBridgeDevId = PcdGet16 (PcdOvmfHostBridgePciDevId);
switch (mHostBridgeDevId) {
case INTEL_82441_DEVICE_ID:
Pmba = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMBA);
//
// 00:01.0 ISA Bridge (PIIX4) LNK routing targets
//
PciWrite8 (PCI_LIB_ADDRESS (0, 1, 0, 0x60), 0x0b); // A
PciWrite8 (PCI_LIB_ADDRESS (0, 1, 0, 0x61), 0x0b); // B
PciWrite8 (PCI_LIB_ADDRESS (0, 1, 0, 0x62), 0x0a); // C
PciWrite8 (PCI_LIB_ADDRESS (0, 1, 0, 0x63), 0x0a); // D
break;
case INTEL_Q35_MCH_DEVICE_ID:
Pmba = POWER_MGMT_REGISTER_Q35 (ICH9_PMBASE);
//
// 00:1f.0 LPC Bridge (Q35) LNK routing targets
//
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x60), 0x0a); // A
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x61), 0x0a); // B
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x62), 0x0b); // C
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x63), 0x0b); // D
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x68), 0x0a); // E
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x69), 0x0a); // F
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x6a), 0x0b); // G
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x6b), 0x0b); // H
break;
default:
DEBUG ((EFI_D_ERROR, "%a: Unknown Host Bridge Device ID: 0x%04x\n",
__FUNCTION__, mHostBridgeDevId));
ASSERT (FALSE);
return;
}
//
// Initialize PCI_INTERRUPT_LINE for applicable present PCI devices
//
VisitAllPciInstances (SetPciIntLine);
//
// Set ACPI SCI_EN bit in PMCNTRL
//
IoOr16 ((PciRead32 (Pmba) & ~BIT0) + 4, BIT0);
}
EFI_STATUS
EFIAPI
ConnectRecursivelyIfPciMassStorage (
IN EFI_HANDLE Handle,
IN EFI_PCI_IO_PROTOCOL *Instance,
IN PCI_TYPE00 *PciHeader
)
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
CHAR16 *DevPathStr;
if (IS_CLASS1 (PciHeader, PCI_CLASS_MASS_STORAGE)) {
DevicePath = NULL;
Status = gBS->HandleProtocol (
Handle,
&gEfiDevicePathProtocolGuid,
(VOID*)&DevicePath
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Print Device Path
//
DevPathStr = DevicePathToStr (DevicePath);
if (DevPathStr != NULL) {
DEBUG((
EFI_D_INFO,
"Found Mass Storage device: %s\n",
DevPathStr
));
FreePool(DevPathStr);
}
Status = gBS->ConnectController (Handle, NULL, NULL, TRUE);
if (EFI_ERROR (Status)) {
return Status;
}
}
return EFI_SUCCESS;
}
/**
This notification function is invoked when the
EMU Variable FVB has been changed.
@param Event The event that occured
@param Context For EFI compatiblity. Not used.
**/
VOID
EFIAPI
EmuVariablesUpdatedCallback (
IN EFI_EVENT Event,
IN VOID *Context
)
{
DEBUG ((EFI_D_INFO, "EmuVariablesUpdatedCallback\n"));
UpdateNvVarsOnFileSystem ();
}
EFI_STATUS
EFIAPI
VisitingFileSystemInstance (
IN EFI_HANDLE Handle,
IN VOID *Instance,
IN VOID *Context
)
{
EFI_STATUS Status;
STATIC BOOLEAN ConnectedToFileSystem = FALSE;
if (ConnectedToFileSystem) {
return EFI_ALREADY_STARTED;
}
Status = ConnectNvVarsToFileSystem (Handle);
if (EFI_ERROR (Status)) {
return Status;
}
ConnectedToFileSystem = TRUE;
mEmuVariableEvent =
EfiCreateProtocolNotifyEvent (
&gEfiDevicePathProtocolGuid,
TPL_CALLBACK,
EmuVariablesUpdatedCallback,
NULL,
&mEmuVariableEventReg
);
PcdSet64 (PcdEmuVariableEvent, (UINT64)(UINTN) mEmuVariableEvent);
return EFI_SUCCESS;
}
VOID
PlatformBdsRestoreNvVarsFromHardDisk (
)
{
VisitAllPciInstances (ConnectRecursivelyIfPciMassStorage);
VisitAllInstancesOfProtocol (
&gEfiSimpleFileSystemProtocolGuid,
VisitingFileSystemInstance,
NULL
);
}
VOID
PlatformBdsConnectSequence (
VOID
)
/*++
Routine Description:
Connect with predeined platform connect sequence,
the OEM/IBV can customize with their own connect sequence.
