This patch fix a use-after-free issue where unregistering an
MMI handler could lead to the deletion of the MMI_HANDLER while it is
still in use by MmiManage(). The fix involves modifying
MmiHandlerUnRegister() to detect whether it is being called from
within the MmiManage() stack. If so, the removal of the MMI_HANDLER
is deferred until MmiManage() has finished executing.
Additionally, due to the possibility of recursive MmiManage() calls,
the unregistration and subsequent removal of the MMI_HANDLER are
ensured to occur only after the outermost MmiManage() invocation has
completed.
Cc: Liming Gao <gaoliming@byosoft.com.cn>
Cc: Jiaxin Wu <jiaxin.wu@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Sami Mujawar <sami.mujawar@arm.com>
Signed-off-by: Zhiguang Liu <zhiguang.liu@intel.com>
In last patch, we add code support to unregister MMI handler inside
itself. However, the code doesn't support unregister MMI handler
insider other MMI handler. While this is not a must-have usage.
So add check to disallow unregister MMI handler in other MMI handler.
Cc: Liming Gao <gaoliming@byosoft.com.cn>
Cc: Jiaxin Wu <jiaxin.wu@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Sami Mujawar <sami.mujawar@arm.com>
Cc: Ray Ni <ray.ni@intel.com>
Signed-off-by: Zhiguang Liu <zhiguang.liu@intel.com>
Message-Id: <20240301030133.628-5-zhiguang.liu@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
To support unregister MMI handler inside MMI handler itself,
get next node before MMI handler is executed, since LIST_ENTRY that
Link points to may be freed if unregister MMI handler in MMI handler
itself.
Cc: Liming Gao <gaoliming@byosoft.com.cn>
Cc: Jiaxin Wu <jiaxin.wu@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Sami Mujawar <sami.mujawar@arm.com>
Signed-off-by: Zhiguang Liu <zhiguang.liu@intel.com>
Message-Id: <20240301030133.628-4-zhiguang.liu@intel.com>
Currently, if a MMI handler returns an unexpected failure status code,
ASSERT (FALSE) is used. It is more useful to use ASSERT_EFI_ERROR()
which also outputs the status code value.
Signed-off-by: Michael Kubacki <michael.kubacki@microsoft.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3737
Apply uncrustify changes to .c/.h files in the StandaloneMmPkg package
Cc: Andrew Fish <afish@apple.com>
Cc: Leif Lindholm <leif@nuviainc.com>
Cc: Michael D Kinney <michael.d.kinney@intel.com>
Signed-off-by: Michael Kubacki <michael.kubacki@microsoft.com>
Reviewed-by: Sami Mujawar <sami.mujawar@arm.com>
Bugzilla: 3150 (https://bugzilla.tianocore.org/show_bug.cgi?id=3150)
Fix the spelling mistakes reported by the spell check utility
that is run as part of the Core CI.
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Acked-by: Jiewen Yao <Jiewen.yao@intel.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@arm.com>
Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn>
Management Mode (MM) is a generic term used to describe a secure
execution environment provided by the CPU and related silicon that is
entered when the CPU detects a MMI. For x86 systems, this can be
implemented with System Management Mode (SMM). For ARM systems, this can
be implemented with TrustZone (TZ).
A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a
CPU will jump to the MM Entry Point and save some portion of its state
(the "save state") such that execution can be resumed.
The MMI can be generated synchronously by software or asynchronously by
a hardware event. Each MMI source can be detected, cleared and disabled.
Some systems provide for special memory (Management Mode RAM or MMRAM)
which is set aside for software running in MM. Usually the MMRAM is
hidden during normal CPU execution, but this is not required. Usually,
after MMRAM is hidden it cannot be exposed until the next system reset.
The MM Core Interface Specification describes three pieces of the PI
Management Mode architecture:
1. MM Dispatch
During DXE, the DXE Foundation works with the MM Foundation to
schedule MM drivers for execution in the discovered firmware volumes.
2. MM Initialization
MM related code opens MMRAM, creates the MMRAM memory map, and
launches the MM Foundation, which provides the necessary services to
launch MM-related drivers. Then, sometime before boot, MMRAM is
closed and locked. This piece may be completed during the
SEC, PEI or DXE phases.
3. MMI Management
When an MMI generated, the MM environment is created and then the MMI
sources are detected and MMI handlers called.
This patch implements the MM Core.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com>
Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>