audk/ArmVirtPkg/PciHostBridgeDxe/PciHostBridge.c

1498 lines
56 KiB
C
Raw Normal View History

/** @file
Provides the basic interfaces to abstract a PCI Host Bridge Resource Allocation
Copyright (c) 2008 - 2013, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are
licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "PciHostBridge.h"
//
// Hard code: Root Bridge Number within the host bridge
// Root Bridge's attribute
// Root Bridge's device path
// Root Bridge's resource aperture
//
UINTN RootBridgeNumber[1] = { 1 };
UINT64 RootBridgeAttribute[1][1] = { { EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM } };
EFI_PCI_ROOT_BRIDGE_DEVICE_PATH mEfiPciRootBridgeDevicePath[1][1] = {
{
{
{
{
ACPI_DEVICE_PATH,
ACPI_DP,
{
(UINT8) (sizeof(ACPI_HID_DEVICE_PATH)),
(UINT8) ((sizeof(ACPI_HID_DEVICE_PATH)) >> 8)
}
},
EISA_PNP_ID(0x0A03),
0
},
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{
END_DEVICE_PATH_LENGTH,
0
}
}
}
}
};
STATIC PCI_ROOT_BRIDGE_RESOURCE_APERTURE mResAperture[1][1];
EFI_HANDLE mDriverImageHandle;
PCI_HOST_BRIDGE_INSTANCE mPciHostBridgeInstanceTemplate = {
PCI_HOST_BRIDGE_SIGNATURE, // Signature
NULL, // HostBridgeHandle
0, // RootBridgeNumber
{NULL, NULL}, // Head
FALSE, // ResourceSubiteed
TRUE, // CanRestarted
{
NotifyPhase,
GetNextRootBridge,
GetAttributes,
StartBusEnumeration,
SetBusNumbers,
SubmitResources,
GetProposedResources,
PreprocessController
}
};
//
// Implementation
//
STATIC
VOID
SetLinuxPciProbeOnlyProperty (
IN FDT_CLIENT_PROTOCOL *FdtClient
)
{
INT32 Node;
UINT32 Tmp;
EFI_STATUS Status;
if (!FeaturePcdGet (PcdPureAcpiBoot)) {
//
// Set the /chosen/linux,pci-probe-only property to 1, so that the PCI
// setup we will perform in the firmware is honored by the Linux OS,
// rather than torn down and done from scratch. This is generally a more
// sensible approach, and aligns with what ACPI based OSes do typically.
//
// In case we are exposing an emulated VGA PCI device to the guest, which
// may subsequently get exposed via the Graphics Output protocol and
// driven as an efifb by Linux, we need this setting to prevent the
// framebuffer from becoming unresponsive.
//
Status = FdtClient->GetOrInsertChosenNode (FdtClient, &Node);
if (!EFI_ERROR (Status)) {
Tmp = SwapBytes32 (1);
Status = FdtClient->SetNodeProperty (FdtClient, Node,
"linux,pci-probe-only", &Tmp, sizeof (Tmp));
}
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_WARN,
"Failed to set /chosen/linux,pci-probe-only property\n"));
}
}
}
//
// We expect the "ranges" property of "pci-host-ecam-generic" to consist of
// records like this.
//
#pragma pack (1)
typedef struct {
UINT32 Type;
UINT64 ChildBase;
UINT64 CpuBase;
UINT64 Size;
} DTB_PCI_HOST_RANGE_RECORD;
#pragma pack ()
#define DTB_PCI_HOST_RANGE_RELOCATABLE BIT31
#define DTB_PCI_HOST_RANGE_PREFETCHABLE BIT30
#define DTB_PCI_HOST_RANGE_ALIASED BIT29
#define DTB_PCI_HOST_RANGE_MMIO32 BIT25
#define DTB_PCI_HOST_RANGE_MMIO64 (BIT25 | BIT24)
#define DTB_PCI_HOST_RANGE_IO BIT24
#define DTB_PCI_HOST_RANGE_TYPEMASK (BIT31 | BIT30 | BIT29 | BIT25 | BIT24)
STATIC
EFI_STATUS
ProcessPciHost (
OUT UINT64 *IoBase,
OUT UINT64 *IoSize,
OUT UINT64 *IoTranslation,
OUT UINT64 *MmioBase,
OUT UINT64 *MmioSize,
OUT UINT64 *MmioTranslation,
OUT UINT32 *BusMin,
OUT UINT32 *BusMax
)
{
FDT_CLIENT_PROTOCOL *FdtClient;
INT32 Node;
UINT64 ConfigBase, ConfigSize;
CONST VOID *Prop;
UINT32 Len;
UINT32 RecordIdx;
EFI_STATUS Status;
//
// The following output arguments are initialized only in
// order to suppress '-Werror=maybe-uninitialized' warnings
// *incorrectly* emitted by some gcc versions.
//
*IoBase = 0;
*IoTranslation = 0;
*MmioBase = 0;
*MmioTranslation = 0;
*BusMin = 0;
*BusMax = 0;
//
// *IoSize and *MmioSize are initialized to zero because the logic below
// requires it. However, since they are also affected by the issue reported
// above, they are initialized early.
//
*IoSize = 0;
*MmioSize = 0;
Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL,
(VOID **)&FdtClient);
ASSERT_EFI_ERROR (Status);
Status = FdtClient->FindCompatibleNode (FdtClient, "pci-host-ecam-generic",
&Node);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_INFO,
"%a: No 'pci-host-ecam-generic' compatible DT node found\n",
__FUNCTION__));
return EFI_NOT_FOUND;
}
DEBUG_CODE (
INT32 Tmp;
//
// A DT can legally describe multiple PCI host bridges, but we are not
// equipped to deal with that. So assert that there is only one.
//
Status = FdtClient->FindNextCompatibleNode (FdtClient,
"pci-host-ecam-generic", Node, &Tmp);
ASSERT (Status == EFI_NOT_FOUND);
);
Status = FdtClient->GetNodeProperty (FdtClient, Node, "reg", &Prop, &Len);
if (EFI_ERROR (Status) || Len != 2 * sizeof (UINT64)) {
DEBUG ((EFI_D_ERROR, "%a: 'reg' property not found or invalid\n",
__FUNCTION__));
return EFI_PROTOCOL_ERROR;
}
//
// Fetch the ECAM window.
//
ConfigBase = SwapBytes64 (((CONST UINT64 *)Prop)[0]);
ConfigSize = SwapBytes64 (((CONST UINT64 *)Prop)[1]);
//
// Fetch the bus range (note: inclusive).
//
Status = FdtClient->GetNodeProperty (FdtClient, Node, "bus-range", &Prop,
&Len);
if (EFI_ERROR (Status) || Len != 2 * sizeof (UINT32)) {
DEBUG ((EFI_D_ERROR, "%a: 'bus-range' not found or invalid\n",
__FUNCTION__));
return EFI_PROTOCOL_ERROR;
}
*BusMin = SwapBytes32 (((CONST UINT32 *)Prop)[0]);
*BusMax = SwapBytes32 (((CONST UINT32 *)Prop)[1]);
//
// Sanity check: the config space must accommodate all 4K register bytes of
// all 8 functions of all 32 devices of all buses.
//
if (*BusMax < *BusMin || *BusMax - *BusMin == MAX_UINT32 ||
DivU64x32 (ConfigSize, SIZE_4KB * 8 * 32) < *BusMax - *BusMin + 1) {
DEBUG ((EFI_D_ERROR, "%a: invalid 'bus-range' and/or 'reg'\n",
__FUNCTION__));
return EFI_PROTOCOL_ERROR;
}
//
// Iterate over "ranges".
