UefiCpuPkg: Allow AP booting under SEV-ES

BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=2198

Typically, an AP is booted using the INIT-SIPI-SIPI sequence. This
sequence is intercepted by the hypervisor, which sets the AP's registers
to the values requested by the sequence. At that point, the hypervisor can
start the AP, which will then begin execution at the appropriate location.

Under SEV-ES, AP booting presents some challenges since the hypervisor is
not allowed to alter the AP's register state. In this situation, we have
to distinguish between the AP's first boot and AP's subsequent boots.

First boot:
 Once the AP's register state has been defined (which is before the guest
 is first booted) it cannot be altered. Should the hypervisor attempt to
 alter the register state, the change would be detected by the hardware
 and the VMRUN instruction would fail. Given this, the first boot for the
 AP is required to begin execution with this initial register state, which
 is typically the reset vector. This prevents the BSP from directing the
 AP startup location through the INIT-SIPI-SIPI sequence.

 To work around this, the firmware will provide a build time reserved area
 that can be used as the initial IP value. The hypervisor can extract this
 location value by checking for the SEV-ES reset block GUID that must be
 located 48-bytes from the end of the firmware. The format of the SEV-ES
 reset block area is:

   0x00 - 0x01 - SEV-ES Reset IP
   0x02 - 0x03 - SEV-ES Reset CS Segment Base[31:16]
   0x04 - 0x05 - Size of the SEV-ES reset block
   0x06 - 0x15 - SEV-ES Reset Block GUID
                   (00f771de-1a7e-4fcb-890e-68c77e2fb44e)

   The total size is 22 bytes. Any expansion to this block must be done
   by adding new values before existing values.

 The hypervisor will use the IP and CS values obtained from the SEV-ES
 reset block to set as the AP's initial values. The CS Segment Base
 represents the upper 16 bits of the CS segment base and must be left
 shifted by 16 bits to form the complete CS segment base value.

 Before booting the AP for the first time, the BSP must initialize the
 SEV-ES reset area. This consists of programming a FAR JMP instruction
 to the contents of a memory location that is also located in the SEV-ES
 reset area. The BSP must program the IP and CS values for the FAR JMP
 based on values drived from the INIT-SIPI-SIPI sequence.

Subsequent boots:
 Again, the hypervisor cannot alter the AP register state, so a method is
 required to take the AP out of halt state and redirect it to the desired
 IP location. If it is determined that the AP is running in an SEV-ES
 guest, then instead of calling CpuSleep(), a VMGEXIT is issued with the
 AP Reset Hold exit code (0x80000004). The hypervisor will put the AP in
 a halt state, waiting for an INIT-SIPI-SIPI sequence. Once the sequence
 is recognized, the hypervisor will resume the AP. At this point the AP
 must transition from the current 64-bit long mode down to 16-bit real
 mode and begin executing at the derived location from the INIT-SIPI-SIPI
 sequence.

 Another change is around the area of obtaining the (x2)APIC ID during AP
 startup. During AP startup, the AP can't take a #VC exception before the
 AP has established a stack. However, the AP stack is set by using the
 (x2)APIC ID, which is obtained through CPUID instructions. A CPUID
 instruction will cause a #VC, so a different method must be used. The
 GHCB protocol supports a method to obtain CPUID information from the
 hypervisor through the GHCB MSR. This method does not require a stack,
 so it is used to obtain the necessary CPUID information to determine the
 (x2)APIC ID.

The new 16-bit protected mode GDT entry is used in order to transition
from 64-bit long mode down to 16-bit real mode.

A new assembler routine is created that takes the AP from 64-bit long mode
to 16-bit real mode.  This is located under 1MB in memory and transitions
from 64-bit long mode to 32-bit compatibility mode to 16-bit protected
mode and finally 16-bit real mode.

Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
This commit is contained in:
Tom Lendacky 2020-08-12 15:21:42 -05:00 committed by mergify[bot]
parent e88a5b9833
commit 7b7508ad78
11 changed files with 738 additions and 15 deletions

View File

@ -52,6 +52,7 @@
DebugAgentLib
SynchronizationLib
PcdLib
VmgExitLib
[Protocols]
gEfiTimerArchProtocolGuid ## SOMETIMES_CONSUMES
@ -72,4 +73,6 @@
gUefiCpuPkgTokenSpaceGuid.PcdCpuApTargetCstate ## SOMETIMES_CONSUMES
gUefiCpuPkgTokenSpaceGuid.PcdCpuApStatusCheckIntervalInMicroSeconds ## CONSUMES
gUefiCpuPkgTokenSpaceGuid.PcdSevEsIsEnabled ## CONSUMES
gUefiCpuPkgTokenSpaceGuid.PcdSevEsWorkAreaBase ## SOMETIMES_CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdCpuStackGuard ## CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdGhcbBase ## CONSUMES