Arguments:
None.
Returns:
None.
--*/
{
UINTN Index;
DEBUG ((EFI_D_INFO, "PlatformBdsConnectSequence\n"));
Index = 0;
//
// Here we can get the customized platform connect sequence
// Notes: we can connect with new variable which record the
// last time boots connect device path sequence
//
while (gPlatformConnectSequence[Index] != NULL) {
//
// Build the platform boot option
//
BdsLibConnectDevicePath (gPlatformConnectSequence[Index]);
Index++;
}
//
// Just use the simple policy to connect all devices
//
BdsLibConnectAll ();
PciAcpiInitialization ();
//
// Clear the logo after all devices are connected.
//
gST->ConOut->ClearScreen (gST->ConOut);
}
VOID
PlatformBdsGetDriverOption (
IN OUT LIST_ENTRY *BdsDriverLists
)
/*++
Routine Description:
Load the predefined driver option, OEM/IBV can customize this
to load their own drivers
Arguments:
BdsDriverLists - The header of the driver option link list.
Returns:
None.
--*/
{
DEBUG ((EFI_D_INFO, "PlatformBdsGetDriverOption\n"));
return;
}
VOID
PlatformBdsDiagnostics (
IN EXTENDMEM_COVERAGE_LEVEL MemoryTestLevel,
IN BOOLEAN QuietBoot,
IN BASEM_MEMORY_TEST BaseMemoryTest
)
/*++
Routine Description:
Perform the platform diagnostic, such like test memory. OEM/IBV also
can customize this fuction to support specific platform diagnostic.
Arguments:
MemoryTestLevel - The memory test intensive level
QuietBoot - Indicate if need to enable the quiet boot
BaseMemoryTest - A pointer to BaseMemoryTest()
Returns:
None.
--*/
{
EFI_STATUS Status;
DEBUG ((EFI_D_INFO, "PlatformBdsDiagnostics\n"));
//
// Here we can decide if we need to show
// the diagnostics screen
// Notes: this quiet boot code should be remove
// from the graphic lib
//
if (QuietBoot) {
EnableQuietBoot (PcdGetPtr(PcdLogoFile));
//
// Perform system diagnostic
//
Status = BaseMemoryTest (MemoryTestLevel);
if (EFI_ERROR (Status)) {
DisableQuietBoot ();
}
return ;
}
//
// Perform system diagnostic
//
Status = BaseMemoryTest (MemoryTestLevel);
}
OvmfPkg: PlatformBdsLib: signal End-of-Dxe event group (Paraphrasing git commit 9cd7d3c5 / SVN r17713:) Currently, OvmfPkg fails to signal the End-of-Dxe event group when entering the BDS phase, which results in some loss of functionality, eg. variable reclaim in the variable driver, and the memory region splitting in the DXE core that belongs to the properties table feature specified in UEFI-2.5. As discussed on the edk2-devel mailing list here: http://thread.gmane.org/gmane.comp.bios.tianocore.devel/16088/focus=16109 it is up to the platform BDS to signal End-of-Dxe, since there may be platform specific ordering constraints with respect to the signalling of the event that are difficult to honor at the generic level. (OvmfPkg specifics:) (1) In OvmfPkg, we can't signal End-of-Dxe before PCI enumeration completes. According to the previous patch, that would trigger OvmfPkg/AcpiS3SaveDxe to save S3 state *before* the following chain of action happened: - PCI enumeration completes - ACPI tables are installed by OvmfPkg/AcpiPlatformDxe - the FACS table becomes available Since OvmfPkg/AcpiS3SaveDxe can only save S3 state once the FACS table is available, we must delay the End-of-Dxe signal until after PCI enumeration completes (ie. root bridges are connected). (2) Pre-patch, S3Ready() in OvmfPkg/AcpiS3SaveDxe is entered from BdsLibBootViaBootOption() [IntelFrameworkModulePkg/Library/GenericBdsLib/BdsBoot.c]. After the patch, we enter S3Ready() earlier than that, by signaling End-of-Dxe in PlatformBdsPolicyBehavior(). The timing / location of this new call is correct as well, and the original call (that now becomes the chronologically second call) becomes a no-op: S3Ready() is protected against 2nd and later entries. Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18035 6f19259b-4bc3-4df7-8a09-765794883524
2015-07-26 10:02:13 +02:00
/**
Empty callback function executed when the EndOfDxe event group is signaled.
