audk/OvmfPkg/PlatformPei/Platform.c

415 lines
10 KiB
C
Raw Normal View History

/**@file
Platform PEI driver
Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2011, Andrei Warkentin <andreiw@motorola.com>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
//
// The package level header files this module uses
//
#include <PiPei.h>
//
// The Library classes this module consumes
//
#include <Library/DebugLib.h>
#include <Library/HobLib.h>
#include <Library/IoLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/PciLib.h>
#include <Library/PeimEntryPoint.h>
#include <Library/PeiServicesLib.h>
#include <Library/QemuFwCfgLib.h>
#include <Library/ResourcePublicationLib.h>
#include <Guid/MemoryTypeInformation.h>
#include <Ppi/MasterBootMode.h>
OvmfPkg: enable PIIX4 IO space in the PEI phase I. There are at least three locations in OvmfPkg that manipulate the PMBA and related PIIX4 registers. 1. MiscInitialization() [OvmfPkg/PlatformPei/Platform.c] module type: PEIM -- Pre-EFI Initialization Module (a) currently sets the PMBA only: 00.01.3 / 0x40 bits [15:6] 2. AcpiTimerLibConstructor() [OvmfPkg/Library/AcpiTimerLib/AcpiTimerLib.c] module type: BASE -- probably callable anywhere after PEI (a) sets the PMBA if needed: 00.01.3 / 0x40 bits [15:6] (b) sets PCICMD/IOSE if needed: 00.01.3 / 0x04 bit 0 (c) sets PMREGMISC/PMIOSE: 00.01.3 / 0x80 bit 0 3. AcpiInitialization() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c] module type: DXE_DRIVER -- Driver eXecution Environment (a) sets SCI_EN, which depends on correct PMBA setting from earlier ( The relative order of #1 and #3 is dictated minimally by their module types. Said relative order can be verified with the boot log: 27 Loading PEIM at 0x00000822320 EntryPoint=0x00000822580 PlatformPei.efi 28 Platform PEIM Loaded 1259 PlatformBdsInit 1270 PlatformBdsPolicyBehavior Line 28 is printed by InitializePlatform() [OvmfPkg/PlatformPei/Platform.c] which is the entry point of that module. The other two lines are printed by the corresponding functions in "OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c". ) Currently #2 (AcpiTimerLibConstructor()) is called in a random spot (whenever it gets loaded from the firmware image) and masks the insufficient setup in #1. We shouldn't depend on that, PEI should finish with IO space being fully accessibe. In addition, PEI should program the same PMBA value as AcpiTimerLib. II. The PEI change notwithstanding, AcpiTimerLib should stay defensive and ensure proper PM configuration for itself (either by confirming or by doing). III. Considering a possible cleanup/unification of #2 and #3: timer functions relying on AcpiTimerLibConstructor(), - MicroSecondDelay() - NanoSecondDelay() - GetPerformanceCounter() - GetPerformanceCounterProperties() - GetTimeInNanoSecond() may be called before #3 is reached (in Boot Device Selection phase), so we should not move the initialization from #2 to #3. (Again, AcpiTimerLib should contain its own setup.) We should also not move #3 to an earlier phase -- SCI_EN is premature unless we're about to boot real soon ("enable generation of SCI upon assertion of PWRBTN_STS, LID_STS, THRM_STS, or GPI_STS bits"). Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13722 6f19259b-4bc3-4df7-8a09-765794883524
2012-09-12 09:19:16 +02:00
#include <IndustryStandard/Pci22.h>
#include <OvmfPlatforms.h>
#include "Platform.h"
#include "Cmos.h"
EFI_MEMORY_TYPE_INFORMATION mDefaultMemoryTypeInformation[] = {
{ EfiACPIMemoryNVS, 0x004 },
{ EfiACPIReclaimMemory, 0x008 },
{ EfiReservedMemoryType, 0x004 },
{ EfiRuntimeServicesData, 0x024 },
{ EfiRuntimeServicesCode, 0x030 },
{ EfiBootServicesCode, 0x180 },
{ EfiBootServicesData, 0xF00 },
{ EfiMaxMemoryType, 0x000 }
};
EFI_PEI_PPI_DESCRIPTOR mPpiBootMode[] = {
{
EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
&gEfiPeiMasterBootModePpiGuid,
NULL
}
};
EFI_BOOT_MODE mBootMode = BOOT_WITH_FULL_CONFIGURATION;
BOOLEAN mS3Supported = FALSE;
VOID
AddIoMemoryBaseSizeHob (
EFI_PHYSICAL_ADDRESS MemoryBase,
UINT64 MemorySize
)
{
BuildResourceDescriptorHob (
EFI_RESOURCE_MEMORY_MAPPED_IO,
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_TESTED,
MemoryBase,
MemorySize
);
}
VOID
AddReservedMemoryBaseSizeHob (
EFI_PHYSICAL_ADDRESS MemoryBase,
UINT64 MemorySize
)
{
BuildResourceDescriptorHob (
EFI_RESOURCE_MEMORY_RESERVED,
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_TESTED,
MemoryBase,
MemorySize
);
}
VOID
AddIoMemoryRangeHob (
EFI_PHYSICAL_ADDRESS MemoryBase,
EFI_PHYSICAL_ADDRESS MemoryLimit
)
{
AddIoMemoryBaseSizeHob (MemoryBase, (UINT64)(MemoryLimit - MemoryBase));
}
VOID
AddMemoryBaseSizeHob (
EFI_PHYSICAL_ADDRESS MemoryBase,
UINT64 MemorySize
)
{
BuildResourceDescriptorHob (
EFI_RESOURCE_SYSTEM_MEMORY,
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_TESTED,
MemoryBase,
MemorySize
);
}
VOID
AddMemoryRangeHob (
EFI_PHYSICAL_ADDRESS MemoryBase,
EFI_PHYSICAL_ADDRESS MemoryLimit
)
{
AddMemoryBaseSizeHob (MemoryBase, (UINT64)(MemoryLimit - MemoryBase));
}
VOID
AddUntestedMemoryBaseSizeHob (
EFI_PHYSICAL_ADDRESS MemoryBase,
UINT64 MemorySize
)
{
BuildResourceDescriptorHob (
EFI_RESOURCE_SYSTEM_MEMORY,
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE,
MemoryBase,
MemorySize
);
}
VOID
AddUntestedMemoryRangeHob (
EFI_PHYSICAL_ADDRESS MemoryBase,
EFI_PHYSICAL_ADDRESS MemoryLimit
)
{
AddUntestedMemoryBaseSizeHob (MemoryBase, (UINT64)(MemoryLimit - MemoryBase));
}
VOID
MemMapInitialization (
VOID
)
{
//
// Create Memory Type Information HOB
//
BuildGuidDataHob (
&gEfiMemoryTypeInformationGuid,
mDefaultMemoryTypeInformation,
sizeof(mDefaultMemoryTypeInformation)
);
//
// Add PCI IO Port space available for PCI resource allocations.