View File

@ -12,6 +12,8 @@
#include <Library/UefiBootServicesTableLib.h>
#include <Library/DebugAgentLib.h>
#include <Library/DxeServicesTableLib.h>
#include <Register/Amd/Fam17Msr.h>
#include <Register/Amd/Ghcb.h>
#include <Protocol/Timer.h>
@ -144,6 +146,39 @@ GetModeTransitionBuffer (
return (UINTN)StartAddress;
}
/**
Return the address of the SEV-ES AP jump table.
This buffer is required in order for an SEV-ES guest to transition from
UEFI into an OS.
@return Return SEV-ES AP jump table buffer
**/
UINTN
GetSevEsAPMemory (
VOID
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS StartAddress;
//
// Allocate 1 page for AP jump table page
//
StartAddress = BASE_4GB - 1;
Status = gBS->AllocatePages (
AllocateMaxAddress,
EfiReservedMemoryType,
1,
&StartAddress
);
ASSERT_EFI_ERROR (Status);
DEBUG ((DEBUG_INFO, "Dxe: SevEsAPMemory = %lx\n", (UINTN) StartAddress));
return (UINTN) StartAddress;
}
/**
Checks APs status and updates APs status if needed.
@ -218,6 +253,38 @@ CheckApsStatus (
}
}
/**
Get Protected mode code segment with 16-bit default addressing
from current GDT table.
@return Protected mode 16-bit code segment value.
**/
UINT16
GetProtectedMode16CS (
VOID
)
{
IA32_DESCRIPTOR GdtrDesc;
IA32_SEGMENT_DESCRIPTOR *GdtEntry;
UINTN GdtEntryCount;
UINT16 Index;
Index = (UINT16) -1;
AsmReadGdtr (&GdtrDesc);
GdtEntryCount = (GdtrDesc.Limit + 1) / sizeof (IA32_SEGMENT_DESCRIPTOR);
GdtEntry = (IA32_SEGMENT_DESCRIPTOR *) GdtrDesc.Base;
for (Index = 0; Index < GdtEntryCount; Index++) {
if (GdtEntry->Bits.L == 0) {
if (GdtEntry->Bits.Type > 8 && GdtEntry->Bits.DB == 0) {
break;
}
}
GdtEntry++;
}
ASSERT (Index != GdtEntryCount);
return Index * 8;
}
/**
Get Protected mode code segment from current GDT table.
@ -238,7 +305,7 @@ GetProtectedModeCS (
GdtEntry = (IA32_SEGMENT_DESCRIPTOR *) GdtrDesc.Base;
for (Index = 0; Index < GdtEntryCount; Index++) {
if (GdtEntry->Bits.L == 0) {
if (GdtEntry->Bits.Type > 8 && GdtEntry->Bits.L == 0) {
if (GdtEntry->Bits.Type > 8 && GdtEntry->Bits.DB == 1) {
break;
}
}
@ -300,6 +367,7 @@ MpInitChangeApLoopCallback (
CpuMpData = GetCpuMpData ();
CpuMpData->PmCodeSegment = GetProtectedModeCS ();
CpuMpData->Pm16CodeSegment = GetProtectedMode16CS ();
CpuMpData->ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
mNumberToFinish = CpuMpData->CpuCount - 1;
WakeUpAP (CpuMpData, TRUE, 0, RelocateApLoop, NULL, TRUE);

View File

@ -19,7 +19,7 @@ CPU_SWITCH_STATE_IDLE equ 0
CPU_SWITCH_STATE_STORED equ 1
CPU_SWITCH_STATE_LOADED equ 2
LockLocation equ (RendezvousFunnelProcEnd - RendezvousFunnelProcStart)
LockLocation equ (SwitchToRealProcEnd - RendezvousFunnelProcStart)
StackStartAddressLocation equ LockLocation + 04h
StackSizeLocation equ LockLocation + 08h
ApProcedureLocation equ LockLocation + 0Ch

View File

@ -215,6 +215,16 @@ CProcedureInvoke:
jmp $ ; Never reach here
RendezvousFunnelProcEnd:
;-------------------------------------------------------------------------------------
;SwitchToRealProc procedure follows.
;NOT USED IN 32 BIT MODE.
;-------------------------------------------------------------------------------------
global ASM_PFX(SwitchToRealProc)
ASM_PFX(SwitchToRealProc):
SwitchToRealProcStart:
jmp $ ; Never reach here
SwitchToRealProcEnd:
;-------------------------------------------------------------------------------------
; AsmRelocateApLoop (MwaitSupport, ApTargetCState, PmCodeSegment, TopOfApStack, CountTofinish);
;-------------------------------------------------------------------------------------
@ -263,6 +273,11 @@ ASM_PFX(AsmGetAddressMap):
mov dword [ebx + 0Ch], AsmRelocateApLoopStart
mov dword [ebx + 10h], AsmRelocateApLoopEnd - AsmRelocateApLoopStart
mov dword [ebx + 14h], Flat32Start - RendezvousFunnelProcStart
mov dword [ebx + 18h], SwitchToRealProcEnd - SwitchToRealProcStart ; SwitchToRealSize
mov dword [ebx + 1Ch], SwitchToRealProcStart - RendezvousFunnelProcStart ; SwitchToRealOffset
mov dword [ebx + 20h], SwitchToRealProcStart - Flat32Start ; SwitchToRealNoNxOffset
mov dword [ebx + 24h], 0 ; SwitchToRealPM16ModeOffset
mov dword [ebx + 28h], 0 ; SwitchToRealPM16ModeSize
popad
ret