We only need this function because we'd like to signal EndOfDxe, and for that
we need to create an event, with a callback function.
@param[in] Event Event whose notification function is being invoked.
@param[in] Context The pointer to the notification function's context, which
is implementation-dependent.
**/
STATIC
VOID
EFIAPI
OnEndOfDxe (
IN EFI_EVENT Event,
IN VOID *Context
)
{
}
OvmfPkg: install DxeSmmReadyToLock in PlatformBdsLib Currently we have the following call chain in OVMF: PlatformBdsPolicyBehavior() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c] // // signals End-of-Dxe // OnEndOfDxe() [OvmfPkg/AcpiS3SaveDxe/AcpiS3Save.c] S3Ready() [OvmfPkg/AcpiS3SaveDxe/AcpiS3Save.c] // // 1. saves S3 state // SaveS3BootScript() [OvmfPkg/AcpiS3SaveDxe/AcpiS3Save.c] // // 2. saves INFO opcode in S3 boot script // 3. installs DxeSmmReadyToLockProtocol // The bottom of this call chain was introduced in git commit 5a217a06 (SVN r15305, "OvmfPkg: S3 Suspend: save boot script after ACPI context"). That patch was necessary because there was no other way, due to GenericBdsLib calling S3Save() from BdsLibBootViaBootOption(), to perform the necessary steps in the right order: - save S3 system information, - save a final (well, only) boot script opcode, - signal DxeSmmReadyToLock, closing the boot script, and locking down LockBox and SMM. The GenericBdsLib bug has been fixed in the previous patch -- the call in BdsLibBootViaBootOption() has been eliminated. Therefore, hoist the SaveS3BootScript() code, and call, from OvmfPkg/AcpiS3SaveDxe, to PlatformBdsLib: PlatformBdsPolicyBehavior() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c] // // signals End-of-Dxe // OnEndOfDxe() [OvmfPkg/AcpiS3SaveDxe/AcpiS3Save.c] S3Ready() [OvmfPkg/AcpiS3SaveDxe/AcpiS3Save.c] // // 1. saves S3 state // <--- SaveS3BootScript() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c] // // 2. saves INFO opcode in S3 boot script // 3. installs DxeSmmReadyToLockProtocol // The installation of DxeSmmReadyToLockProtocol belongs with Platform BDS, not AcpiS3SaveDxe, and we can now undo the hack in SVN r15305, without upsetting the relative order of the steps. Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18037 6f19259b-4bc3-4df7-8a09-765794883524
2015-07-26 10:02:24 +02:00
/**
Save the S3 boot script.
Note that we trigger DxeSmmReadyToLock here -- otherwise the script wouldn't
be saved actually. Triggering this protocol installation event in turn locks
down SMM, so no further changes to LockBoxes or SMRAM are possible
afterwards.
**/
STATIC
VOID
SaveS3BootScript (
VOID
)
{
EFI_STATUS Status;
EFI_S3_SAVE_STATE_PROTOCOL *BootScript;
EFI_HANDLE Handle;
STATIC CONST UINT8 Info[] = { 0xDE, 0xAD, 0xBE, 0xEF };
Status = gBS->LocateProtocol (&gEfiS3SaveStateProtocolGuid, NULL,
(VOID **) &BootScript);
ASSERT_EFI_ERROR (Status);
//
// Despite the opcode documentation in the PI spec, the protocol
// implementation embeds a deep copy of the info in the boot script, rather
// than storing just a pointer to runtime or NVS storage.