//
BuildResourceDescriptorHob (
EFI_RESOURCE_IO,
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED,
0xC000,
0x4000
);
//
// Video memory + Legacy BIOS region
//
AddIoMemoryRangeHob (0x0A0000, BASE_1MB);
if (!mXen) {
UINT32 TopOfLowRam;
TopOfLowRam = GetSystemMemorySizeBelow4gb ();
//
// address purpose size
// ------------ -------- -------------------------
// max(top, 2g) PCI MMIO 0xFC000000 - max(top, 2g)
// 0xFC000000 gap 44 MB
// 0xFEC00000 IO-APIC 4 KB
// 0xFEC01000 gap 1020 KB
// 0xFED00000 HPET 1 KB
// 0xFED00400 gap 1023 KB
// 0xFEE00000 LAPIC 1 MB
//
AddIoMemoryRangeHob (TopOfLowRam < BASE_2GB ?
BASE_2GB : TopOfLowRam, 0xFC000000);
AddIoMemoryBaseSizeHob (0xFEC00000, SIZE_4KB);
AddIoMemoryBaseSizeHob (0xFED00000, SIZE_1KB);
AddIoMemoryBaseSizeHob (PcdGet32(PcdCpuLocalApicBaseAddress), SIZE_1MB);
}
}
VOID
MiscInitialization (
VOID
)
{
UINT16 HostBridgeDevId;
UINTN PmCmd;
UINTN Pmba;
OvmfPkg: Q35: Use correct ACPI PM control register:bit On PIIX4, function 3, the PMREGMISC register at offset 0x80, with default value 0x00 has its bit 0 (PMIOSE) indicate whether the PM IO space given in the PMBA register (offset 0x40) is enabled. PMBA must be configured *before* setting this bit. On Q35/ICH9+, function 0x1f, the equivalent role is fulfilled by bit 7 (ACPI_EN) in the ACPI Control Register (ACPI_CNTL) at offset 0x44, also with a default value of 0x00. Currently, OVMF hangs when Q35 reboots, because while PMBA is reset by QEMU, the register at offset 0x80 (matching PMREGMISC on PIIX4) is not reset, since it has a completely different meaning on LPC. As such, the power management initialization logic in OVMF finds the "PMIOSE" bit enabled after a reboot and decides to skip setting PMBA. This causes the ACPI timer tick routine to read a constant value from the wrong register, which in turn causes the ACPI delay loop to hang indefinitely. This patch modifies the Base[Rom]AcpiTimerLib constructors and the PlatformPei ACPI PM init routines to use ACPI_CNTL:ACPI_EN instead of PMREGMISC:PMIOSE when running on Q35. Reported-by: Reza Jelveh <reza.jelveh@tuhh.de> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Tested-by: Laszlo Ersek <lersek@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17076 6f19259b-4bc3-4df7-8a09-765794883524
2015-03-26 20:06:07 +01:00
UINTN AcpiCtlReg;
UINT8 AcpiEnBit;
//
// Disable A20 Mask
//
IoOr8 (0x92, BIT1);
//
// Build the CPU hob with 36-bit addressing and 16-bits of IO space.