//
Status = FdtClient->GetNodeProperty (FdtClient, Node, "ranges", &Prop, &Len);
if (EFI_ERROR (Status) || Len == 0 ||
Len % sizeof (DTB_PCI_HOST_RANGE_RECORD) != 0) {
DEBUG ((EFI_D_ERROR, "%a: 'ranges' not found or invalid\n", __FUNCTION__));
return EFI_PROTOCOL_ERROR;
}
for (RecordIdx = 0; RecordIdx < Len / sizeof (DTB_PCI_HOST_RANGE_RECORD);
++RecordIdx) {
CONST DTB_PCI_HOST_RANGE_RECORD *Record;
Record = (CONST DTB_PCI_HOST_RANGE_RECORD *)Prop + RecordIdx;
switch (SwapBytes32 (Record->Type) & DTB_PCI_HOST_RANGE_TYPEMASK) {
case DTB_PCI_HOST_RANGE_IO:
*IoBase = SwapBytes64 (Record->ChildBase);
*IoSize = SwapBytes64 (Record->Size);
*IoTranslation = SwapBytes64 (Record->CpuBase) - *IoBase;
break;
case DTB_PCI_HOST_RANGE_MMIO32:
*MmioBase = SwapBytes64 (Record->ChildBase);
*MmioSize = SwapBytes64 (Record->Size);
*MmioTranslation = SwapBytes64 (Record->CpuBase) - *MmioBase;
if (*MmioBase > MAX_UINT32 || *MmioSize > MAX_UINT32 ||
*MmioBase + *MmioSize > SIZE_4GB) {
DEBUG ((EFI_D_ERROR, "%a: MMIO32 space invalid\n", __FUNCTION__));
return EFI_PROTOCOL_ERROR;
}
if (*MmioTranslation != 0) {
DEBUG ((EFI_D_ERROR, "%a: unsupported nonzero MMIO32 translation "
"0x%Lx\n", __FUNCTION__, *MmioTranslation));
return EFI_UNSUPPORTED;
}
break;
}
}
if (*IoSize == 0 || *MmioSize == 0) {
DEBUG ((EFI_D_ERROR, "%a: %a space empty\n", __FUNCTION__,
(*IoSize == 0) ? "IO" : "MMIO32"));
return EFI_PROTOCOL_ERROR;
}
//
// The dynamic PCD PcdPciExpressBaseAddress should have already been set,
// and should match the value we found in the DT node.
//
ASSERT (PcdGet64 (PcdPciExpressBaseAddress) == ConfigBase);
SetLinuxPciProbeOnlyProperty (FdtClient);
DEBUG ((EFI_D_INFO, "%a: Config[0x%Lx+0x%Lx) Bus[0x%x..0x%x] "
"Io[0x%Lx+0x%Lx)@0x%Lx Mem[0x%Lx+0x%Lx)@0x%Lx\n", __FUNCTION__, ConfigBase,
ConfigSize, *BusMin, *BusMax, *IoBase, *IoSize, *IoTranslation, *MmioBase,
*MmioSize, *MmioTranslation));
return EFI_SUCCESS;
}
/**
Entry point of this driver
@param ImageHandle Handle of driver image
@param SystemTable Point to EFI_SYSTEM_TABLE
@retval EFI_ABORTED PCI host bridge not present
@retval EFI_OUT_OF_RESOURCES Can not allocate memory resource
@retval EFI_DEVICE_ERROR Can not install the protocol instance
@retval EFI_SUCCESS Success to initialize the Pci host bridge.
**/
EFI_STATUS
EFIAPI
InitializePciHostBridge (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
UINT64 MmioAttributes;
EFI_STATUS Status;
UINTN Loop1;
UINTN Loop2;
PCI_HOST_BRIDGE_INSTANCE *HostBridge;
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
UINT64 IoBase, IoSize, IoTranslation;
UINT64 MmioBase, MmioSize, MmioTranslation;
UINT32 BusMin, BusMax;
if (PcdGet64 (PcdPciExpressBaseAddress) == 0) {
DEBUG ((EFI_D_INFO, "%a: PCI host bridge not present\n", __FUNCTION__));
return EFI_ABORTED;
}
Status = ProcessPciHost (&IoBase, &IoSize, &IoTranslation, &MmioBase,
&MmioSize, &MmioTranslation, &BusMin, &BusMax);
if (EFI_ERROR (Status)) {
return Status;
}
mDriverImageHandle = ImageHandle;
mResAperture[0][0].BusBase = BusMin;
mResAperture[0][0].BusLimit = BusMax;
mResAperture[0][0].MemBase = MmioBase;
mResAperture[0][0].MemLimit = MmioBase + MmioSize - 1;
mResAperture[0][0].IoBase = IoBase;
mResAperture[0][0].IoLimit = IoBase + IoSize - 1;
mResAperture[0][0].IoTranslation = IoTranslation;
ArmVirtualizationPkg/PciHostBridgeDxe: add room for PCI resource allocation VirtFdtDxe parses the following address space properties from the DTB (and saves them in PCDs) : ProcessPciHost: Config[0x3F000000+0x1000000) Bus[0x0..0xF] Io[0x0+0x10000)@0x3EFF0000 Mem[0x10000000+0x2EFF0000)@0x0 In order to allow PCI enumeration to allocate IO and MMIO resources from the above ranges for devices, we must add the ranges to the Global Coherency Domain. There are two ways for that: - building resource descriptor HOBs in the HOB producer phase (basically, PEI), and letting the DXE core process them, - calling gDS->AddIoSpace() and gDS->AddMemorySpace() during DXE. We opt for the second method for simplicity. In the address space maps, the corresponding ranges change from "nonexistent" to "IO" and "MMIO", from which the gDS->AllocateIoSpace() and gDS->AllocateMemorySpace() services can later allocate PCI BARs. GCD:AddIoSpace(Base=0000000000000000,Length=0000000000010000) GcdIoType = I/O Status = Success GCDIoType Range ========== ================================= -> I/O 0000000000000000-000000000000FFFF GCD:AddMemorySpace(Base=0000000010000000,Length=000000002EFF0000) GcdMemoryType = MMIO Capabilities = 0000000000000001 Status = Success GCDMemType Range Capabilities Attributes ========== ================================= ================ ================ NonExist 0000000000000000-0000000003FFFFFF 0000000000000000 0000000000000000 MMIO 0000000004000000-0000000007FFFFFF C000000000000001 8000000000000001 NonExist 0000000008000000-000000000900FFFF 0000000000000000 0000000000000000 MMIO 0000000009010000-0000000009010FFF C000000000000001 8000000000000001 NonExist 0000000009011000-000000000FFFFFFF 0000000000000000 0000000000000000 -> MMIO 0000000010000000-000000003EFEFFFF C000000000000001 0000000000000000 NonExist 000000003EFF0000-000000003FFFFFFF 0000000000000000 0000000000000000 SystemMem 0000000040000000-00000000BFFFFFFF 800000000000000F 0000000000000008* NonExist 00000000C0000000-0000FFFFFFFFFFFF 0000000000000000 0000000000000000 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Olivier Martin <Olivier.martin@arm.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16903 6f19259b-4bc3-4df7-8a09-765794883524
2015-02-23 17:03:37 +01:00
//
// Add IO and MMIO memory space, so that resources can be allocated in the
// EfiPciHostBridgeAllocateResources phase.
//
Status = gDS->AddIoSpace (
EfiGcdIoTypeIo,
IoBase,
IoSize
ArmVirtualizationPkg/PciHostBridgeDxe: add room for PCI resource allocation VirtFdtDxe parses the following address space properties from the DTB (and saves them in PCDs) : ProcessPciHost: Config[0x3F000000+0x1000000) Bus[0x0..0xF] Io[0x0+0x10000)@0x3EFF0000 Mem[0x10000000+0x2EFF0000)@0x0 In order to allow PCI enumeration to allocate IO and MMIO resources from the above ranges for devices, we must add the ranges to the Global Coherency Domain. There are two ways for that: - building resource descriptor HOBs in the HOB producer phase (basically, PEI), and letting the DXE core process them, - calling gDS->AddIoSpace() and gDS->AddMemorySpace() during DXE. We opt for the second method for simplicity. In the address space maps, the corresponding ranges change from "nonexistent" to "IO" and "MMIO", from which the gDS->AllocateIoSpace() and gDS->AllocateMemorySpace() services can later allocate PCI BARs. GCD:AddIoSpace(Base=0000000000000000,Length=0000000000010000) GcdIoType = I/O Status = Success GCDIoType Range ========== ================================= -> I/O 0000000000000000-000000000000FFFF GCD:AddMemorySpace(Base=0000000010000000,Length=000000002EFF0000) GcdMemoryType = MMIO Capabilities = 0000000000000001 Status = Success GCDMemType Range Capabilities Attributes ========== ================================= ================ ================ NonExist 0000000000000000-0000000003FFFFFF 0000000000000000 0000000000000000 MMIO 0000000004000000-0000000007FFFFFF C000000000000001 8000000000000001 NonExist 0000000008000000-000000000900FFFF 0000000000000000 0000000000000000 MMIO 0000000009010000-0000000009010FFF C000000000000001 8000000000000001 NonExist 0000000009011000-000000000FFFFFFF 0000000000000000 0000000000000000 -> MMIO 0000000010000000-000000003EFEFFFF C000000000000001 0000000000000000 NonExist 000000003EFF0000-000000003FFFFFFF 0000000000000000 0000000000000000 SystemMem 0000000040000000-00000000BFFFFFFF 800000000000000F 0000000000000008* NonExist 00000000C0000000-0000FFFFFFFFFFFF 0000000000000000 0000000000000000 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Olivier Martin <Olivier.martin@arm.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16903 6f19259b-4bc3-4df7-8a09-765794883524
2015-02-23 17:03:37 +01:00
);
ASSERT_EFI_ERROR (Status);
MmioAttributes = FeaturePcdGet (PcdKludgeMapPciMmioAsCached) ?