View File

@ -9,6 +9,9 @@
**/
#include "MpLib.h"
#include <Library/VmgExitLib.h>
#include <Register/Amd/Fam17Msr.h>
#include <Register/Amd/Ghcb.h>
EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
@ -291,6 +294,14 @@ GetApLoopMode (
//
ApLoopMode = ApInHltLoop;
}
if (PcdGetBool (PcdSevEsIsEnabled)) {
//
// For SEV-ES, force AP in Hlt-loop mode in order to use the GHCB
// protocol for starting APs
//
ApLoopMode = ApInHltLoop;
}
}
if (ApLoopMode != ApInMwaitLoop) {
@ -587,6 +598,112 @@ InitializeApData (
SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
}
/**
Get Protected mode code segment with 16-bit default addressing
from current GDT table.
@return Protected mode 16-bit code segment value.
**/
STATIC
UINT16
GetProtectedMode16CS (
VOID
)
{
IA32_DESCRIPTOR GdtrDesc;
IA32_SEGMENT_DESCRIPTOR *GdtEntry;
UINTN GdtEntryCount;
UINT16 Index;
Index = (UINT16) -1;
AsmReadGdtr (&GdtrDesc);
GdtEntryCount = (GdtrDesc.Limit + 1) / sizeof (IA32_SEGMENT_DESCRIPTOR);
GdtEntry = (IA32_SEGMENT_DESCRIPTOR *) GdtrDesc.Base;
for (Index = 0; Index < GdtEntryCount; Index++) {
if (GdtEntry->Bits.L == 0 &&
GdtEntry->Bits.DB == 0 &&
GdtEntry->Bits.Type > 8) {
break;
}
GdtEntry++;
}
ASSERT (Index != GdtEntryCount);
return Index * 8;
}
/**
Get Protected mode code segment with 32-bit default addressing
from current GDT table.
@return Protected mode 32-bit code segment value.
**/
STATIC
UINT16
GetProtectedMode32CS (
VOID
)
{
IA32_DESCRIPTOR GdtrDesc;
IA32_SEGMENT_DESCRIPTOR *GdtEntry;
UINTN GdtEntryCount;
UINT16 Index;
Index = (UINT16) -1;
AsmReadGdtr (&GdtrDesc);
GdtEntryCount = (GdtrDesc.Limit + 1) / sizeof (IA32_SEGMENT_DESCRIPTOR);
GdtEntry = (IA32_SEGMENT_DESCRIPTOR *) GdtrDesc.Base;
for (Index = 0; Index < GdtEntryCount; Index++) {
if (GdtEntry->Bits.L == 0 &&
GdtEntry->Bits.DB == 1 &&
GdtEntry->Bits.Type > 8) {
break;
}
GdtEntry++;
}
ASSERT (Index != GdtEntryCount);
return Index * 8;
}
/**
Reset an AP when in SEV-ES mode.
If successful, this function never returns.
@param[in] Ghcb Pointer to the GHCB
@param[in] CpuMpData Pointer to CPU MP Data
**/
STATIC
VOID
MpInitLibSevEsAPReset (
IN GHCB *Ghcb,
IN CPU_MP_DATA *CpuMpData
)
{
UINT16 Code16, Code32;
AP_RESET *APResetFn;
UINTN BufferStart;
UINTN StackStart;
Code16 = GetProtectedMode16CS ();
Code32 = GetProtectedMode32CS ();
if (CpuMpData->WakeupBufferHigh != 0) {
APResetFn = (AP_RESET *) (CpuMpData->WakeupBufferHigh + CpuMpData->AddressMap.SwitchToRealNoNxOffset);
} else {
APResetFn = (AP_RESET *) (CpuMpData->MpCpuExchangeInfo->BufferStart + CpuMpData->AddressMap.SwitchToRealOffset);
}
BufferStart = CpuMpData->MpCpuExchangeInfo->BufferStart;
StackStart = CpuMpData->SevEsAPResetStackStart -
(AP_RESET_STACK_SIZE * GetApicId ());
//
// This call never returns.
//
APResetFn (BufferStart, Code16, Code32, StackStart);
}
/**
This function will be called from AP reset code if BSP uses WakeUpAP.
@ -648,7 +765,14 @@ ApWakeupFunction (
InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);
ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
//
// Delay decrementing the APs executing count when SEV-ES is enabled
// to allow the APs to issue an AP_RESET_HOLD before the BSP possibly
// performs another INIT-SIPI-SIPI sequence.
//
if (!CpuMpData->SevEsIsEnabled) {
InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
}
} else {
//
// Execute AP function if AP is ready
@ -755,7 +879,52 @@ ApWakeupFunction (
//
while (TRUE) {
DisableInterrupts ();
CpuSleep ();
if (CpuMpData->SevEsIsEnabled) {
MSR_SEV_ES_GHCB_REGISTER Msr;
GHCB *Ghcb;
UINT64 Status;
BOOLEAN DoDecrement;
if (CpuMpData->InitFlag == ApInitConfig) {
DoDecrement = TRUE;
}
while (TRUE) {
Msr.GhcbPhysicalAddress = AsmReadMsr64 (MSR_SEV_ES_GHCB);
Ghcb = Msr.Ghcb;
VmgInit (Ghcb);
if (DoDecrement) {
DoDecrement = FALSE;
//