//
BuildCpuHob (36, 16);
//
// Query Host Bridge DID to determine platform type and save to PCD
//
HostBridgeDevId = PciRead16 (OVMF_HOSTBRIDGE_DID);
switch (HostBridgeDevId) {
case INTEL_82441_DEVICE_ID:
OvmfPkg: Q35: Use correct ACPI PM control register:bit On PIIX4, function 3, the PMREGMISC register at offset 0x80, with default value 0x00 has its bit 0 (PMIOSE) indicate whether the PM IO space given in the PMBA register (offset 0x40) is enabled. PMBA must be configured *before* setting this bit. On Q35/ICH9+, function 0x1f, the equivalent role is fulfilled by bit 7 (ACPI_EN) in the ACPI Control Register (ACPI_CNTL) at offset 0x44, also with a default value of 0x00. Currently, OVMF hangs when Q35 reboots, because while PMBA is reset by QEMU, the register at offset 0x80 (matching PMREGMISC on PIIX4) is not reset, since it has a completely different meaning on LPC. As such, the power management initialization logic in OVMF finds the "PMIOSE" bit enabled after a reboot and decides to skip setting PMBA. This causes the ACPI timer tick routine to read a constant value from the wrong register, which in turn causes the ACPI delay loop to hang indefinitely. This patch modifies the Base[Rom]AcpiTimerLib constructors and the PlatformPei ACPI PM init routines to use ACPI_CNTL:ACPI_EN instead of PMREGMISC:PMIOSE when running on Q35. Reported-by: Reza Jelveh <reza.jelveh@tuhh.de> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Tested-by: Laszlo Ersek <lersek@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17076 6f19259b-4bc3-4df7-8a09-765794883524
2015-03-26 20:06:07 +01:00
PmCmd = POWER_MGMT_REGISTER_PIIX4 (PCI_COMMAND_OFFSET);
Pmba = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMBA);
AcpiCtlReg = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMREGMISC);
AcpiEnBit = PIIX4_PMREGMISC_PMIOSE;
break;
case INTEL_Q35_MCH_DEVICE_ID:
OvmfPkg: Q35: Use correct ACPI PM control register:bit On PIIX4, function 3, the PMREGMISC register at offset 0x80, with default value 0x00 has its bit 0 (PMIOSE) indicate whether the PM IO space given in the PMBA register (offset 0x40) is enabled. PMBA must be configured *before* setting this bit. On Q35/ICH9+, function 0x1f, the equivalent role is fulfilled by bit 7 (ACPI_EN) in the ACPI Control Register (ACPI_CNTL) at offset 0x44, also with a default value of 0x00. Currently, OVMF hangs when Q35 reboots, because while PMBA is reset by QEMU, the register at offset 0x80 (matching PMREGMISC on PIIX4) is not reset, since it has a completely different meaning on LPC. As such, the power management initialization logic in OVMF finds the "PMIOSE" bit enabled after a reboot and decides to skip setting PMBA. This causes the ACPI timer tick routine to read a constant value from the wrong register, which in turn causes the ACPI delay loop to hang indefinitely. This patch modifies the Base[Rom]AcpiTimerLib constructors and the PlatformPei ACPI PM init routines to use ACPI_CNTL:ACPI_EN instead of PMREGMISC:PMIOSE when running on Q35. Reported-by: Reza Jelveh <reza.jelveh@tuhh.de> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Tested-by: Laszlo Ersek <lersek@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17076 6f19259b-4bc3-4df7-8a09-765794883524
2015-03-26 20:06:07 +01:00
PmCmd = POWER_MGMT_REGISTER_Q35 (PCI_COMMAND_OFFSET);
Pmba = POWER_MGMT_REGISTER_Q35 (ICH9_PMBASE);
AcpiCtlReg = POWER_MGMT_REGISTER_Q35 (ICH9_ACPI_CNTL);
AcpiEnBit = ICH9_ACPI_CNTL_ACPI_EN;
break;
default:
DEBUG ((EFI_D_ERROR, "%a: Unknown Host Bridge Device ID: 0x%04x\n",
__FUNCTION__, HostBridgeDevId));
ASSERT (FALSE);
return;
}
PcdSet16 (PcdOvmfHostBridgePciDevId, HostBridgeDevId);
//
OvmfPkg: Q35: Use correct ACPI PM control register:bit On PIIX4, function 3, the PMREGMISC register at offset 0x80, with default value 0x00 has its bit 0 (PMIOSE) indicate whether the PM IO space given in the PMBA register (offset 0x40) is enabled. PMBA must be configured *before* setting this bit. On Q35/ICH9+, function 0x1f, the equivalent role is fulfilled by bit 7 (ACPI_EN) in the ACPI Control Register (ACPI_CNTL) at offset 0x44, also with a default value of 0x00. Currently, OVMF hangs when Q35 reboots, because while PMBA is reset by QEMU, the register at offset 0x80 (matching PMREGMISC on PIIX4) is not reset, since it has a completely different meaning on LPC. As such, the power management initialization logic in OVMF finds the "PMIOSE" bit enabled after a reboot and decides to skip setting PMBA. This causes the ACPI timer tick routine to read a constant value from the wrong register, which in turn causes the ACPI delay loop to hang indefinitely. This patch modifies the Base[Rom]AcpiTimerLib constructors and the PlatformPei ACPI PM init routines to use ACPI_CNTL:ACPI_EN instead of PMREGMISC:PMIOSE when running on Q35. Reported-by: Reza Jelveh <reza.jelveh@tuhh.de> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Tested-by: Laszlo Ersek <lersek@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17076 6f19259b-4bc3-4df7-8a09-765794883524
2015-03-26 20:06:07 +01:00
// If the appropriate IOspace enable bit is set, assume the ACPI PMBA
// has been configured (e.g., by Xen) and skip the setup here.
// This matches the logic in AcpiTimerLibConstructor ().