EFI_MEMORY_WB : EFI_MEMORY_UC;
ArmVirtualizationPkg/PciHostBridgeDxe: add room for PCI resource allocation VirtFdtDxe parses the following address space properties from the DTB (and saves them in PCDs) : ProcessPciHost: Config[0x3F000000+0x1000000) Bus[0x0..0xF] Io[0x0+0x10000)@0x3EFF0000 Mem[0x10000000+0x2EFF0000)@0x0 In order to allow PCI enumeration to allocate IO and MMIO resources from the above ranges for devices, we must add the ranges to the Global Coherency Domain. There are two ways for that: - building resource descriptor HOBs in the HOB producer phase (basically, PEI), and letting the DXE core process them, - calling gDS->AddIoSpace() and gDS->AddMemorySpace() during DXE. We opt for the second method for simplicity. In the address space maps, the corresponding ranges change from "nonexistent" to "IO" and "MMIO", from which the gDS->AllocateIoSpace() and gDS->AllocateMemorySpace() services can later allocate PCI BARs. GCD:AddIoSpace(Base=0000000000000000,Length=0000000000010000) GcdIoType = I/O Status = Success GCDIoType Range ========== ================================= -> I/O 0000000000000000-000000000000FFFF GCD:AddMemorySpace(Base=0000000010000000,Length=000000002EFF0000) GcdMemoryType = MMIO Capabilities = 0000000000000001 Status = Success GCDMemType Range Capabilities Attributes ========== ================================= ================ ================ NonExist 0000000000000000-0000000003FFFFFF 0000000000000000 0000000000000000 MMIO 0000000004000000-0000000007FFFFFF C000000000000001 8000000000000001 NonExist 0000000008000000-000000000900FFFF 0000000000000000 0000000000000000 MMIO 0000000009010000-0000000009010FFF C000000000000001 8000000000000001 NonExist 0000000009011000-000000000FFFFFFF 0000000000000000 0000000000000000 -> MMIO 0000000010000000-000000003EFEFFFF C000000000000001 0000000000000000 NonExist 000000003EFF0000-000000003FFFFFFF 0000000000000000 0000000000000000 SystemMem 0000000040000000-00000000BFFFFFFF 800000000000000F 0000000000000008* NonExist 00000000C0000000-0000FFFFFFFFFFFF 0000000000000000 0000000000000000 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Olivier Martin <Olivier.martin@arm.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16903 6f19259b-4bc3-4df7-8a09-765794883524
2015-02-23 17:03:37 +01:00
Status = gDS->AddMemorySpace (
EfiGcdMemoryTypeMemoryMappedIo,
MmioBase,
MmioSize,
MmioAttributes
ArmVirtualizationPkg/PciHostBridgeDxe: add room for PCI resource allocation VirtFdtDxe parses the following address space properties from the DTB (and saves them in PCDs) : ProcessPciHost: Config[0x3F000000+0x1000000) Bus[0x0..0xF] Io[0x0+0x10000)@0x3EFF0000 Mem[0x10000000+0x2EFF0000)@0x0 In order to allow PCI enumeration to allocate IO and MMIO resources from the above ranges for devices, we must add the ranges to the Global Coherency Domain. There are two ways for that: - building resource descriptor HOBs in the HOB producer phase (basically, PEI), and letting the DXE core process them, - calling gDS->AddIoSpace() and gDS->AddMemorySpace() during DXE. We opt for the second method for simplicity. In the address space maps, the corresponding ranges change from "nonexistent" to "IO" and "MMIO", from which the gDS->AllocateIoSpace() and gDS->AllocateMemorySpace() services can later allocate PCI BARs. GCD:AddIoSpace(Base=0000000000000000,Length=0000000000010000) GcdIoType = I/O Status = Success GCDIoType Range ========== ================================= -> I/O 0000000000000000-000000000000FFFF GCD:AddMemorySpace(Base=0000000010000000,Length=000000002EFF0000) GcdMemoryType = MMIO Capabilities = 0000000000000001 Status = Success GCDMemType Range Capabilities Attributes ========== ================================= ================ ================ NonExist 0000000000000000-0000000003FFFFFF 0000000000000000 0000000000000000 MMIO 0000000004000000-0000000007FFFFFF C000000000000001 8000000000000001 NonExist 0000000008000000-000000000900FFFF 0000000000000000 0000000000000000 MMIO 0000000009010000-0000000009010FFF C000000000000001 8000000000000001 NonExist 0000000009011000-000000000FFFFFFF 0000000000000000 0000000000000000 -> MMIO 0000000010000000-000000003EFEFFFF C000000000000001 0000000000000000 NonExist 000000003EFF0000-000000003FFFFFFF 0000000000000000 0000000000000000 SystemMem 0000000040000000-00000000BFFFFFFF 800000000000000F 0000000000000008* NonExist 00000000C0000000-0000FFFFFFFFFFFF 0000000000000000 0000000000000000 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Olivier Martin <Olivier.martin@arm.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16903 6f19259b-4bc3-4df7-8a09-765794883524
2015-02-23 17:03:37 +01:00
);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "%a: AddMemorySpace: %r\n", __FUNCTION__, Status));
return Status;
}
Status = gDS->SetMemorySpaceAttributes (
MmioBase,
MmioSize,
MmioAttributes
);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "%a: SetMemorySpaceAttributes: %r\n", __FUNCTION__,
Status));
return Status;
}
//
// Create Host Bridge Device Handle
//
for (Loop1 = 0; Loop1 < HOST_BRIDGE_NUMBER; Loop1++) {
HostBridge = AllocateCopyPool (sizeof(PCI_HOST_BRIDGE_INSTANCE), &mPciHostBridgeInstanceTemplate);
if (HostBridge == NULL) {
return EFI_OUT_OF_RESOURCES;
}
HostBridge->RootBridgeNumber = RootBridgeNumber[Loop1];
InitializeListHead (&HostBridge->Head);
Status = gBS->InstallMultipleProtocolInterfaces (
&HostBridge->HostBridgeHandle,
&gEfiPciHostBridgeResourceAllocationProtocolGuid, &HostBridge->ResAlloc,
NULL
);
if (EFI_ERROR (Status)) {
FreePool (HostBridge);
return EFI_DEVICE_ERROR;
}
//
// Create Root Bridge Device Handle in this Host Bridge
//
for (Loop2 = 0; Loop2 < HostBridge->RootBridgeNumber; Loop2++) {
PrivateData = AllocateZeroPool (sizeof(PCI_ROOT_BRIDGE_INSTANCE));
if (PrivateData == NULL) {
return EFI_OUT_OF_RESOURCES;
}
PrivateData->Signature = PCI_ROOT_BRIDGE_SIGNATURE;
PrivateData->DevicePath = (EFI_DEVICE_PATH_PROTOCOL *)&mEfiPciRootBridgeDevicePath[Loop1][Loop2];
RootBridgeConstructor (
&PrivateData->Io,
HostBridge->HostBridgeHandle,
RootBridgeAttribute[Loop1][Loop2],
&mResAperture[Loop1][Loop2]
);
Status = gBS->InstallMultipleProtocolInterfaces(
&PrivateData->Handle,
&gEfiDevicePathProtocolGuid, PrivateData->DevicePath,
&gEfiPciRootBridgeIoProtocolGuid, &PrivateData->Io,
NULL
);
if (EFI_ERROR (Status)) {
FreePool(PrivateData);
return EFI_DEVICE_ERROR;
}
InsertTailList (&HostBridge->Head, &PrivateData->Link);
}
}
return EFI_SUCCESS;
}
/**
These are the notifications from the PCI bus driver that it is about to enter a certain
phase of the PCI enumeration process.