//
Status = BootScript->Write(BootScript, EFI_BOOT_SCRIPT_INFORMATION_OPCODE,
(UINT32) sizeof Info,
(EFI_PHYSICAL_ADDRESS)(UINTN) &Info);
ASSERT_EFI_ERROR (Status);
Handle = NULL;
Status = gBS->InstallProtocolInterface (&Handle,
&gEfiDxeSmmReadyToLockProtocolGuid, EFI_NATIVE_INTERFACE,
NULL);
ASSERT_EFI_ERROR (Status);
}
VOID
EFIAPI
PlatformBdsPolicyBehavior (
IN OUT LIST_ENTRY *DriverOptionList,
IN OUT LIST_ENTRY *BootOptionList,
IN PROCESS_CAPSULES ProcessCapsules,
IN BASEM_MEMORY_TEST BaseMemoryTest
)
/*++
Routine Description:
The function will excute with as the platform policy, current policy
is driven by boot mode. IBV/OEM can customize this code for their specific
policy action.
Arguments:
DriverOptionList - The header of the driver option link list
BootOptionList - The header of the boot option link list
ProcessCapsules - A pointer to ProcessCapsules()
BaseMemoryTest - A pointer to BaseMemoryTest()
Returns:
None.
--*/
{
EFI_STATUS Status;
EFI_BOOT_MODE BootMode;
OvmfPkg: PlatformBdsLib: signal End-of-Dxe event group (Paraphrasing git commit 9cd7d3c5 / SVN r17713:) Currently, OvmfPkg fails to signal the End-of-Dxe event group when entering the BDS phase, which results in some loss of functionality, eg. variable reclaim in the variable driver, and the memory region splitting in the DXE core that belongs to the properties table feature specified in UEFI-2.5. As discussed on the edk2-devel mailing list here: http://thread.gmane.org/gmane.comp.bios.tianocore.devel/16088/focus=16109 it is up to the platform BDS to signal End-of-Dxe, since there may be platform specific ordering constraints with respect to the signalling of the event that are difficult to honor at the generic level. (OvmfPkg specifics:) (1) In OvmfPkg, we can't signal End-of-Dxe before PCI enumeration completes. According to the previous patch, that would trigger OvmfPkg/AcpiS3SaveDxe to save S3 state *before* the following chain of action happened: - PCI enumeration completes - ACPI tables are installed by OvmfPkg/AcpiPlatformDxe - the FACS table becomes available Since OvmfPkg/AcpiS3SaveDxe can only save S3 state once the FACS table is available, we must delay the End-of-Dxe signal until after PCI enumeration completes (ie. root bridges are connected). (2) Pre-patch, S3Ready() in OvmfPkg/AcpiS3SaveDxe is entered from BdsLibBootViaBootOption() [IntelFrameworkModulePkg/Library/GenericBdsLib/BdsBoot.c]. After the patch, we enter S3Ready() earlier than that, by signaling End-of-Dxe in PlatformBdsPolicyBehavior(). The timing / location of this new call is correct as well, and the original call (that now becomes the chronologically second call) becomes a no-op: S3Ready() is protected against 2nd and later entries. Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18035 6f19259b-4bc3-4df7-8a09-765794883524
2015-07-26 10:02:13 +02:00
EFI_EVENT EndOfDxeEvent;
DEBUG ((EFI_D_INFO, "PlatformBdsPolicyBehavior\n"));
VisitAllInstancesOfProtocol (&gEfiPciRootBridgeIoProtocolGuid,
ConnectRootBridge, NULL);
OvmfPkg: PlatformBdsLib: signal End-of-Dxe event group (Paraphrasing git commit 9cd7d3c5 / SVN r17713:) Currently, OvmfPkg fails to signal the End-of-Dxe event group when entering the BDS phase, which results in some loss of functionality, eg. variable reclaim in the variable driver, and the memory region splitting in the DXE core that belongs to the properties table feature specified in UEFI-2.5. As discussed on the edk2-devel mailing list here: http://thread.gmane.org/gmane.comp.bios.tianocore.devel/16088/focus=16109 it is up to the platform BDS to signal End-of-Dxe, since there may be platform specific ordering constraints with respect to the signalling of the event that are difficult to honor at the generic level. (OvmfPkg specifics:) (1) In OvmfPkg, we