//
OvmfPkg: Q35: Use correct ACPI PM control register:bit On PIIX4, function 3, the PMREGMISC register at offset 0x80, with default value 0x00 has its bit 0 (PMIOSE) indicate whether the PM IO space given in the PMBA register (offset 0x40) is enabled. PMBA must be configured *before* setting this bit. On Q35/ICH9+, function 0x1f, the equivalent role is fulfilled by bit 7 (ACPI_EN) in the ACPI Control Register (ACPI_CNTL) at offset 0x44, also with a default value of 0x00. Currently, OVMF hangs when Q35 reboots, because while PMBA is reset by QEMU, the register at offset 0x80 (matching PMREGMISC on PIIX4) is not reset, since it has a completely different meaning on LPC. As such, the power management initialization logic in OVMF finds the "PMIOSE" bit enabled after a reboot and decides to skip setting PMBA. This causes the ACPI timer tick routine to read a constant value from the wrong register, which in turn causes the ACPI delay loop to hang indefinitely. This patch modifies the Base[Rom]AcpiTimerLib constructors and the PlatformPei ACPI PM init routines to use ACPI_CNTL:ACPI_EN instead of PMREGMISC:PMIOSE when running on Q35. Reported-by: Reza Jelveh <reza.jelveh@tuhh.de> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Tested-by: Laszlo Ersek <lersek@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17076 6f19259b-4bc3-4df7-8a09-765794883524
2015-03-26 20:06:07 +01:00
if ((PciRead8 (AcpiCtlReg) & AcpiEnBit) == 0) {
//
OvmfPkg: Q35: Use correct ACPI PM control register:bit On PIIX4, function 3, the PMREGMISC register at offset 0x80, with default value 0x00 has its bit 0 (PMIOSE) indicate whether the PM IO space given in the PMBA register (offset 0x40) is enabled. PMBA must be configured *before* setting this bit. On Q35/ICH9+, function 0x1f, the equivalent role is fulfilled by bit 7 (ACPI_EN) in the ACPI Control Register (ACPI_CNTL) at offset 0x44, also with a default value of 0x00. Currently, OVMF hangs when Q35 reboots, because while PMBA is reset by QEMU, the register at offset 0x80 (matching PMREGMISC on PIIX4) is not reset, since it has a completely different meaning on LPC. As such, the power management initialization logic in OVMF finds the "PMIOSE" bit enabled after a reboot and decides to skip setting PMBA. This causes the ACPI timer tick routine to read a constant value from the wrong register, which in turn causes the ACPI delay loop to hang indefinitely. This patch modifies the Base[Rom]AcpiTimerLib constructors and the PlatformPei ACPI PM init routines to use ACPI_CNTL:ACPI_EN instead of PMREGMISC:PMIOSE when running on Q35. Reported-by: Reza Jelveh <reza.jelveh@tuhh.de> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Tested-by: Laszlo Ersek <lersek@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17076 6f19259b-4bc3-4df7-8a09-765794883524
2015-03-26 20:06:07 +01:00
// The PEI phase should be exited with fully accessibe ACPI PM IO space:
OvmfPkg: enable PIIX4 IO space in the PEI phase I. There are at least three locations in OvmfPkg that manipulate the PMBA and related PIIX4 registers. 1. MiscInitialization() [OvmfPkg/PlatformPei/Platform.c] module type: PEIM -- Pre-EFI Initialization Module (a) currently sets the PMBA only: 00.01.3 / 0x40 bits [15:6] 2. AcpiTimerLibConstructor() [OvmfPkg/Library/AcpiTimerLib/AcpiTimerLib.c] module type: BASE -- probably callable anywhere after PEI (a) sets the PMBA if needed: 00.01.3 / 0x40 bits [15:6] (b) sets PCICMD/IOSE if needed: 00.01.3 / 0x04 bit 0 (c) sets PMREGMISC/PMIOSE: 00.01.3 / 0x80 bit 0 3. AcpiInitialization() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c] module type: DXE_DRIVER -- Driver eXecution Environment (a) sets SCI_EN, which depends on correct PMBA setting from earlier ( The relative order of #1 and #3 is dictated minimally by their module types. Said relative order can be verified with the boot log: 27 Loading PEIM at 0x00000822320 EntryPoint=0x00000822580 PlatformPei.efi 28 Platform PEIM Loaded 1259 PlatformBdsInit 1270 PlatformBdsPolicyBehavior Line 28 is printed by InitializePlatform() [OvmfPkg/PlatformPei/Platform.c] which is the entry point of that module. The other two lines are printed by the corresponding functions in "OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c". ) Currently #2 (AcpiTimerLibConstructor()) is called in a random spot (whenever it gets loaded from the firmware image) and masks the insufficient setup in #1. We shouldn't depend on that, PEI should finish with IO space being fully accessibe. In addition, PEI should program the same PMBA value as AcpiTimerLib. II. The PEI change notwithstanding, AcpiTimerLib should stay defensive and ensure proper PM configuration for itself (either by confirming or by doing). III. Considering a possible cleanup/unification of #2 and #3: timer functions relying on AcpiTimerLibConstructor(), - MicroSecondDelay() - NanoSecondDelay() - GetPerformanceCounter() - GetPerformanceCounterProperties() - GetTimeInNanoSecond() may be called before #3 is reached (in Boot Device Selection phase), so we should not move the initialization from #2 to #3. (Again, AcpiTimerLib should contain its own setup.) We should also not move #3 to an earlier phase -- SCI_EN is premature unless we're about to boot real soon ("enable generation of SCI upon assertion of PWRBTN_STS, LID_STS, THRM_STS, or GPI_STS bits"). Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13722 6f19259b-4bc3-4df7-8a09-765794883524