This member function can be used to notify the host bridge driver to perform specific actions,
including any chipset-specific initialization, so that the chipset is ready to enter the next phase.
Eight notification points are defined at this time. See belows:
EfiPciHostBridgeBeginEnumeration Resets the host bridge PCI apertures and internal data
structures. The PCI enumerator should issue this notification
before starting a fresh enumeration process. Enumeration cannot
be restarted after sending any other notification such as
EfiPciHostBridgeBeginBusAllocation.
EfiPciHostBridgeBeginBusAllocation The bus allocation phase is about to begin. No specific action is
required here. This notification can be used to perform any
chipset-specific programming.
EfiPciHostBridgeEndBusAllocation The bus allocation and bus programming phase is complete. No
specific action is required here. This notification can be used to
perform any chipset-specific programming.
EfiPciHostBridgeBeginResourceAllocation
The resource allocation phase is about to begin. No specific
action is required here. This notification can be used to perform
any chipset-specific programming.
EfiPciHostBridgeAllocateResources Allocates resources per previously submitted requests for all the PCI
root bridges. These resource settings are returned on the next call to
GetProposedResources(). Before calling NotifyPhase() with a Phase of
EfiPciHostBridgeAllocateResource, the PCI bus enumerator is responsible
for gathering I/O and memory requests for
all the PCI root bridges and submitting these requests using
SubmitResources(). This function pads the resource amount
to suit the root bridge hardware, takes care of dependencies between
the PCI root bridges, and calls the Global Coherency Domain (GCD)
with the allocation request. In the case of padding, the allocated range
could be bigger than what was requested.
EfiPciHostBridgeSetResources Programs the host bridge hardware to decode previously allocated
resources (proposed resources) for all the PCI root bridges. After the
hardware is programmed, reassigning resources will not be supported.
The bus settings are not affected.
EfiPciHostBridgeFreeResources Deallocates resources that were previously allocated for all the PCI
root bridges and resets the I/O and memory apertures to their initial
state. The bus settings are not affected. If the request to allocate
resources fails, the PCI enumerator can use this notification to
deallocate previous resources, adjust the requests, and retry
allocation.
EfiPciHostBridgeEndResourceAllocation The resource allocation phase is completed. No specific action is
required here. This notification can be used to perform any chipsetspecific
programming.
@param[in] This The instance pointer of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
@param[in] Phase The phase during enumeration
@retval EFI_NOT_READY This phase cannot be entered at this time. For example, this error
is valid for a Phase of EfiPciHostBridgeAllocateResources if
SubmitResources() has not been called for one or more
PCI root bridges before this call
@retval EFI_DEVICE_ERROR Programming failed due to a hardware error. This error is valid
for a Phase of EfiPciHostBridgeSetResources.
@retval EFI_INVALID_PARAMETER Invalid phase parameter
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
This error is valid for a Phase of EfiPciHostBridgeAllocateResources if the
previously submitted resource requests cannot be fulfilled or
were only partially fulfilled.
@retval EFI_SUCCESS The notification was accepted without any errors.
**/
EFI_STATUS
EFIAPI
NotifyPhase(
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE Phase
)
{
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
PCI_RESOURCE_TYPE Index;
LIST_ENTRY *List;
EFI_PHYSICAL_ADDRESS BaseAddress;
UINT64 AddrLen;
UINTN BitsOfAlignment;
EFI_STATUS Status;
EFI_STATUS ReturnStatus;
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
switch (Phase) {
case EfiPciHostBridgeBeginEnumeration:
if (HostBridgeInstance->CanRestarted) {
//
// Reset the Each Root Bridge
//
List = HostBridgeInstance->Head.ForwardLink;
while (List != &HostBridgeInstance->Head) {
RootBridgeInstance = DRIVER_INSTANCE_FROM_LIST_ENTRY (List);
for (Index = TypeIo; Index < TypeMax; Index++) {
RootBridgeInstance->ResAllocNode[Index].Type = Index;
RootBridgeInstance->ResAllocNode[Index].Base = 0;
RootBridgeInstance->ResAllocNode[Index].Length = 0;
RootBridgeInstance->ResAllocNode[Index].Status = ResNone;
}
List = List->ForwardLink;
}
HostBridgeInstance->ResourceSubmited = FALSE;
HostBridgeInstance->CanRestarted = TRUE;
} else {
//
// Can not restart
//
return EFI_NOT_READY;
}
break;
case EfiPciHostBridgeEndEnumeration:
break;
case EfiPciHostBridgeBeginBusAllocation:
//
// No specific action is required here, can perform any chipset specific programing
//
HostBridgeInstance->CanRestarted = FALSE;
break;
case EfiPciHostBridgeEndBusAllocation:
//
// No specific action is required here, can perform any chipset specific programing
//
//HostBridgeInstance->CanRestarted = FALSE;
break;
case EfiPciHostBridgeBeginResourceAllocation:
//
// No specific action is required here, can perform any chipset specific programing
//
//HostBridgeInstance->CanRestarted = FALSE;
break;
case EfiPciHostBridgeAllocateResources:
ReturnStatus = EFI_SUCCESS;
if (HostBridgeInstance->ResourceSubmited) {
//
// Take care of the resource dependencies between the root bridges
//
List = HostBridgeInstance->Head.ForwardLink;
while (List != &HostBridgeInstance->Head) {
RootBridgeInstance = DRIVER_INSTANCE_FROM_LIST_ENTRY (List);
for (Index = TypeIo; Index < TypeBus; Index++) {
if (RootBridgeInstance->ResAllocNode[Index].Status != ResNone) {
AddrLen = RootBridgeInstance->ResAllocNode[Index].Length;
//
// Get the number of '1' in Alignment.
//
BitsOfAlignment = (UINTN) (HighBitSet64 (RootBridgeInstance->ResAllocNode[Index].Alignment) + 1);
switch (Index) {
case TypeIo:
//
// It is impossible for this chipset to align 0xFFFF for IO16
// So clear it
//
if (BitsOfAlignment >= 16) {
BitsOfAlignment = 0;
}
BaseAddress = mResAperture[0][0].IoLimit;
Status = gDS->AllocateIoSpace (
EfiGcdAllocateMaxAddressSearchTopDown,
EfiGcdIoTypeIo,
BitsOfAlignment,
AddrLen,
&BaseAddress,
mDriverImageHandle,
NULL
);
if (!EFI_ERROR (Status)) {
RootBridgeInstance->ResAllocNode[Index].Base = (UINTN)BaseAddress;
RootBridgeInstance->ResAllocNode[Index].Status = ResAllocated;
} else {
ReturnStatus = Status;
if (Status != EFI_OUT_OF_RESOURCES) {
RootBridgeInstance->ResAllocNode[Index].Length = 0;
}
}
break;
case TypeMem32:
//
// It is impossible for this chipset to align 0xFFFFFFFF for Mem32
// So clear it
//
if (BitsOfAlignment >= 32) {
BitsOfAlignment = 0;
}