can't signal End-of-Dxe before PCI enumeration completes. According to the previous patch, that would trigger OvmfPkg/AcpiS3SaveDxe to save S3 state *before* the following chain of action happened: - PCI enumeration completes - ACPI tables are installed by OvmfPkg/AcpiPlatformDxe - the FACS table becomes available Since OvmfPkg/AcpiS3SaveDxe can only save S3 state once the FACS table is available, we must delay the End-of-Dxe signal until after PCI enumeration completes (ie. root bridges are connected). (2) Pre-patch, S3Ready() in OvmfPkg/AcpiS3SaveDxe is entered from BdsLibBootViaBootOption() [IntelFrameworkModulePkg/Library/GenericBdsLib/BdsBoot.c]. After the patch, we enter S3Ready() earlier than that, by signaling End-of-Dxe in PlatformBdsPolicyBehavior(). The timing / location of this new call is correct as well, and the original call (that now becomes the chronologically second call) becomes a no-op: S3Ready() is protected against 2nd and later entries. Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18035 6f19259b-4bc3-4df7-8a09-765794883524
2015-07-26 10:02:13 +02:00
//
// We can't signal End-of-Dxe earlier than this. Namely, End-of-Dxe triggers
// the preparation of S3 system information. That logic has a hard dependency
// on the presence of the FACS ACPI table. Since our ACPI tables are only
// installed after PCI enumeration completes, we must not trigger the S3 save
// earlier, hence we can't signal End-of-Dxe earlier.
//
Status = gBS->CreateEventEx (EVT_NOTIFY_SIGNAL, TPL_CALLBACK, OnEndOfDxe,
NULL /* NotifyContext */, &gEfiEndOfDxeEventGroupGuid,
&EndOfDxeEvent);
if (!EFI_ERROR (Status)) {
gBS->SignalEvent (EndOfDxeEvent);
gBS->CloseEvent (EndOfDxeEvent);
}
OvmfPkg: install DxeSmmReadyToLock in PlatformBdsLib Currently we have the following call chain in OVMF: PlatformBdsPolicyBehavior() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c] // // signals End-of-Dxe // OnEndOfDxe() [OvmfPkg/AcpiS3SaveDxe/AcpiS3Save.c] S3Ready() [OvmfPkg/AcpiS3SaveDxe/AcpiS3Save.c] // // 1. saves S3 state // SaveS3BootScript() [OvmfPkg/AcpiS3SaveDxe/AcpiS3Save.c] // // 2. saves INFO opcode in S3 boot script // 3. installs DxeSmmReadyToLockProtocol // The bottom of this call chain was introduced in git commit 5a217a06 (SVN r15305, "OvmfPkg: S3 Suspend: save boot script after ACPI context"). That patch was necessary because there was no other way, due to GenericBdsLib calling S3Save() from BdsLibBootViaBootOption(), to perform the necessary steps in the right order: - save S3 system information, - save a final (well, only) boot script opcode, - signal DxeSmmReadyToLock, closing the boot script, and locking down LockBox and SMM. The GenericBdsLib bug has been fixed in the previous patch -- the call in BdsLibBootViaBootOption() has been eliminated. Therefore, hoist the SaveS3BootScript() code, and call, from OvmfPkg/AcpiS3SaveDxe, to PlatformBdsLib: PlatformBdsPolicyBehavior() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c] // // signals End-of-Dxe // OnEndOfDxe() [OvmfPkg/AcpiS3SaveDxe/AcpiS3Save.c] S3Ready() [OvmfPkg/AcpiS3SaveDxe/AcpiS3Save.c] // // 1. saves S3 state // <--- SaveS3BootScript() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c] // // 2. saves INFO opcode in S3 boot script // 3. installs DxeSmmReadyToLockProtocol // The installation of DxeSmmReadyToLockProtocol belongs with Platform BDS, not AcpiS3SaveDxe, and we can now undo the hack in SVN r15305, without upsetting the relative order of the steps. Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18037 6f19259b-4bc3-4df7-8a09-765794883524
2015-07-26 10:02:24 +02:00
if (QemuFwCfgS3Enabled ()) {
//
// Save the boot script too. Note that this requires/includes emitting the
// DxeSmmReadyToLock event, which in turn locks down SMM.