2012-09-12 09:19:16 +02:00
// 1. set PMBA
//
PciAndThenOr32 (Pmba, (UINT32) ~0xFFC0, PcdGet16 (PcdAcpiPmBaseAddress));
OvmfPkg: enable PIIX4 IO space in the PEI phase I. There are at least three locations in OvmfPkg that manipulate the PMBA and related PIIX4 registers. 1. MiscInitialization() [OvmfPkg/PlatformPei/Platform.c] module type: PEIM -- Pre-EFI Initialization Module (a) currently sets the PMBA only: 00.01.3 / 0x40 bits [15:6] 2. AcpiTimerLibConstructor() [OvmfPkg/Library/AcpiTimerLib/AcpiTimerLib.c] module type: BASE -- probably callable anywhere after PEI (a) sets the PMBA if needed: 00.01.3 / 0x40 bits [15:6] (b) sets PCICMD/IOSE if needed: 00.01.3 / 0x04 bit 0 (c) sets PMREGMISC/PMIOSE: 00.01.3 / 0x80 bit 0 3. AcpiInitialization() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c] module type: DXE_DRIVER -- Driver eXecution Environment (a) sets SCI_EN, which depends on correct PMBA setting from earlier ( The relative order of #1 and #3 is dictated minimally by their module types. Said relative order can be verified with the boot log: 27 Loading PEIM at 0x00000822320 EntryPoint=0x00000822580 PlatformPei.efi 28 Platform PEIM Loaded 1259 PlatformBdsInit 1270 PlatformBdsPolicyBehavior Line 28 is printed by InitializePlatform() [OvmfPkg/PlatformPei/Platform.c] which is the entry point of that module. The other two lines are printed by the corresponding functions in "OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c". ) Currently #2 (AcpiTimerLibConstructor()) is called in a random spot (whenever it gets loaded from the firmware image) and masks the insufficient setup in #1. We shouldn't depend on that, PEI should finish with IO space being fully accessibe. In addition, PEI should program the same PMBA value as AcpiTimerLib. II. The PEI change notwithstanding, AcpiTimerLib should stay defensive and ensure proper PM configuration for itself (either by confirming or by doing). III. Considering a possible cleanup/unification of #2 and #3: timer functions relying on AcpiTimerLibConstructor(), - MicroSecondDelay() - NanoSecondDelay() - GetPerformanceCounter() - GetPerformanceCounterProperties() - GetTimeInNanoSecond() may be called before #3 is reached (in Boot Device Selection phase), so we should not move the initialization from #2 to #3. (Again, AcpiTimerLib should contain its own setup.) We should also not move #3 to an earlier phase -- SCI_EN is premature unless we're about to boot real soon ("enable generation of SCI upon assertion of PWRBTN_STS, LID_STS, THRM_STS, or GPI_STS bits"). Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13722 6f19259b-4bc3-4df7-8a09-765794883524
2012-09-12 09:19:16 +02:00
//
// 2. set PCICMD/IOSE
//
PciOr8 (PmCmd, EFI_PCI_COMMAND_IO_SPACE);
OvmfPkg: enable PIIX4 IO space in the PEI phase I. There are at least three locations in OvmfPkg that manipulate the PMBA and related PIIX4 registers. 1. MiscInitialization() [OvmfPkg/PlatformPei/Platform.c] module type: PEIM -- Pre-EFI Initialization Module (a) currently sets the PMBA only: 00.01.3 / 0x40 bits [15:6] 2. AcpiTimerLibConstructor() [OvmfPkg/Library/AcpiTimerLib/AcpiTimerLib.c] module type: BASE -- probably callable anywhere after PEI (a) sets the PMBA if needed: 00.01.3 / 0x40 bits [15:6] (b) sets PCICMD/IOSE if needed: 00.01.3 / 0x04 bit 0 (c) sets PMREGMISC/PMIOSE: 00.01.3 / 0x80 bit 0 3. AcpiInitialization() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c] module type: DXE_DRIVER -- Driver eXecution Environment (a) sets SCI_EN, which depends on correct PMBA setting from earlier ( The relative order of #1 and #3 is dictated minimally by their module types. Said relative order can be verified with the boot log: 27 Loading PEIM at 0x00000822320 EntryPoint=0x00000822580 PlatformPei.efi 28 Platform PEIM Loaded 1259 PlatformBdsInit 1270 PlatformBdsPolicyBehavior Line 28 is printed by InitializePlatform() [OvmfPkg/PlatformPei/Platform.c] which is the entry point of that module. The other two lines are printed by the corresponding functions in "OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c". ) Currently #2 (AcpiTimerLibConstructor()) is called in a random spot (whenever it gets loaded from the firmware image) and masks the insufficient setup in #1. We shouldn't depend on that, PEI should finish with IO space being fully accessibe. In addition, PEI should program the same PMBA value as AcpiTimerLib. II. The PEI change notwithstanding, AcpiTimerLib should stay defensive and ensure proper PM configuration for itself (either by confirming or by doing). III. Considering a possible cleanup/unification of #2 and #3: timer functions relying on AcpiTimerLibConstructor(), - MicroSecondDelay() - NanoSecondDelay() - GetPerformanceCounter() - GetPerformanceCounterProperties() - GetTimeInNanoSecond() may be called before #3 is reached (in Boot Device Selection phase), so we should not move the initialization from #2 to #3. (Again, AcpiTimerLib should contain its own setup.) We should also not move #3 to an earlier phase -- SCI_EN is premature unless we're about to boot real soon ("enable generation of SCI upon assertion of PWRBTN_STS, LID_STS, THRM_STS, or GPI_STS bits"). Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13722 6f19259b-4bc3-4df7-8a09-765794883524