// Perform the delayed decrement just before issuing the first
// VMGEXIT with AP_RESET_HOLD.
//
InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
}
Status = VmgExit (Ghcb, SVM_EXIT_AP_RESET_HOLD, 0, 0);
if ((Status == 0) && (Ghcb->SaveArea.SwExitInfo2 != 0)) {
VmgDone (Ghcb);
break;
}
VmgDone (Ghcb);
}
//
// Awakened in a new phase? Use the new CpuMpData
//
if (CpuMpData->NewCpuMpData != NULL) {
CpuMpData = CpuMpData->NewCpuMpData;
}
MpInitLibSevEsAPReset (Ghcb, CpuMpData);
} else {
CpuSleep ();
}
CpuPause ();
}
}
@ -868,6 +1037,9 @@ FillExchangeInfoData (
ExchangeInfo->Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);
DEBUG ((DEBUG_INFO, "%a: 5-Level Paging = %d\n", gEfiCallerBaseName, ExchangeInfo->Enable5LevelPaging));
ExchangeInfo->SevEsIsEnabled = CpuMpData->SevEsIsEnabled;
ExchangeInfo->GhcbBase = (UINTN) CpuMpData->GhcbBase;
//
// Get the BSP's data of GDT and IDT
//
@ -894,8 +1066,9 @@ FillExchangeInfoData (
// EfiBootServicesCode to avoid page fault if NX memory protection is enabled.
//
if (CpuMpData->WakeupBufferHigh != 0) {
Size = CpuMpData->AddressMap.RendezvousFunnelSize -
CpuMpData->AddressMap.ModeTransitionOffset;
Size = CpuMpData->AddressMap.RendezvousFunnelSize +
CpuMpData->AddressMap.SwitchToRealSize -
CpuMpData->AddressMap.ModeTransitionOffset;
CopyMem (
(VOID *)CpuMpData->WakeupBufferHigh,
CpuMpData->AddressMap.RendezvousFunnelAddress +
@ -948,7 +1121,8 @@ BackupAndPrepareWakeupBuffer(
CopyMem (
(VOID *) CpuMpData->WakeupBuffer,
(VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,
CpuMpData->AddressMap.RendezvousFunnelSize
CpuMpData->AddressMap.RendezvousFunnelSize +
CpuMpData->AddressMap.SwitchToRealSize
);
}
@ -969,6 +1143,44 @@ RestoreWakeupBuffer(
);
}
/**
Calculate the size of the reset stack.
@return Total amount of memory required for stacks
**/
STATIC
UINTN
GetApResetStackSize (
VOID
)
{
return AP_RESET_STACK_SIZE * PcdGet32(PcdCpuMaxLogicalProcessorNumber);
}
/**
Calculate the size of the reset vector.
@param[in] AddressMap The pointer to Address Map structure.
@return Total amount of memory required for the AP reset area
**/
STATIC
UINTN
GetApResetVectorSize (
IN MP_ASSEMBLY_ADDRESS_MAP *AddressMap
)
{
UINTN Size;
Size = ALIGN_VALUE (AddressMap->RendezvousFunnelSize +
AddressMap->SwitchToRealSize +
sizeof (MP_CPU_EXCHANGE_INFO),
CPU_STACK_ALIGNMENT);
Size += GetApResetStackSize ();
return Size;
}
/**
Allocate reset vector buffer.
@ -982,16 +1194,22 @@ AllocateResetVector (
UINTN ApResetVectorSize;
if (CpuMpData->WakeupBuffer == (UINTN) -1) {
ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +
sizeof (MP_CPU_EXCHANGE_INFO);
ApResetVectorSize = GetApResetVectorSize (&CpuMpData->AddressMap);
CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);
CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)
(CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);
(CpuMpData->WakeupBuffer +
CpuMpData->AddressMap.RendezvousFunnelSize +
CpuMpData->AddressMap.SwitchToRealSize);
CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (
CpuMpData->AddressMap.RendezvousFunnelSize -
CpuMpData->AddressMap.RendezvousFunnelSize +
CpuMpData->AddressMap.SwitchToRealSize -
CpuMpData->AddressMap.ModeTransitionOffset
);
//
// The reset stack starts at the end of the buffer.
//
CpuMpData->SevEsAPResetStackStart = CpuMpData->WakeupBuffer + ApResetVectorSize;
}
BackupAndPrepareWakeupBuffer (CpuMpData);
}
@ -1006,7 +1224,80 @@ FreeResetVector (
IN CPU_MP_DATA *CpuMpData
)
{
RestoreWakeupBuffer (CpuMpData);
//
// If SEV-ES is enabled, the reset area is needed for AP parking and
// and AP startup in the OS, so the reset area is reserved. Do not
// perform the restore as this will overwrite memory which has data
// needed by SEV-ES.
//
if (!CpuMpData->SevEsIsEnabled) {
RestoreWakeupBuffer (CpuMpData);