ArmVirtualizationPkg/PciHostBridgeDxe: get MMIO BARs from our own aperture This is our MMIO space map: > GCD:AddMemorySpace(Base=0000000010000000,Length=000000002EFF0000) > GcdMemoryType = MMIO > Capabilities = 0000000000000001 > Status = Success > GCDMemType Range Capabilities Attributes > ========== ================================= ================ ================ > NonExist 0000000000000000-0000000003FFFFFF 0000000000000000 0000000000000000 > MMIO 0000000004000000-0000000007FFFFFF C000000000000001 8000000000000001 NorFlashDxe adds this, but does not allocate it. > NonExist 0000000008000000-000000000900FFFF 0000000000000000 0000000000000000 > MMIO 0000000009010000-0000000009010FFF C000000000000001 8000000000000001 Added by RealTimeClockRuntimeDxe, but also not allocated. > NonExist 0000000009011000-000000000FFFFFFF 0000000000000000 0000000000000000 > MMIO 0000000010000000-000000003EFEFFFF C000000000000001 0000000000000000 Added by ourselves. > NonExist 000000003EFF0000-000000003FFFFFFF 0000000000000000 0000000000000000 > SystemMem 0000000040000000-00000000BFFFFFFF 800000000000000F 0000000000000008* > NonExist 00000000C0000000-0000FFFFFFFFFFFF 0000000000000000 0000000000000000 In the EfiPciHostBridgeAllocateResources phase, we allocate memory BARs bottom up, from whichever MMIO range comes first and has room left. Unfortunately, this places memory BARs into MMIO ranges that belong to other devices. (Arguably, their respective drivers should not just add, but immediately allocate those ranges as well.) ( This problem is not seen in OVMF / PcAtChipsetPkg, because there we allocate bottom-up from the range [max(2GB, top-of-low-RAM), 0xFC000000). (See the MMIO resource descriptor HOB created in MemMapInitialization() [OvmfPkg/PlatformPei/Platform.c].) That MMIO range fits in the static [2GB, 4GB) aperture given in "mResAperture" in PcAtChipsetPkg/PciHostBridgeDxe; plus other MMIO ranges (IO-APIC, HPET, LAPIC, flash chip) are higher than 0xFC000000. Hence the bottom-up BAR allocation in OvmfPkg always finds the right MMIO range first. ) In ArmVirtualizationPkg/PciHostBridgeDxe we can solve the problem by working our way downwards from the top of our own aperture. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Olivier Martin <Olivier.martin@arm.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16906 6f19259b-4bc3-4df7-8a09-765794883524
2015-02-23 17:03:51 +01:00
BaseAddress = mResAperture[0][0].MemLimit;
Status = gDS->AllocateMemorySpace (
ArmVirtualizationPkg/PciHostBridgeDxe: get MMIO BARs from our own aperture This is our MMIO space map: > GCD:AddMemorySpace(Base=0000000010000000,Length=000000002EFF0000) > GcdMemoryType = MMIO > Capabilities = 0000000000000001 > Status = Success > GCDMemType Range Capabilities Attributes > ========== ================================= ================ ================ > NonExist 0000000000000000-0000000003FFFFFF 0000000000000000 0000000000000000 > MMIO 0000000004000000-0000000007FFFFFF C000000000000001 8000000000000001 NorFlashDxe adds this, but does not allocate it. > NonExist 0000000008000000-000000000900FFFF 0000000000000000 0000000000000000 > MMIO 0000000009010000-0000000009010FFF C000000000000001 8000000000000001 Added by RealTimeClockRuntimeDxe, but also not allocated. > NonExist 0000000009011000-000000000FFFFFFF 0000000000000000 0000000000000000 > MMIO 0000000010000000-000000003EFEFFFF C000000000000001 0000000000000000 Added by ourselves. > NonExist 000000003EFF0000-000000003FFFFFFF 0000000000000000 0000000000000000 > SystemMem 0000000040000000-00000000BFFFFFFF 800000000000000F 0000000000000008* > NonExist 00000000C0000000-0000FFFFFFFFFFFF 0000000000000000 0000000000000000 In the EfiPciHostBridgeAllocateResources phase, we allocate memory BARs bottom up, from whichever MMIO range comes first and has room left. Unfortunately, this places memory BARs into MMIO ranges that belong to other devices. (Arguably, their respective drivers should not just add, but immediately allocate those ranges as well.) ( This problem is not seen in OVMF / PcAtChipsetPkg, because there we allocate bottom-up from the range [max(2GB, top-of-low-RAM), 0xFC000000). (See the MMIO resource descriptor HOB created in MemMapInitialization() [OvmfPkg/PlatformPei/Platform.c].) That MMIO range fits in the static [2GB, 4GB) aperture given in "mResAperture" in PcAtChipsetPkg/PciHostBridgeDxe; plus other MMIO ranges (IO-APIC, HPET, LAPIC, flash chip) are higher than 0xFC000000. Hence the bottom-up BAR allocation in OvmfPkg always finds the right MMIO range first. ) In ArmVirtualizationPkg/PciHostBridgeDxe we can solve the problem by working our way downwards from the top of our own aperture. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Olivier Martin <Olivier.martin@arm.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16906 6f19259b-4bc3-4df7-8a09-765794883524
2015-02-23 17:03:51 +01:00
EfiGcdAllocateMaxAddressSearchTopDown,
EfiGcdMemoryTypeMemoryMappedIo,
BitsOfAlignment,
AddrLen,
&BaseAddress,
mDriverImageHandle,
NULL
);
if (!EFI_ERROR (Status)) {
// We were able to allocate the PCI memory
RootBridgeInstance->ResAllocNode[Index].Base = (UINTN)BaseAddress;
RootBridgeInstance->ResAllocNode[Index].Status = ResAllocated;
} else {
// Not able to allocate enough PCI memory
ReturnStatus = Status;
if (Status != EFI_OUT_OF_RESOURCES) {
RootBridgeInstance->ResAllocNode[Index].Length = 0;
}
ASSERT (FALSE);
}
break;
case TypePMem32:
case TypeMem64:
case TypePMem64:
ReturnStatus = EFI_ABORTED;
break;
default:
ASSERT (FALSE);
break;
}; //end switch
}
}
List = List->ForwardLink;
}
return ReturnStatus;
} else {
return EFI_NOT_READY;
}
case EfiPciHostBridgeSetResources:
break;
case EfiPciHostBridgeFreeResources:
ReturnStatus = EFI_SUCCESS;
List = HostBridgeInstance->Head.ForwardLink;
while (List != &HostBridgeInstance->Head) {
RootBridgeInstance = DRIVER_INSTANCE_FROM_LIST_ENTRY (List);
for (Index = TypeIo; Index < TypeBus; Index++) {
if (RootBridgeInstance->ResAllocNode[Index].Status == ResAllocated) {
AddrLen = RootBridgeInstance->ResAllocNode[Index].Length;
BaseAddress = RootBridgeInstance->ResAllocNode[Index].Base;
switch (Index) {
case TypeIo:
Status = gDS->FreeIoSpace (BaseAddress, AddrLen);
if (EFI_ERROR (Status)) {
ReturnStatus = Status;
}
break;
case TypeMem32:
Status = gDS->FreeMemorySpace (BaseAddress, AddrLen);
if (EFI_ERROR (Status)) {
ReturnStatus = Status;
}
break;
case TypePMem32:
break;
case TypeMem64:
break;
case TypePMem64:
break;
default:
ASSERT (FALSE);
break;
}; //end switch
RootBridgeInstance->ResAllocNode[Index].Type = Index;
RootBridgeInstance->ResAllocNode[Index].Base = 0;
RootBridgeInstance->ResAllocNode[Index].Length = 0;
RootBridgeInstance->ResAllocNode[Index].Status = ResNone;
}
}
List = List->ForwardLink;
}
HostBridgeInstance->ResourceSubmited = FALSE;
HostBridgeInstance->CanRestarted = TRUE;
return ReturnStatus;
case EfiPciHostBridgeEndResourceAllocation:
HostBridgeInstance->CanRestarted = FALSE;
break;
default:
return EFI_INVALID_PARAMETER;
}
return EFI_SUCCESS;
}
/**
Return the device handle of the next PCI root bridge that is associated with this Host Bridge.
This function is called multiple times to retrieve the device handles of all the PCI root bridges that
are associated with this PCI host bridge. Each PCI host bridge is associated with one or more PCI
root bridges. On each call, the handle that was returned by the previous call is passed into the
interface, and on output the interface returns the device handle of the next PCI root bridge. The
caller can use the handle to obtain the instance of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
for that root bridge. When there are no more PCI root bridges to report, the interface returns
EFI_NOT_FOUND. A PCI enumerator must enumerate the PCI root bridges in the order that they
are returned by this function.
For D945 implementation, there is only one root bridge in PCI host bridge.
@param[in] This The instance pointer of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
@param[in, out] RootBridgeHandle Returns the device handle of the next PCI root bridge.
@retval EFI_SUCCESS If parameter RootBridgeHandle = NULL, then return the first Rootbridge handle of the
specific Host bridge and return EFI_SUCCESS.
@retval EFI_NOT_FOUND Can not find the any more root bridge in specific host bridge.
@retval EFI_INVALID_PARAMETER RootBridgeHandle is not an EFI_HANDLE that was
returned on a previous call to GetNextRootBridge().