2012-09-12 09:19:16 +02:00
//
OvmfPkg: Q35: Use correct ACPI PM control register:bit On PIIX4, function 3, the PMREGMISC register at offset 0x80, with default value 0x00 has its bit 0 (PMIOSE) indicate whether the PM IO space given in the PMBA register (offset 0x40) is enabled. PMBA must be configured *before* setting this bit. On Q35/ICH9+, function 0x1f, the equivalent role is fulfilled by bit 7 (ACPI_EN) in the ACPI Control Register (ACPI_CNTL) at offset 0x44, also with a default value of 0x00. Currently, OVMF hangs when Q35 reboots, because while PMBA is reset by QEMU, the register at offset 0x80 (matching PMREGMISC on PIIX4) is not reset, since it has a completely different meaning on LPC. As such, the power management initialization logic in OVMF finds the "PMIOSE" bit enabled after a reboot and decides to skip setting PMBA. This causes the ACPI timer tick routine to read a constant value from the wrong register, which in turn causes the ACPI delay loop to hang indefinitely. This patch modifies the Base[Rom]AcpiTimerLib constructors and the PlatformPei ACPI PM init routines to use ACPI_CNTL:ACPI_EN instead of PMREGMISC:PMIOSE when running on Q35. Reported-by: Reza Jelveh <reza.jelveh@tuhh.de> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Tested-by: Laszlo Ersek <lersek@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17076 6f19259b-4bc3-4df7-8a09-765794883524
2015-03-26 20:06:07 +01:00
// 3. set ACPI PM IO enable bit (PMREGMISC:PMIOSE or ACPI_CNTL:ACPI_EN)
OvmfPkg: enable PIIX4 IO space in the PEI phase I. There are at least three locations in OvmfPkg that manipulate the PMBA and related PIIX4 registers. 1. MiscInitialization() [OvmfPkg/PlatformPei/Platform.c] module type: PEIM -- Pre-EFI Initialization Module (a) currently sets the PMBA only: 00.01.3 / 0x40 bits [15:6] 2. AcpiTimerLibConstructor() [OvmfPkg/Library/AcpiTimerLib/AcpiTimerLib.c] module type: BASE -- probably callable anywhere after PEI (a) sets the PMBA if needed: 00.01.3 / 0x40 bits [15:6] (b) sets PCICMD/IOSE if needed: 00.01.3 / 0x04 bit 0 (c) sets PMREGMISC/PMIOSE: 00.01.3 / 0x80 bit 0 3. AcpiInitialization() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c] module type: DXE_DRIVER -- Driver eXecution Environment (a) sets SCI_EN, which depends on correct PMBA setting from earlier ( The relative order of #1 and #3 is dictated minimally by their module types. Said relative order can be verified with the boot log: 27 Loading PEIM at 0x00000822320 EntryPoint=0x00000822580 PlatformPei.efi 28 Platform PEIM Loaded 1259 PlatformBdsInit 1270 PlatformBdsPolicyBehavior Line 28 is printed by InitializePlatform() [OvmfPkg/PlatformPei/Platform.c] which is the entry point of that module. The other two lines are printed by the corresponding functions in "OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c". ) Currently #2 (AcpiTimerLibConstructor()) is called in a random spot (whenever it gets loaded from the firmware image) and masks the insufficient setup in #1. We shouldn't depend on that, PEI should finish with IO space being fully accessibe. In addition, PEI should program the same PMBA value as AcpiTimerLib. II. The PEI change notwithstanding, AcpiTimerLib should stay defensive and ensure proper PM configuration for itself (either by confirming or by doing). III. Considering a possible cleanup/unification of #2 and #3: timer functions relying on AcpiTimerLibConstructor(), - MicroSecondDelay() - NanoSecondDelay() - GetPerformanceCounter() - GetPerformanceCounterProperties() - GetTimeInNanoSecond() may be called before #3 is reached (in Boot Device Selection phase), so we should not move the initialization from #2 to #3. (Again, AcpiTimerLib should contain its own setup.) We should also not move #3 to an earlier phase -- SCI_EN is premature unless we're about to boot real soon ("enable generation of SCI upon assertion of PWRBTN_STS, LID_STS, THRM_STS, or GPI_STS bits"). Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13722 6f19259b-4bc3-4df7-8a09-765794883524
2012-09-12 09:19:16 +02:00
//