//
SaveS3BootScript ();
}
if (PcdGetBool (PcdOvmfFlashVariablesEnable)) {
DEBUG ((EFI_D_INFO, "PlatformBdsPolicyBehavior: not restoring NvVars "
"from disk since flash variables appear to be supported.\n"));
} else {
//
// Try to restore variables from the hard disk early so
// they can be used for the other BDS connect operations.
//
PlatformBdsRestoreNvVarsFromHardDisk ();
}
//
// Load the driver option as the driver option list
//
PlatformBdsGetDriverOption (DriverOptionList);
//
// Get current Boot Mode
//
Status = BdsLibGetBootMode (&BootMode);
DEBUG ((EFI_D_ERROR, "Boot Mode:%x\n", BootMode));
//
// Go the different platform policy with different boot mode
// Notes: this part code can be change with the table policy
//
ASSERT (BootMode == BOOT_WITH_FULL_CONFIGURATION);
//
// Connect platform console
//
Status = PlatformBdsConnectConsole (gPlatformConsole);
if (EFI_ERROR (Status)) {
//
// Here OEM/IBV can customize with defined action
//
PlatformBdsNoConsoleAction ();
}
//
// Memory test and Logo show
//
PlatformBdsDiagnostics (IGNORE, TRUE, BaseMemoryTest);
//
// Perform some platform specific connect sequence
//
PlatformBdsConnectSequence ();
//
// Process QEMU's -kernel command line option
//
TryRunningQemuKernel ();
DEBUG ((EFI_D_INFO, "BdsLibConnectAll\n"));
BdsLibConnectAll ();
BdsLibEnumerateAllBootOption (BootOptionList);
SetBootOrderFromQemu (BootOptionList);
//
OvmfPkg: BDS: remove historic (now defunct) boot mode hack When PI can distinguish the "full config" boot mode from "assume no changes", then the following BDS logic is correct: if BootMode == BOOT_WITH_FULL_CONFIGURATION: // // connect all devices // create & append each default boot option that's missing // BdsLibConnectAll BdsLibEnumerateAllBootOption else if BootMode == BOOT_ASSUMING_NO_CONFIGURATION_CHANGES: // // just stick with current BootOrder and the Boot#### variables // referenced by it // In theory, the first branch is intended to run infrequently, and the "assume no changes" branch should run most of the time. However, some platforms can't tell these two boot modes apart. The following substitute had been introduced: // // Technically, always assume "full config", but the BootMode HOB is // actually meaningless wrt. to "full config" or "assume no changes". // ASSERT (BootMode == BOOT_WITH_FULL_CONFIGURATION); // // Key off the existence of BootOrder. Try to prepare an in-memory list // of boot options, based on BootOrder and the referenced Boot#### // variables. // Status = BdsLibBuildOptionFromVar() // // If that succeeded, we'll treat it as "assume no changes". If it // failed (*only* if it failed), we'll build default boot options, // calling it "full config": // if EFI_ERROR(Status): BdsLibConnectAll() BdsLibEnumerateAllBootOption(BootOptionList) What we have now in OVMF is a mixture of the hack, and the behavior that's theoretically correct for "full config": - We assert "full config" -- this is OK. - We call "connect all" and "enumerate all" deliberately -- this is OK too. It matches "full config" which we assert. - However, we also have the hack in place, which had been meant as an alternative. In order to clean this up, we either need to restore the hack to its original form (ie. comment out the unconditional calls again), or we ought to remove the hack altogether. The unconditional "connect all" + "enumerate all" calls are the correct approach for OVMF, because we want, in fact, to start with "full config". The QEMU boot order specification and the set of emulated devices might change "out of band", which excludes "assume no changes". In other words, removing the hack corresponds to the "real production" case that the comment hints at. Because SetBootOrderFromQemu() may change the BootOrder NvVar, we must preserve the BdsLibBuildOptionFromVar() function call, in order to refresh the in-memory list with the new boot priorities. (The last step of BdsLibEnumerateAllBootOption() is such a call too.) Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15326 6f19259b-4bc3-4df7-8a09-765794883524
2014-03-13 18:34:55 +01:00
// The BootOrder variable may have changed, reload the in-memory list with
// it.