**/
EFI_STATUS
EFIAPI
GetNextRootBridge(
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN OUT EFI_HANDLE *RootBridgeHandle
)
{
BOOLEAN NoRootBridge;
LIST_ENTRY *List;
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
NoRootBridge = TRUE;
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
List = HostBridgeInstance->Head.ForwardLink;
while (List != &HostBridgeInstance->Head) {
NoRootBridge = FALSE;
RootBridgeInstance = DRIVER_INSTANCE_FROM_LIST_ENTRY (List);
if (*RootBridgeHandle == NULL) {
//
// Return the first Root Bridge Handle of the Host Bridge
//
*RootBridgeHandle = RootBridgeInstance->Handle;
return EFI_SUCCESS;
} else {
if (*RootBridgeHandle == RootBridgeInstance->Handle) {
//
// Get next if have
//
List = List->ForwardLink;
if (List!=&HostBridgeInstance->Head) {
RootBridgeInstance = DRIVER_INSTANCE_FROM_LIST_ENTRY (List);
*RootBridgeHandle = RootBridgeInstance->Handle;
return EFI_SUCCESS;
} else {
return EFI_NOT_FOUND;
}
}
}
List = List->ForwardLink;
} //end while
if (NoRootBridge) {
return EFI_NOT_FOUND;
} else {
return EFI_INVALID_PARAMETER;
}
}
/**
Returns the allocation attributes of a PCI root bridge.
The function returns the allocation attributes of a specific PCI root bridge. The attributes can vary
from one PCI root bridge to another. These attributes are different from the decode-related
attributes that are returned by the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes() member function. The
RootBridgeHandle parameter is used to specify the instance of the PCI root bridge. The device
handles of all the root bridges that are associated with this host bridge must be obtained by calling
GetNextRootBridge(). The attributes are static in the sense that they do not change during or
after the enumeration process. The hardware may provide mechanisms to change the attributes on
the fly, but such changes must be completed before EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is
installed. The permitted values of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES are defined in
"Related Definitions" below. The caller uses these attributes to combine multiple resource requests.
For example, if the flag EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM is set, the PCI bus enumerator needs to
include requests for the prefetchable memory in the nonprefetchable memory pool and not request any
prefetchable memory.
Attribute Description
------------------------------------ ----------------------------------------------------------------------
EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM If this bit is set, then the PCI root bridge does not support separate
windows for nonprefetchable and prefetchable memory. A PCI bus
driver needs to include requests for prefetchable memory in the
nonprefetchable memory pool.
EFI_PCI_HOST_BRIDGE_MEM64_DECODE If this bit is set, then the PCI root bridge supports 64-bit memory
windows. If this bit is not set, the PCI bus driver needs to include
requests for a 64-bit memory address in the corresponding 32-bit
memory pool.
@param[in] This The instance pointer of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
@param[in] RootBridgeHandle The device handle of the PCI root bridge in which the caller is interested. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.0 Specification.
@param[out] Attributes The pointer to attribte of root bridge, it is output parameter
@retval EFI_INVALID_PARAMETER Attribute pointer is NULL
@retval EFI_INVALID_PARAMETER RootBridgehandle is invalid.
@retval EFI_SUCCESS Success to get attribute of interested root bridge.
**/
EFI_STATUS
EFIAPI
GetAttributes(
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
OUT UINT64 *Attributes
)
{
LIST_ENTRY *List;
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
if (Attributes == NULL) {
return EFI_INVALID_PARAMETER;
}
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
List = HostBridgeInstance->Head.ForwardLink;
while (List != &HostBridgeInstance->Head) {
RootBridgeInstance = DRIVER_INSTANCE_FROM_LIST_ENTRY (List);
if (RootBridgeHandle == RootBridgeInstance->Handle) {
*Attributes = RootBridgeInstance->RootBridgeAttrib;
return EFI_SUCCESS;
}
List = List->ForwardLink;
}
//
// RootBridgeHandle is not an EFI_HANDLE
// that was returned on a previous call to GetNextRootBridge()
//
return EFI_INVALID_PARAMETER;
}
/**
Sets up the specified PCI root bridge for the bus enumeration process.
This member function sets up the root bridge for bus enumeration and returns the PCI bus range
over which the search should be performed in ACPI 2.0 resource descriptor format.
@param[in] This The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ PROTOCOL instance.
@param[in] RootBridgeHandle The PCI Root Bridge to be set up.
@param[out] Configuration Pointer to the pointer to the PCI bus resource descriptor.
@retval EFI_INVALID_PARAMETER Invalid Root bridge's handle
@retval EFI_OUT_OF_RESOURCES Fail to allocate ACPI resource descriptor tag.
@retval EFI_SUCCESS Sucess to allocate ACPI resource descriptor.
**/
EFI_STATUS
EFIAPI
StartBusEnumeration(
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
OUT VOID **Configuration
)
{
LIST_ENTRY *List;
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
VOID *Buffer;
UINT8 *Temp;
UINT64 BusStart;
UINT64 BusEnd;
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
List = HostBridgeInstance->Head.ForwardLink;
while (List != &HostBridgeInstance->Head) {
RootBridgeInstance = DRIVER_INSTANCE_FROM_LIST_ENTRY (List);
if (RootBridgeHandle == RootBridgeInstance->Handle) {
//
// Set up the Root Bridge for Bus Enumeration
//
BusStart = RootBridgeInstance->BusBase;
BusEnd = RootBridgeInstance->BusLimit;
//
// Program the Hardware(if needed) if error return EFI_DEVICE_ERROR
//
Buffer = AllocatePool (sizeof(EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof(EFI_ACPI_END_TAG_DESCRIPTOR));
if (Buffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Temp = (UINT8 *)Buffer;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Temp)->Desc = 0x8A;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Temp)->Len = 0x2B;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Temp)->ResType = 2;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Temp)->GenFlag = 0;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Temp)->SpecificFlag = 0;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Temp)->AddrSpaceGranularity = 0;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Temp)->AddrRangeMin = BusStart;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Temp)->AddrRangeMax = 0;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Temp)->AddrTranslationOffset = 0;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Temp)->AddrLen = BusEnd - BusStart + 1;
Temp = Temp + sizeof(EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR);
((EFI_ACPI_END_TAG_DESCRIPTOR *)Temp)->Desc = 0x79;
((EFI_ACPI_END_TAG_DESCRIPTOR *)Temp)->Checksum = 0x0;
*Configuration = Buffer;
return EFI_SUCCESS;
}
List = List->ForwardLink;
}
return EFI_INVALID_PARAMETER;
}
/**
Programs the PCI root bridge hardware so that it decodes the specified PCI bus range.
This member function programs the specified PCI root bridge to decode the bus range that is
specified by the input parameter Configuration.
The bus range information is specified in terms of the ACPI 2.0 resource descriptor format.
@param[in] This The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ PROTOCOL instance
@param[in] RootBridgeHandle The PCI Root Bridge whose bus range is to be programmed
@param[in] Configuration The pointer to the PCI bus resource descriptor
@retval EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.
@retval EFI_INVALID_PARAMETER Configuration is NULL.
@retval EFI_INVALID_PARAMETER Configuration does not point to a valid ACPI 2.0 resource descriptor.
@retval EFI_INVALID_PARAMETER Configuration does not include a valid ACPI 2.0 bus resource descriptor.
@retval EFI_INVALID_PARAMETER Configuration includes valid ACPI 2.0 resource descriptors other than
bus descriptors.
@retval EFI_INVALID_PARAMETER Configuration contains one or more invalid ACPI resource descriptors.
@retval EFI_INVALID_PARAMETER "Address Range Minimum" is invalid for this root bridge.
@retval EFI_INVALID_PARAMETER "Address Range Length" is invalid for this root bridge.
@retval EFI_DEVICE_ERROR Programming failed due to a hardware error.
@retval EFI_SUCCESS The bus range for the PCI root bridge was programmed.