OvmfPkg: Q35: Use correct ACPI PM control register:bit On PIIX4, function 3, the PMREGMISC register at offset 0x80, with default value 0x00 has its bit 0 (PMIOSE) indicate whether the PM IO space given in the PMBA register (offset 0x40) is enabled. PMBA must be configured *before* setting this bit. On Q35/ICH9+, function 0x1f, the equivalent role is fulfilled by bit 7 (ACPI_EN) in the ACPI Control Register (ACPI_CNTL) at offset 0x44, also with a default value of 0x00. Currently, OVMF hangs when Q35 reboots, because while PMBA is reset by QEMU, the register at offset 0x80 (matching PMREGMISC on PIIX4) is not reset, since it has a completely different meaning on LPC. As such, the power management initialization logic in OVMF finds the "PMIOSE" bit enabled after a reboot and decides to skip setting PMBA. This causes the ACPI timer tick routine to read a constant value from the wrong register, which in turn causes the ACPI delay loop to hang indefinitely. This patch modifies the Base[Rom]AcpiTimerLib constructors and the PlatformPei ACPI PM init routines to use ACPI_CNTL:ACPI_EN instead of PMREGMISC:PMIOSE when running on Q35. Reported-by: Reza Jelveh <reza.jelveh@tuhh.de> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Tested-by: Laszlo Ersek <lersek@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17076 6f19259b-4bc3-4df7-8a09-765794883524
2015-03-26 20:06:07 +01:00
PciOr8 (AcpiCtlReg, AcpiEnBit);
}
}
VOID
BootModeInitialization (
OvmfPkg: PlatformPei: detect S3 Resume in CMOS and set boot mode accordingly Data is transferred between S3 Suspend and S3 Resume as follows: S3 Suspend (DXE): (1) BdsLibBootViaBootOption() EFI_ACPI_S3_SAVE_PROTOCOL [AcpiS3SaveDxe] - saves ACPI S3 Context to LockBox ---------------------+ (including FACS address -- FACS ACPI table | contains OS waking vector) | | - prepares boot script: | EFI_S3_SAVE_STATE_PROTOCOL.Write() [S3SaveStateDxe] | S3BootScriptLib [PiDxeS3BootScriptLib] | - opcodes & arguments are saved in NVS. --+ | | | - issues a notification by installing | | EFI_DXE_SMM_READY_TO_LOCK_PROTOCOL | | | | (2) EFI_S3_SAVE_STATE_PROTOCOL [S3SaveStateDxe] | | S3BootScriptLib [PiDxeS3BootScriptLib] | | - closes script with special opcode <---------+ | - script is available in non-volatile memory | via PcdS3BootScriptTablePrivateDataPtr --+ | | | BootScriptExecutorDxe | | S3BootScriptLib [PiDxeS3BootScriptLib] | | - Knows about boot script location by <----+ | synchronizing with the other library | instance via | PcdS3BootScriptTablePrivateDataPtr. | - Copies relocated image of itself to | reserved memory. --------------------------------+ | - Saved image contains pointer to boot script. ---|--+ | | | | Runtime: | | | | | | (3) OS is booted, writes OS waking vector to FACS, | | | suspends machine | | | | | | S3 Resume (PEI): | | | | | | (4) PlatformPei sets S3 Boot Mode based on CMOS | | | | | | (5) DXE core is skipped and EFI_PEI_S3_RESUME2 is | | | called as last step of PEI | | | | | | (6) S3Resume2Pei retrieves from LockBox: | | | - ACPI S3 Context (path to FACS) <------------------|--|--+ | | | +------------------|--|--+ - Boot Script Executor Image <----------------------+ | | | | (7) BootScriptExecutorDxe | | S3BootScriptLib [PiDxeS3BootScriptLib] | | - executes boot script <-----------------------------+ | | (8) OS waking vector available from ACPI S3 Context / FACS <--+ is called Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> [jordan.l.justen@intel.com: move code into BootModeInitialization] Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Jordan Justen <jordan.l.justen@intel.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15290 6f19259b-4bc3-4df7-8a09-765794883524
2014-03-04 09:01:32 +01:00
VOID
)
{
OvmfPkg: PlatformPei: detect S3 Resume in CMOS and set boot mode accordingly Data is transferred between S3 Suspend and S3 Resume as follows: S3 Suspend (DXE): (1) BdsLibBootViaBootOption() EFI_ACPI_S3_SAVE_PROTOCOL [AcpiS3SaveDxe] - saves ACPI S3 Context to LockBox ---------------------+ (including FACS address -- FACS ACPI table | contains OS waking vector) | | - prepares boot script: | EFI_S3_SAVE_STATE_PROTOCOL.Write() [S3SaveStateDxe] | S3BootScriptLib [PiDxeS3BootScriptLib] | - opcodes & arguments are saved in NVS. --+ | | | - issues a notification by installing | | EFI_DXE_SMM_READY_TO_LOCK_PROTOCOL | | | | (2) EFI_S3_SAVE_STATE_PROTOCOL [S3SaveStateDxe] | | S3BootScriptLib [PiDxeS3BootScriptLib] | | - closes script with special opcode <---------+ | - script is available in non-volatile memory | via PcdS3BootScriptTablePrivateDataPtr --+ | | | BootScriptExecutorDxe | | S3BootScriptLib [PiDxeS3BootScriptLib] | | - Knows about boot script location by <----+ | synchronizing with the other library | instance via | PcdS3BootScriptTablePrivateDataPtr. | - Copies relocated image of itself to | reserved memory. --------------------------------+ | - Saved image contains pointer to boot script. ---|--+ | | | | Runtime: | | | | | | (3) OS is booted, writes OS waking vector to FACS, | | | suspends machine | | | | | | S3 Resume (PEI): | | | | | | (4) PlatformPei sets S3 Boot Mode based on CMOS | | | | | | (5) DXE core is skipped and EFI_PEI_S3_RESUME2 is | | | called as last step of PEI | | | | | | (6) S3Resume2Pei retrieves from LockBox: | | | - ACPI S3 Context (path to FACS) <------------------|--|--+ | | | +------------------|--|--+ - Boot Script Executor Image <----------------------+ | | | | (7) BootScriptExecutorDxe | | S3BootScriptLib [PiDxeS3BootScriptLib] | | - executes boot script <-----------------------------+ | | (8) OS waking vector available from ACPI S3 Context / FACS <--+ is called Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> [jordan.l.justen@intel.com: move code into BootModeInitialization] Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Jordan Justen <jordan.l.justen@intel.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15290 6f19259b-4bc3-4df7-8a09-765794883524