//
OvmfPkg: BDS: remove historic (now defunct) boot mode hack When PI can distinguish the "full config" boot mode from "assume no changes", then the following BDS logic is correct: if BootMode == BOOT_WITH_FULL_CONFIGURATION: // // connect all devices // create & append each default boot option that's missing // BdsLibConnectAll BdsLibEnumerateAllBootOption else if BootMode == BOOT_ASSUMING_NO_CONFIGURATION_CHANGES: // // just stick with current BootOrder and the Boot#### variables // referenced by it // In theory, the first branch is intended to run infrequently, and the "assume no changes" branch should run most of the time. However, some platforms can't tell these two boot modes apart. The following substitute had been introduced: // // Technically, always assume "full config", but the BootMode HOB is // actually meaningless wrt. to "full config" or "assume no changes". // ASSERT (BootMode == BOOT_WITH_FULL_CONFIGURATION); // // Key off the existence of BootOrder. Try to prepare an in-memory list // of boot options, based on BootOrder and the referenced Boot#### // variables. // Status = BdsLibBuildOptionFromVar() // // If that succeeded, we'll treat it as "assume no changes". If it // failed (*only* if it failed), we'll build default boot options, // calling it "full config": // if EFI_ERROR(Status): BdsLibConnectAll() BdsLibEnumerateAllBootOption(BootOptionList) What we have now in OVMF is a mixture of the hack, and the behavior that's theoretically correct for "full config": - We assert "full config" -- this is OK. - We call "connect all" and "enumerate all" deliberately -- this is OK too. It matches "full config" which we assert. - However, we also have the hack in place, which had been meant as an alternative. In order to clean this up, we either need to restore the hack to its original form (ie. comment out the unconditional calls again), or we ought to remove the hack altogether. The unconditional "connect all" + "enumerate all" calls are the correct approach for OVMF, because we want, in fact, to start with "full config". The QEMU boot order specification and the set of emulated devices might change "out of band", which excludes "assume no changes". In other words, removing the hack corresponds to the "real production" case that the comment hints at. Because SetBootOrderFromQemu() may change the BootOrder NvVar, we must preserve the BdsLibBuildOptionFromVar() function call, in order to refresh the in-memory list with the new boot priorities. (The last step of BdsLibEnumerateAllBootOption() is such a call too.) Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15326 6f19259b-4bc3-4df7-8a09-765794883524
2014-03-13 18:34:55 +01:00
BdsLibBuildOptionFromVar (BootOptionList, L"BootOrder");
PlatformBdsEnterFrontPage (GetFrontPageTimeoutFromQemu(), TRUE);
}
VOID
EFIAPI
PlatformBdsBootSuccess (
IN BDS_COMMON_OPTION *Option
)
/*++
Routine Description:
Hook point after a boot attempt succeeds. We don't expect a boot option to
return, so the EFI 1.0 specification defines that you will default to an
interactive mode and stop processing the BootOrder list in this case. This
is alos a platform implementation and can be customized by IBV/OEM.
Arguments:
Option - Pointer to Boot Option that succeeded to boot.
Returns:
None.
--*/
{
CHAR16 *TmpStr;
DEBUG ((EFI_D_INFO, "PlatformBdsBootSuccess\n"));
//
// If Boot returned with EFI_SUCCESS and there is not in the boot device
// select loop then we need to pop up a UI and wait for user input.
//
TmpStr = Option->StatusString;
if (TmpStr != NULL) {
BdsLibOutputStrings (gST->ConOut, TmpStr, Option->Description, L"\n\r", NULL);
FreePool (TmpStr);
}
}
VOID
EFIAPI
PlatformBdsBootFail (
IN BDS_COMMON_OPTION *Option,
IN EFI_STATUS Status,
IN CHAR16 *ExitData,
IN UINTN ExitDataSize
)
/*++
Routine Description:
Hook point after a boot attempt fails.