}
}
/**
Allocate the SEV-ES AP jump table buffer.
@param[in, out] CpuMpData The pointer to CPU MP Data structure.
**/
VOID
AllocateSevEsAPMemory (
IN OUT CPU_MP_DATA *CpuMpData
)
{
if (CpuMpData->SevEsAPBuffer == (UINTN) -1) {
CpuMpData->SevEsAPBuffer =
CpuMpData->SevEsIsEnabled ? GetSevEsAPMemory () : 0;
}
}
/**
Program the SEV-ES AP jump table buffer.
@param[in] SipiVector The SIPI vector used for the AP Reset
**/
VOID
SetSevEsJumpTable (
IN UINTN SipiVector
)
{
SEV_ES_AP_JMP_FAR *JmpFar;
UINT32 Offset, InsnByte;
UINT8 LoNib, HiNib;
JmpFar = (SEV_ES_AP_JMP_FAR *) FixedPcdGet32 (PcdSevEsWorkAreaBase);
ASSERT (JmpFar != NULL);
//
// Obtain the address of the Segment/Rip location in the workarea.
// This will be set to a value derived from the SIPI vector and will
// be the memory address used for the far jump below.
//
Offset = FixedPcdGet32 (PcdSevEsWorkAreaBase);
Offset += sizeof (JmpFar->InsnBuffer);
LoNib = (UINT8) Offset;
HiNib = (UINT8) (Offset >> 8);
//
// Program the workarea (which is the initial AP boot address) with
// far jump to the SIPI vector (where XX and YY represent the
// address of where the SIPI vector is stored.
//
// JMP FAR [CS:XXYY] => 2E FF 2E YY XX
//
InsnByte = 0;
JmpFar->InsnBuffer[InsnByte++] = 0x2E; // CS override prefix
JmpFar->InsnBuffer[InsnByte++] = 0xFF; // JMP (FAR)
JmpFar->InsnBuffer[InsnByte++] = 0x2E; // ModRM (JMP memory location)
JmpFar->InsnBuffer[InsnByte++] = LoNib; // YY offset ...
JmpFar->InsnBuffer[InsnByte++] = HiNib; // XX offset ...
//
// Program the Segment/Rip based on the SIPI vector (always at least
// 16-byte aligned, so Rip is set to 0).
//
JmpFar->Rip = 0;
JmpFar->Segment = (UINT16) (SipiVector >> 4);
}
/**
@ -1043,6 +1334,7 @@ WakeUpAP (
CpuMpData->InitFlag != ApInitDone) {
ResetVectorRequired = TRUE;
AllocateResetVector (CpuMpData);
AllocateSevEsAPMemory (CpuMpData);
FillExchangeInfoData (CpuMpData);
SaveLocalApicTimerSetting (CpuMpData);
}
@ -1079,6 +1371,15 @@ WakeUpAP (
}
}
if (ResetVectorRequired) {
//
// For SEV-ES, the initial AP boot address will be defined by
// PcdSevEsWorkAreaBase. The Segment/Rip must be the jump address
// from the original INIT-SIPI-SIPI.
//
if (CpuMpData->SevEsIsEnabled) {
SetSevEsJumpTable (ExchangeInfo->BufferStart);
}
//
// Wakeup all APs
//
@ -1170,6 +1471,16 @@ WakeUpAP (
*(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
if (ResetVectorRequired) {
CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
//
// For SEV-ES, the initial AP boot address will be defined by
// PcdSevEsWorkAreaBase. The Segment/Rip must be the jump address
// from the original INIT-SIPI-SIPI.
//
if (CpuMpData->SevEsIsEnabled) {
SetSevEsJumpTable (ExchangeInfo->BufferStart);
}
SendInitSipiSipi (
CpuInfoInHob[ProcessorNumber].ApicId,
(UINT32) ExchangeInfo->BufferStart
@ -1646,7 +1957,7 @@ MpInitLibInitialize (
ASSERT (MaxLogicalProcessorNumber != 0);
AsmGetAddressMap (&AddressMap);
ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);
ApResetVectorSize = GetApResetVectorSize (&AddressMap);
ApStackSize = PcdGet32(PcdCpuApStackSize);
ApLoopMode = GetApLoopMode (&MonitorFilterSize);
@ -1705,6 +2016,8 @@ MpInitLibInitialize (
CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);
InitializeSpinLock(&CpuMpData->MpLock);
CpuMpData->SevEsIsEnabled = PcdGetBool (PcdSevEsIsEnabled);
CpuMpData->SevEsAPBuffer = (UINTN) -1;
CpuMpData->GhcbBase = PcdGet64 (PcdGhcbBase);
//
// Make sure no memory usage outside of the allocated buffer.
@ -1763,6 +2076,7 @@ MpInitLibInitialize (
// APs have been wakeup before, just get the CPU Information
// from HOB
//
OldCpuMpData->NewCpuMpData = CpuMpData;
CpuMpData->CpuCount = OldCpuMpData->CpuCount;
CpuMpData->BspNumber = OldCpuMpData->BspNumber;
CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;