2014-03-04 09:01:32 +01:00
EFI_STATUS Status;
if (CmosRead8 (0xF) == 0xFE) {
mBootMode = BOOT_ON_S3_RESUME;
OvmfPkg: PlatformPei: detect S3 Resume in CMOS and set boot mode accordingly Data is transferred between S3 Suspend and S3 Resume as follows: S3 Suspend (DXE): (1) BdsLibBootViaBootOption() EFI_ACPI_S3_SAVE_PROTOCOL [AcpiS3SaveDxe] - saves ACPI S3 Context to LockBox ---------------------+ (including FACS address -- FACS ACPI table | contains OS waking vector) | | - prepares boot script: | EFI_S3_SAVE_STATE_PROTOCOL.Write() [S3SaveStateDxe] | S3BootScriptLib [PiDxeS3BootScriptLib] | - opcodes & arguments are saved in NVS. --+ | | | - issues a notification by installing | | EFI_DXE_SMM_READY_TO_LOCK_PROTOCOL | | | | (2) EFI_S3_SAVE_STATE_PROTOCOL [S3SaveStateDxe] | | S3BootScriptLib [PiDxeS3BootScriptLib] | | - closes script with special opcode <---------+ | - script is available in non-volatile memory | via PcdS3BootScriptTablePrivateDataPtr --+ | | | BootScriptExecutorDxe | | S3BootScriptLib [PiDxeS3BootScriptLib] | | - Knows about boot script location by <----+ | synchronizing with the other library | instance via | PcdS3BootScriptTablePrivateDataPtr. | - Copies relocated image of itself to | reserved memory. --------------------------------+ | - Saved image contains pointer to boot script. ---|--+ | | | | Runtime: | | | | | | (3) OS is booted, writes OS waking vector to FACS, | | | suspends machine | | | | | | S3 Resume (PEI): | | | | | | (4) PlatformPei sets S3 Boot Mode based on CMOS | | | | | | (5) DXE core is skipped and EFI_PEI_S3_RESUME2 is | | | called as last step of PEI | | | | | | (6) S3Resume2Pei retrieves from LockBox: | | | - ACPI S3 Context (path to FACS) <------------------|--|--+ | | | +------------------|--|--+ - Boot Script Executor Image <----------------------+ | | | | (7) BootScriptExecutorDxe | | S3BootScriptLib [PiDxeS3BootScriptLib] | | - executes boot script <-----------------------------+ | | (8) OS waking vector available from ACPI S3 Context / FACS <--+ is called Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> [jordan.l.justen@intel.com: move code into BootModeInitialization] Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Jordan Justen <jordan.l.justen@intel.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15290 6f19259b-4bc3-4df7-8a09-765794883524
2014-03-04 09:01:32 +01:00
}
Status = PeiServicesSetBootMode (mBootMode);
ASSERT_EFI_ERROR (Status);
Status = PeiServicesInstallPpi (mPpiBootMode);
ASSERT_EFI_ERROR (Status);
}
VOID
ReserveEmuVariableNvStore (
)
{
EFI_PHYSICAL_ADDRESS VariableStore;
//
// Allocate storage for NV variables early on so it will be
// at a consistent address. Since VM memory is preserved
// across reboots, this allows the NV variable storage to survive
// a VM reboot.
//
VariableStore =
(EFI_PHYSICAL_ADDRESS)(UINTN)
AllocateAlignedRuntimePages (
EFI_SIZE_TO_PAGES (2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize)),
PcdGet32 (PcdFlashNvStorageFtwSpareSize)
);
DEBUG ((EFI_D_INFO,
"Reserved variable store memory: 0x%lX; size: %dkb\n",
VariableStore,
(2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize)) / 1024
));
PcdSet64 (PcdEmuVariableNvStoreReserved, VariableStore);
}
VOID
DebugDumpCmos (
VOID
)
{
UINTN Loop;
DEBUG ((EFI_D_INFO, "CMOS:\n"));
for (Loop = 0; Loop < 0x80; Loop++) {
if ((Loop % 0x10) == 0) {
DEBUG ((EFI_D_INFO, "%02x:", Loop));
}
DEBUG ((EFI_D_INFO, " %02x", CmosRead8 (Loop)));
if ((Loop % 0x10) == 0xf) {
DEBUG ((EFI_D_INFO, "\n"));
}
}
}
/**
Perform Platform PEI initialization.
@param FileHandle Handle of the file being invoked.
@param PeiServices Describes the list of possible PEI Services.
@return EFI_SUCCESS The PEIM initialized successfully.
**/
EFI_STATUS
EFIAPI
InitializePlatform (
IN EFI_PEI_FILE_HANDLE FileHandle,
IN CONST EFI_PEI_SERVICES **PeiServices
)
{
DEBUG ((EFI_D_ERROR, "Platform PEIM Loaded\n"));
DebugDumpCmos ();
XenDetect ();
if (QemuFwCfgS3Enabled ()) {
DEBUG ((EFI_D_INFO, "S3 support was detected on QEMU\n"));
mS3Supported = TRUE;
}
BootModeInitialization ();
PublishPeiMemory ();
InitializeRamRegions ();
if (mXen) {
DEBUG ((EFI_D_INFO, "Xen was detected\n"));
InitializeXen ();
}
if (mBootMode != BOOT_ON_S3_RESUME) {
ReserveEmuVariableNvStore ();
PeiFvInitialization ();
MemMapInitialization ();
}
MiscInitialization ();
return EFI_SUCCESS;
}