Arguments:
Option - Pointer to Boot Option that failed to boot.
Status - Status returned from failed boot.
ExitData - Exit data returned from failed boot.
ExitDataSize - Exit data size returned from failed boot.
Returns:
None.
--*/
{
CHAR16 *TmpStr;
DEBUG ((EFI_D_INFO, "PlatformBdsBootFail\n"));
//
// If Boot returned with failed status then we need to pop up a UI and wait
// for user input.
//
TmpStr = Option->StatusString;
if (TmpStr != NULL) {
BdsLibOutputStrings (gST->ConOut, TmpStr, Option->Description, L"\n\r", NULL);
FreePool (TmpStr);
}
}
EFI_STATUS
PlatformBdsNoConsoleAction (
VOID
)
/*++
Routine Description:
This function is remained for IBV/OEM to do some platform action,
if there no console device can be connected.
Arguments:
None.
Returns:
EFI_SUCCESS - Direct return success now.
--*/
{
DEBUG ((EFI_D_INFO, "PlatformBdsNoConsoleAction\n"));
return EFI_SUCCESS;
}
VOID
EFIAPI
PlatformBdsLockNonUpdatableFlash (
VOID
)
{
DEBUG ((EFI_D_INFO, "PlatformBdsLockNonUpdatableFlash\n"));
return;
}
/**
This notification function is invoked when an instance of the
EFI_DEVICE_PATH_PROTOCOL is produced.
@param Event The event that occured
@param Context For EFI compatiblity. Not used.
**/
VOID
EFIAPI
NotifyDevPath (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_HANDLE Handle;
EFI_STATUS Status;
UINTN BufferSize;
EFI_DEVICE_PATH_PROTOCOL *DevPathNode;
ATAPI_DEVICE_PATH *Atapi;
//
// Examine all new handles
//
for (;;) {
//
// Get the next handle
//
BufferSize = sizeof (Handle);
Status = gBS->LocateHandle (
ByRegisterNotify,
NULL,
mEfiDevPathNotifyReg,
&BufferSize,
&Handle
);
//
// If not found, we're done
//
if (EFI_NOT_FOUND == Status) {
break;
}
if (EFI_ERROR (Status)) {
continue;
}
//
// Get the DevicePath protocol on that handle
//
Status = gBS->HandleProtocol (Handle, &gEfiDevicePathProtocolGuid, (VOID **)&DevPathNode);
ASSERT_EFI_ERROR (Status);
while (!IsDevicePathEnd (DevPathNode)) {
//
// Find the handler to dump this device path node
//
if (
(DevicePathType(DevPathNode) == MESSAGING_DEVICE_PATH) &&
(DevicePathSubType(DevPathNode) == MSG_ATAPI_DP)
) {
Atapi = (ATAPI_DEVICE_PATH*) DevPathNode;
PciOr16 (
PCI_LIB_ADDRESS (
0,
1,
1,
(Atapi->PrimarySecondary == 1) ? 0x42: 0x40
),
BIT15
);
}
//
// Next device path node
//
DevPathNode = NextDevicePathNode (DevPathNode);
}
}
return;
}
VOID
InstallDevicePathCallback (
VOID
)
{
DEBUG ((EFI_D_INFO, "Registered NotifyDevPath Event\n"));
mEfiDevPathEvent = EfiCreateProtocolNotifyEvent (
&gEfiDevicePathProtocolGuid,
TPL_CALLBACK,
NotifyDevPath,
NULL,
&mEfiDevPathNotifyReg
);
}
/**
Lock the ConsoleIn device in system table. All key
presses will be ignored until the Password is typed in. The only way to
disable the password is to type it in to a ConIn device.
@param Password Password used to lock ConIn device.
@retval EFI_SUCCESS lock the Console In Spliter virtual handle successfully.
@retval EFI_UNSUPPORTED Password not found
**/
EFI_STATUS
EFIAPI
LockKeyboards (
IN CHAR16 *Password
)
{
return EFI_UNSUPPORTED;
}