**/
EFI_STATUS
EFIAPI
SetBusNumbers(
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
IN VOID *Configuration
)
{
LIST_ENTRY *List;
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
UINT8 *Ptr;
UINTN BusStart;
UINTN BusEnd;
UINTN BusLen;
if (Configuration == NULL) {
return EFI_INVALID_PARAMETER;
}
Ptr = Configuration;
//
// Check the Configuration is valid
//
if(*Ptr != ACPI_ADDRESS_SPACE_DESCRIPTOR) {
return EFI_INVALID_PARAMETER;
}
if (((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->ResType != 2) {
return EFI_INVALID_PARAMETER;
}
Ptr += sizeof(EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR);
if (*Ptr != ACPI_END_TAG_DESCRIPTOR) {
return EFI_INVALID_PARAMETER;
}
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
List = HostBridgeInstance->Head.ForwardLink;
Ptr = Configuration;
while (List != &HostBridgeInstance->Head) {
RootBridgeInstance = DRIVER_INSTANCE_FROM_LIST_ENTRY (List);
if (RootBridgeHandle == RootBridgeInstance->Handle) {
BusStart = (UINTN)((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->AddrRangeMin;
BusLen = (UINTN)((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->AddrLen;
BusEnd = BusStart + BusLen - 1;
if (BusStart > BusEnd) {
return EFI_INVALID_PARAMETER;
}
if ((BusStart < RootBridgeInstance->BusBase) || (BusEnd > RootBridgeInstance->BusLimit)) {
return EFI_INVALID_PARAMETER;
}
//
// Update the Bus Range
//
RootBridgeInstance->ResAllocNode[TypeBus].Base = BusStart;
RootBridgeInstance->ResAllocNode[TypeBus].Length = BusLen;
RootBridgeInstance->ResAllocNode[TypeBus].Status = ResAllocated;
//
// Program the Root Bridge Hardware
//
return EFI_SUCCESS;
}
List = List->ForwardLink;
}
return EFI_INVALID_PARAMETER;
}
/**
Submits the I/O and memory resource requirements for the specified PCI root bridge.
This function is used to submit all the I/O and memory resources that are required by the specified
PCI root bridge. The input parameter Configuration is used to specify the following:
- The various types of resources that are required
- The associated lengths in terms of ACPI 2.0 resource descriptor format
@param[in] This Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.
@param[in] RootBridgeHandle The PCI root bridge whose I/O and memory resource requirements are being submitted.
@param[in] Configuration The pointer to the PCI I/O and PCI memory resource descriptor.
@retval EFI_SUCCESS The I/O and memory resource requests for a PCI root bridge were accepted.
@retval EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.
@retval EFI_INVALID_PARAMETER Configuration is NULL.
@retval EFI_INVALID_PARAMETER Configuration does not point to a valid ACPI 2.0 resource descriptor.
@retval EFI_INVALID_PARAMETER Configuration includes requests for one or more resource types that are
not supported by this PCI root bridge. This error will happen if the caller
did not combine resources according to Attributes that were returned by
GetAllocAttributes().
@retval EFI_INVALID_PARAMETER Address Range Maximum" is invalid.
@retval EFI_INVALID_PARAMETER "Address Range Length" is invalid for this PCI root bridge.
@retval EFI_INVALID_PARAMETER "Address Space Granularity" is invalid for this PCI root bridge.
**/
EFI_STATUS
EFIAPI
SubmitResources(
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
IN VOID *Configuration
)
{
LIST_ENTRY *List;
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
UINT8 *Temp;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Ptr;
UINT64 AddrLen;
UINT64 Alignment;
//
// Check the input parameter: Configuration
//
if (Configuration == NULL) {
return EFI_INVALID_PARAMETER;
}
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
List = HostBridgeInstance->Head.ForwardLink;
Temp = (UINT8 *)Configuration;
while ( *Temp == 0x8A) {
Temp += sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) ;
}
if (*Temp != 0x79) {
return EFI_INVALID_PARAMETER;
}
Temp = (UINT8 *)Configuration;
while (List != &HostBridgeInstance->Head) {
RootBridgeInstance = DRIVER_INSTANCE_FROM_LIST_ENTRY (List);
if (RootBridgeHandle == RootBridgeInstance->Handle) {
ArmVirtualizationPkg/PciHostBridgeDxe: skip 0 AddrLen in SubmitResources() According to Volume 5 of the PI spec, 10.8.2 PCI Host Bridge Resource Allocation Protocol, SubmitResources(), It is considered an error if no resource requests are submitted for a PCI root bridge. If a PCI root bridge does not require any resources, a zero-length resource request must explicitly be submitted. Under MdeModulePkg/Bus/Pci/PciBusDxe/, we have: PciHostBridgeResourceAllocator() [PciLib.c] ConstructAcpiResourceRequestor(..., &AcpiConfig) [PciEnumerator.c] PciResAlloc->SubmitResources(..., &AcpiConfig) ASSERT_EFI_ERROR () If ConstructAcpiResourceRequestor() finds no resources to request (for example because no PCI devices are on the root bridge), it places a zero-length EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR followed by an EFI_ACPI_END_TAG_DESCRIPTOR in "AcpiConfig"; satisfying the PI spec. However, PciHostBridgeDxe's SubmitResources() function does not expect such input; the following part of the code rejects it: switch (Ptr->ResType) { case 0: // // Check invalid Address Sapce Granularity // if (Ptr->AddrSpaceGranularity != 32) { return EFI_INVALID_PARAMETER; } Skip EFI_ACPI_ADDRESS_SPACE_DESCRIPTORs with zero AddrLen early. Also, allow PciHostBridgeResourceAllocator() to proceed to the AllocateResources phase by setting "ResourceSubmited" to TRUE. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Olivier Martin <Olivier.martin@arm.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16907 6f19259b-4bc3-4df7-8a09-765794883524
2015-02-23 17:03:56 +01:00
for (;
*Temp == 0x8A;
Temp += sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR)
) {
Ptr = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *) Temp ;
//
// Check Address Length
//
ArmVirtualizationPkg/PciHostBridgeDxe: skip 0 AddrLen in SubmitResources() According to Volume 5 of the PI spec, 10.8.2 PCI Host Bridge Resource Allocation Protocol, SubmitResources(), It is considered an error if no resource requests are submitted for a PCI root bridge. If a PCI root bridge does not require any resources, a zero-length resource request must explicitly be submitted. Under MdeModulePkg/Bus/Pci/PciBusDxe/, we have: PciHostBridgeResourceAllocator() [PciLib.c] ConstructAcpiResourceRequestor(..., &AcpiConfig) [PciEnumerator.c] PciResAlloc->SubmitResources(..., &AcpiConfig) ASSERT_EFI_ERROR () If ConstructAcpiResourceRequestor() finds no resources to request (for example because no PCI devices are on the root bridge), it places a zero-length EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR followed by an EFI_ACPI_END_TAG_DESCRIPTOR in "AcpiConfig"; satisfying the PI spec. However, PciHostBridgeDxe's SubmitResources() function does not expect such input; the following part of the code rejects it: switch (Ptr->ResType) { case 0: // // Check invalid Address Sapce Granularity // if (Ptr->AddrSpaceGranularity != 32) { return EFI_INVALID_PARAMETER; } Skip EFI_ACPI_ADDRESS_SPACE_DESCRIPTORs with zero AddrLen early. Also, allow PciHostBridgeResourceAllocator() to proceed to the AllocateResources phase by setting "ResourceSubmited" to TRUE. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Olivier Martin <Olivier.martin@arm.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16907 6f19259b-4bc3-4df7-8a09-765794883524
2015-02-23 17:03:56 +01:00
if (Ptr->AddrLen == 0) {
HostBridgeInstance->ResourceSubmited = TRUE;
continue;
}
if (Ptr->AddrLen > 0xffffffff) {
return EFI_INVALID_PARAMETER;
}
//
// Check address range alignment
//
if (Ptr->AddrRangeMax >= 0xffffffff || Ptr->AddrRangeMax != (GetPowerOfTwo64 (Ptr->AddrRangeMax + 1) - 1)) {
return EFI_INVALID_PARAMETER;
}
switch (Ptr->ResType) {
case 0:
//
// Check invalid Address Sapce Granularity
//
if (Ptr->AddrSpaceGranularity != 32) {
return EFI_INVALID_PARAMETER;
}
//
// check the memory resource request is supported by PCI root bridge
//
if (RootBridgeInstance->RootBridgeAttrib == EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM &&
Ptr->SpecificFlag == 0x06) {
return EFI_INVALID_PARAMETER;
}
AddrLen = Ptr->AddrLen;
Alignment = Ptr->AddrRangeMax;
if (Ptr->AddrSpaceGranularity == 32) {
if (Ptr->SpecificFlag == 0x06) {
//
// Apply from GCD
//
RootBridgeInstance->ResAllocNode[TypePMem32].Status = ResSubmitted;
} else {
RootBridgeInstance->ResAllocNode[TypeMem32].Length = AddrLen;
RootBridgeInstance->ResAllocNode[TypeMem32].Alignment = Alignment;
RootBridgeInstance->ResAllocNode[TypeMem32].Status = ResRequested;
HostBridgeInstance->ResourceSubmited = TRUE;
}
}
if (Ptr->AddrSpaceGranularity == 64) {
if (Ptr->SpecificFlag == 0x06) {
RootBridgeInstance->ResAllocNode[TypePMem64].Status = ResSubmitted;
} else {
RootBridgeInstance->ResAllocNode[TypeMem64].Status = ResSubmitted;
}
}
break;
case 1:
AddrLen = (UINTN) Ptr->AddrLen;
Alignment = (UINTN) Ptr->AddrRangeMax;
RootBridgeInstance->ResAllocNode[TypeIo].Length = AddrLen;
RootBridgeInstance->ResAllocNode[TypeIo].Alignment = Alignment;
RootBridgeInstance->ResAllocNode[TypeIo].Status = ResRequested;
HostBridgeInstance->ResourceSubmited = TRUE;
break;
default:
break;
};
}
return EFI_SUCCESS;
}
List = List->ForwardLink;
}
return EFI_INVALID_PARAMETER;
}
/**
Returns the proposed resource settings for the specified PCI root bridge.