View File

@ -173,6 +173,11 @@ typedef struct {
UINT8 *RelocateApLoopFuncAddress;
UINTN RelocateApLoopFuncSize;
UINTN ModeTransitionOffset;
UINTN SwitchToRealSize;
UINTN SwitchToRealOffset;
UINTN SwitchToRealNoNxOffset;
UINTN SwitchToRealPM16ModeOffset;
UINTN SwitchToRealPM16ModeSize;
} MP_ASSEMBLY_ADDRESS_MAP;
typedef struct _CPU_MP_DATA CPU_MP_DATA;
@ -211,6 +216,8 @@ typedef struct {
// Enable5LevelPaging indicates whether 5-level paging is enabled in long mode.
//
BOOLEAN Enable5LevelPaging;
BOOLEAN SevEsIsEnabled;
UINTN GhcbBase;
} MP_CPU_EXCHANGE_INFO;
#pragma pack()
@ -257,6 +264,7 @@ struct _CPU_MP_DATA {
UINT8 ApLoopMode;
UINT8 ApTargetCState;
UINT16 PmCodeSegment;
UINT16 Pm16CodeSegment;
CPU_AP_DATA *CpuData;
volatile MP_CPU_EXCHANGE_INFO *MpCpuExchangeInfo;
@ -278,8 +286,47 @@ struct _CPU_MP_DATA {
BOOLEAN WakeUpByInitSipiSipi;
BOOLEAN SevEsIsEnabled;
UINTN SevEsAPBuffer;
UINTN SevEsAPResetStackStart;
CPU_MP_DATA *NewCpuMpData;
UINT64 GhcbBase;
};
#define AP_RESET_STACK_SIZE 64
#pragma pack(1)
typedef struct {
UINT8 InsnBuffer[8];
UINT16 Rip;
UINT16 Segment;
} SEV_ES_AP_JMP_FAR;
#pragma pack()
/**
Assembly code to move an AP from long mode to real mode.
Move an AP from long mode to real mode in preparation to invoking
the reset vector. This is used for SEV-ES guests where a hypervisor
is not allowed to set the CS and RIP to point to the reset vector.
@param[in] BufferStart The reset vector target.
@param[in] Code16 16-bit protected mode code segment value.
@param[in] Code32 32-bit protected mode code segment value.
@param[in] StackStart The start of a stack to be used for transitioning
from long mode to real mode.
**/
typedef
VOID
(EFIAPI AP_RESET) (
IN UINTN BufferStart,
IN UINT16 Code16,
IN UINT16 Code32,
IN UINTN StackStart
);
extern EFI_GUID mCpuInitMpLibHobGuid;
/**
@ -385,6 +432,19 @@ GetModeTransitionBuffer (
IN UINTN BufferSize
);
/**
Return the address of the SEV-ES AP jump table.
This buffer is required in order for an SEV-ES guest to transition from
UEFI into an OS.
@return Return SEV-ES AP jump table buffer
**/
UINTN
GetSevEsAPMemory (
VOID
);
/**
This function will be called by BSP to wakeup AP.

View File

@ -51,6 +51,7 @@
SynchronizationLib
PeiServicesLib
PcdLib
VmgExitLib
[Pcd]
gUefiCpuPkgTokenSpaceGuid.PcdCpuMaxLogicalProcessorNumber ## CONSUMES
@ -62,6 +63,8 @@
gUefiCpuPkgTokenSpaceGuid.PcdCpuApLoopMode ## CONSUMES
gUefiCpuPkgTokenSpaceGuid.PcdCpuApTargetCstate ## SOMETIMES_CONSUMES
gUefiCpuPkgTokenSpaceGuid.PcdSevEsIsEnabled ## CONSUMES
gUefiCpuPkgTokenSpaceGuid.PcdSevEsWorkAreaBase ## SOMETIMES_CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdGhcbBase ## CONSUMES
[Ppis]
gEdkiiPeiShadowMicrocodePpiGuid ## SOMETIMES_CONSUMES

View File

@ -280,6 +280,25 @@ GetModeTransitionBuffer (
return 0;
}
/**
Return the address of the SEV-ES AP jump table.
This buffer is required in order for an SEV-ES guest to transition from
UEFI into an OS.
@return Return SEV-ES AP jump table buffer
**/
UINTN
GetSevEsAPMemory (
VOID
)
{
//
// PEI phase doesn't need to do such transition. So simply return 0.
//
return 0;
}
/**
Checks APs status and updates APs status if needed.

View File

@ -19,7 +19,7 @@ CPU_SWITCH_STATE_IDLE equ 0
CPU_SWITCH_STATE_STORED equ 1
CPU_SWITCH_STATE_LOADED equ 2
LockLocation equ (RendezvousFunnelProcEnd - RendezvousFunnelProcStart)
LockLocation equ (SwitchToRealProcEnd - RendezvousFunnelProcStart)
StackStartAddressLocation equ LockLocation + 08h
StackSizeLocation equ LockLocation + 10h
ApProcedureLocation equ LockLocation + 18h
@ -41,3 +41,5 @@ ModeTransitionSegmentLocation equ LockLocation + 98h
ModeHighMemoryLocation equ LockLocation + 9Ah
ModeHighSegmentLocation equ LockLocation + 9Eh
Enable5LevelPagingLocation equ LockLocation + 0A0h
SevEsIsEnabledLocation equ LockLocation + 0A1h
GhcbBaseLocation equ LockLocation + 0A2h

View File

@ -184,9 +184,97 @@ Releaselock:
add edi, StackStartAddressLocation
add rax, qword [edi]
mov rsp, rax
lea edi, [esi + SevEsIsEnabledLocation]
cmp byte [edi], 1 ; SevEsIsEnabled
jne CProcedureInvoke
;
; program GHCB
; Each page after the GHCB is a per-CPU page, so the calculation programs
; a GHCB to be every 8KB.
;
mov eax, SIZE_4KB
shl eax, 1 ; EAX = SIZE_4K * 2
mov ecx, ebx
mul ecx ; EAX = SIZE_4K * 2 * CpuNumber
mov edi, esi
add edi, GhcbBaseLocation
add rax, qword [edi]
mov rdx, rax
shr rdx, 32
mov rcx, 0xc0010130
wrmsr
jmp CProcedureInvoke
GetApicId:
lea edi, [esi + SevEsIsEnabledLocation]
cmp byte [edi], 1 ; SevEsIsEnabled
jne DoCpuid
;
; Since we don't have a stack yet, we can't take a #VC
; exception. Use the GHCB protocol to perform the CPUID
; calls.
;
mov rcx, 0xc0010130
rdmsr
shl rdx, 32
or rax, rdx
mov rdi, rax ; RDI now holds the original GHCB GPA
mov rdx, 0 ; CPUID function 0
mov rax, 0 ; RAX register requested
or rax, 4
wrmsr
rep vmmcall
rdmsr
cmp edx, 0bh
jb NoX2ApicSevEs ; CPUID level below CPUID_EXTENDED_TOPOLOGY
mov rdx, 0bh ; CPUID function 0x0b
mov rax, 040000000h ; RBX register requested
or rax, 4
wrmsr
rep vmmcall
rdmsr
test edx, 0ffffh
jz NoX2ApicSevEs ; CPUID.0BH:EBX[15:0] is zero
mov rdx, 0bh ; CPUID function 0x0b
mov rax, 0c0000000h ; RDX register requested
or rax, 4
wrmsr
rep vmmcall
rdmsr
; Processor is x2APIC capable; 32-bit x2APIC ID is now in EDX
jmp RestoreGhcb
NoX2ApicSevEs:
; Processor is not x2APIC capable, so get 8-bit APIC ID
mov rdx, 1 ; CPUID function 1
mov rax, 040000000h ; RBX register requested
or rax, 4
wrmsr
rep vmmcall
rdmsr
shr edx, 24
RestoreGhcb:
mov rbx, rdx ; Save x2APIC/APIC ID
mov rdx, rdi ; RDI holds the saved GHCB GPA
shr rdx, 32
mov eax, edi
wrmsr
mov rdx, rbx
; x2APIC ID or APIC ID is in EDX
jmp GetProcessorNumber
DoCpuid:
mov eax, 0
cpuid
cmp eax, 0bh
@ -253,12 +341,158 @@ CProcedureInvoke:
RendezvousFunnelProcEnd:
;-------------------------------------------------------------------------------------
;SwitchToRealProc procedure follows.
;ALSO THIS PROCEDURE IS EXECUTED BY APs TRANSITIONING TO 16 BIT MODE. HENCE THIS PROC
;IS IN MACHINE CODE.
; SwitchToRealProc (UINTN BufferStart, UINT16 Code16, UINT16 Code32, UINTN StackStart)
; rcx - Buffer Start
; rdx - Code16 Selector Offset
; r8 - Code32 Selector Offset
; r9 - Stack Start
;-------------------------------------------------------------------------------------
global ASM_PFX(SwitchToRealProc)
ASM_PFX(SwitchToRealProc):
SwitchToRealProcStart:
BITS 64
cli
;
; Get RDX reset value before changing stacks since the
; new stack won't be able to accomodate a #VC exception.