This member function returns the proposed resource settings for the specified PCI root bridge. The
proposed resource settings are prepared when NotifyPhase() is called with a Phase of
EfiPciHostBridgeAllocateResources. The output parameter Configuration
specifies the following:
- The various types of resources, excluding bus resources, that are allocated
- The associated lengths in terms of ACPI 2.0 resource descriptor format
@param[in] This Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.
@param[in] RootBridgeHandle The PCI root bridge handle. Type EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.0 Specification.
@param[out] Configuration The pointer to the pointer to the PCI I/O and memory resource descriptor.
@retval EFI_SUCCESS The requested parameters were returned.
@retval EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.
@retval EFI_DEVICE_ERROR Programming failed due to a hardware error.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
**/
EFI_STATUS
EFIAPI
GetProposedResources(
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
OUT VOID **Configuration
)
{
LIST_ENTRY *List;
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
UINTN Index;
UINTN Number;
VOID *Buffer;
UINT8 *Temp;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Ptr;
UINT64 ResStatus;
Buffer = NULL;
Number = 0;
//
// Get the Host Bridge Instance from the resource allocation protocol
//
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
List = HostBridgeInstance->Head.ForwardLink;
//
// Enumerate the root bridges in this host bridge
//
while (List != &HostBridgeInstance->Head) {
RootBridgeInstance = DRIVER_INSTANCE_FROM_LIST_ENTRY (List);
if (RootBridgeHandle == RootBridgeInstance->Handle) {
for (Index = 0; Index < TypeBus; Index ++) {
if (RootBridgeInstance->ResAllocNode[Index].Status != ResNone) {
Number ++;
}
}
if (Number == 0) {
EFI_ACPI_END_TAG_DESCRIPTOR *End;
End = AllocateZeroPool (sizeof *End);
if (End == NULL) {
return EFI_OUT_OF_RESOURCES;
}
End->Desc = ACPI_END_TAG_DESCRIPTOR;
*Configuration = End;
return EFI_SUCCESS;
}
Buffer = AllocateZeroPool (Number * sizeof(EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof(EFI_ACPI_END_TAG_DESCRIPTOR));
if (Buffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Temp = Buffer;
for (Index = 0; Index < TypeBus; Index ++) {
if (RootBridgeInstance->ResAllocNode[Index].Status != ResNone) {
Ptr = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *) Temp ;
ResStatus = RootBridgeInstance->ResAllocNode[Index].Status;
switch (Index) {
case TypeIo:
//
// Io
//
Ptr->Desc = 0x8A;
Ptr->Len = 0x2B;
Ptr->ResType = 1;
Ptr->GenFlag = 0;
Ptr->SpecificFlag = 0;
Ptr->AddrRangeMin = RootBridgeInstance->ResAllocNode[Index].Base;
Ptr->AddrRangeMax = 0;
Ptr->AddrTranslationOffset = \
(ResStatus == ResAllocated) ? EFI_RESOURCE_SATISFIED : EFI_RESOURCE_LESS;
Ptr->AddrLen = RootBridgeInstance->ResAllocNode[Index].Length;
break;
case TypeMem32:
//
// Memory 32
//
Ptr->Desc = 0x8A;
Ptr->Len = 0x2B;
Ptr->ResType = 0;
Ptr->GenFlag = 0;
Ptr->SpecificFlag = 0;
Ptr->AddrSpaceGranularity = 32;
Ptr->AddrRangeMin = RootBridgeInstance->ResAllocNode[Index].Base;
Ptr->AddrRangeMax = 0;
Ptr->AddrTranslationOffset = \
(ResStatus == ResAllocated) ? EFI_RESOURCE_SATISFIED : EFI_RESOURCE_LESS;
Ptr->AddrLen = RootBridgeInstance->ResAllocNode[Index].Length;
break;
case TypePMem32:
//
// Prefetch memory 32
//
Ptr->Desc = 0x8A;
Ptr->Len = 0x2B;
Ptr->ResType = 0;
Ptr->GenFlag = 0;
Ptr->SpecificFlag = 6;
Ptr->AddrSpaceGranularity = 32;
Ptr->AddrRangeMin = 0;
Ptr->AddrRangeMax = 0;
Ptr->AddrTranslationOffset = EFI_RESOURCE_NONEXISTENT;
Ptr->AddrLen = 0;
break;
case TypeMem64:
//
// Memory 64
//
Ptr->Desc = 0x8A;
Ptr->Len = 0x2B;
Ptr->ResType = 0;
Ptr->GenFlag = 0;
Ptr->SpecificFlag = 0;
Ptr->AddrSpaceGranularity = 64;
Ptr->AddrRangeMin = 0;
Ptr->AddrRangeMax = 0;
Ptr->AddrTranslationOffset = EFI_RESOURCE_NONEXISTENT;
Ptr->AddrLen = 0;
break;
case TypePMem64:
//
// Prefetch memory 64
//
Ptr->Desc = 0x8A;
Ptr->Len = 0x2B;
Ptr->ResType = 0;
Ptr->GenFlag = 0;
Ptr->SpecificFlag = 6;
Ptr->AddrSpaceGranularity = 64;
Ptr->AddrRangeMin = 0;
Ptr->AddrRangeMax = 0;
Ptr->AddrTranslationOffset = EFI_RESOURCE_NONEXISTENT;
Ptr->AddrLen = 0;
break;
};
Temp += sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR);
}
}
((EFI_ACPI_END_TAG_DESCRIPTOR *)Temp)->Desc = 0x79;
((EFI_ACPI_END_TAG_DESCRIPTOR *)Temp)->Checksum = 0x0;
*Configuration = Buffer;
return EFI_SUCCESS;
}
List = List->ForwardLink;
}
return EFI_INVALID_PARAMETER;
}
/**
Provides the hooks from the PCI bus driver to every PCI controller (device/function) at various
stages of the PCI enumeration process that allow the host bridge driver to preinitialize individual
PCI controllers before enumeration.
This function is called during the PCI enumeration process. No specific action is expected from this
member function. It allows the host bridge driver to preinitialize individual PCI controllers before
enumeration.
@param This Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.
@param RootBridgeHandle The associated PCI root bridge handle. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 Specification.
@param PciAddress The address of the PCI device on the PCI bus. This address can be passed to the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL member functions to access the PCI
configuration space of the device. See Table 12-1 in the UEFI 2.0 Specification for
the definition of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS.
@param Phase The phase of the PCI device enumeration.
@retval EFI_SUCCESS The requested parameters were returned.
@retval EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.
@retval EFI_INVALID_PARAMETER Phase is not a valid phase that is defined in
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE.
@retval EFI_DEVICE_ERROR Programming failed due to a hardware error. The PCI enumerator should
not enumerate this device, including its child devices if it is a PCI-to-PCI
bridge.
**/
EFI_STATUS
EFIAPI
PreprocessController (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress,
IN EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE Phase
)
{
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
LIST_ENTRY *List;
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
List = HostBridgeInstance->Head.ForwardLink;
//
// Enumerate the root bridges in this host bridge
//
while (List != &HostBridgeInstance->Head) {
RootBridgeInstance = DRIVER_INSTANCE_FROM_LIST_ENTRY (List);
if (RootBridgeHandle == RootBridgeInstance->Handle) {
break;
}
List = List->ForwardLink;
}
if (List == &HostBridgeInstance->Head) {
return EFI_INVALID_PARAMETER;
}
if ((UINT32)Phase > EfiPciBeforeResourceCollection) {
return EFI_INVALID_PARAMETER;
}
return EFI_SUCCESS;
}