;
push rax
push rbx
push rcx
push rdx
mov rax, 1
cpuid
mov rsi, rax ; Save off the reset value for RDX
pop rdx
pop rcx
pop rbx
pop rax
;
; Establish stack below 1MB
;
mov rsp, r9
;
; Push ultimate Reset Vector onto the stack
;
mov rax, rcx
shr rax, 4
push word 0x0002 ; RFLAGS
push ax ; CS
push word 0x0000 ; RIP
push word 0x0000 ; For alignment, will be discarded
;
; Get address of "16-bit operand size" label
;
lea rbx, [PM16Mode]
;
; Push addresses used to change to compatibility mode
;
lea rax, [CompatMode]
push r8
push rax
;
; Clear R8 - R15, for reset, before going into 32-bit mode
;
xor r8, r8
xor r9, r9
xor r10, r10
xor r11, r11
xor r12, r12
xor r13, r13
xor r14, r14
xor r15, r15
;
; Far return into 32-bit mode
;
o64 retf
BITS 32
CompatMode:
;
; Set up stack to prepare for exiting protected mode
;
push edx ; Code16 CS
push ebx ; PM16Mode label address
;
; Disable paging
;
mov eax, cr0 ; Read CR0
btr eax, 31 ; Set PG=0
mov cr0, eax ; Write CR0
;
; Disable long mode
;
mov ecx, 0c0000080h ; EFER MSR number
rdmsr ; Read EFER
btr eax, 8 ; Set LME=0
wrmsr ; Write EFER
;
; Disable PAE
;
mov eax, cr4 ; Read CR4
btr eax, 5 ; Set PAE=0
mov cr4, eax ; Write CR4
mov edx, esi ; Restore RDX reset value
;
; Switch to 16-bit operand size
;
retf
BITS 16
;
; At entry to this label
; - RDX will have its reset value
; - On the top of the stack
; - Alignment data (two bytes) to be discarded
; - IP for Real Mode (two bytes)
; - CS for Real Mode (two bytes)
;
PM16Mode:
mov eax, cr0 ; Read CR0
btr eax, 0 ; Set PE=0
mov cr0, eax ; Write CR0
pop ax ; Discard alignment data
;
; Clear registers (except RDX and RSP) before going into 16-bit mode
;
xor eax, eax
xor ebx, ebx
xor ecx, ecx
xor esi, esi
xor edi, edi
xor ebp, ebp
iret
SwitchToRealProcEnd:
;-------------------------------------------------------------------------------------
; AsmRelocateApLoop (MwaitSupport, ApTargetCState, PmCodeSegment, TopOfApStack, CountTofinish);
;-------------------------------------------------------------------------------------
global ASM_PFX(AsmRelocateApLoop)
ASM_PFX(AsmRelocateApLoop):
AsmRelocateApLoopStart:
BITS 64
cli ; Disable interrupt before switching to 32-bit mode
mov rax, [rsp + 40] ; CountTofinish
lock dec dword [rax] ; (*CountTofinish)--
@ -324,6 +558,11 @@ ASM_PFX(AsmGetAddressMap):
mov qword [rcx + 18h], rax
mov qword [rcx + 20h], AsmRelocateApLoopEnd - AsmRelocateApLoopStart
mov qword [rcx + 28h], Flat32Start - RendezvousFunnelProcStart
mov qword [rcx + 30h], SwitchToRealProcEnd - SwitchToRealProcStart ; SwitchToRealSize
mov qword [rcx + 38h], SwitchToRealProcStart - RendezvousFunnelProcStart ; SwitchToRealOffset
mov qword [rcx + 40h], SwitchToRealProcStart - Flat32Start ; SwitchToRealNoNxOffset
mov qword [rcx + 48h], PM16Mode - RendezvousFunnelProcStart ; SwitchToRealPM16ModeOffset
mov qword [rcx + 50h], SwitchToRealProcEnd - PM16Mode ; SwitchToRealPM16ModeSize
ret
;-------------------------------------------------------------------------------------

View File

@ -121,7 +121,7 @@ GetProtectedModeCS (
GdtEntry = (IA32_SEGMENT_DESCRIPTOR *) GdtrDesc.Base;
for (Index = 0; Index < GdtEntryCount; Index++) {
if (GdtEntry->Bits.L == 0) {
if (GdtEntry->Bits.Type > 8 && GdtEntry->Bits.L == 0) {
if (GdtEntry->Bits.Type > 8 && GdtEntry->Bits.DB == 1) {
break;
}
}