QEMU emulates NVMe. NvmExpressDxe seems to work well with it. The relevant
QEMU options are
-drive id=drive0,if=none,format=FORMAT,file=PATHNAME \
-device nvme,drive=drive0,serial=SERIAL
where the required SERIAL value sets the Serial Number (SN) field of the
"Identify Controller Data Structure". It is an ASCII string with up to 20
characters, which QEMU pads with spaces to maximum length.
(Refer to "NVME_ADMIN_CONTROLLER_DATA.Sn" in
"MdeModulePkg/Bus/Pci/NvmExpressDxe/NvmExpressHci.h".)
Cc: Vladislav Vovchenko <vladislav.vovchenko@sk.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Reference: https://github.com/tianocore/edk2/issues/48
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Tested-by: Vladislav Vovchenko <vladislav.vovchenko@sk.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19791 6f19259b-4bc3-4df7-8a09-765794883524
When -D SMM_REQUIRE is given, replace both
- OvmfPkg/QemuFlashFvbServicesRuntimeDxe/FvbServicesRuntimeDxe.inf and
- OvmfPkg/EmuVariableFvbRuntimeDxe/Fvb.inf
with
- OvmfPkg/QemuFlashFvbServicesRuntimeDxe/FvbServicesSmm.inf.
The outermost (= runtime DXE driver) VariableSmmRuntimeDxe enters SMM, and
the rest:
- the privileged half of the variable driver, VariableSmm,
- the fault tolerant write driver, FaultTolerantWriteSmm,
- and the FVB driver, FvbServicesSmm,
work in SMM purely.
We also resolve the BaseCryptLib class for DXE_SMM_DRIVER modules, for the
authenticated VariableSmm driver's sake.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19065 6f19259b-4bc3-4df7-8a09-765794883524
The following modules constitute the variable driver stack:
- QemuFlashFvbServicesRuntimeDxe and EmuVariableFvbRuntimeDxe, runtime
alternatives for providing the Firmware Volume Block(2) Protocol,
dependent on qemu pflash presence,
- FaultTolerantWriteDxe, providing the Fault Tolerant Write Protocol,
- MdeModulePkg/Universal/Variable/RuntimeDxe, independently of
-D SECURE_BOOT_ENABLE, providing the Variable and Variable Write
Architectural Protocols.
Let's move these drivers closer to each other in the DSC and FDF files, so
that we can switch the variable driver stack to SMM with more local
changes.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19064 6f19259b-4bc3-4df7-8a09-765794883524
At this point we can enable building PiSmmCpuDxeSmm.
CPU specific features, like SMRR detection, and functions that are used to
initialize SMM and process SMIs, are abstracted through the
SmmCpuFeaturesLib class for the PiSmmCpuDxeSmm module. Resolve it to our
own implementation under OvmfPkg -- it allows PiSmmCpuDxeSmm to work with
QEMU's and KVM's 64-bit state save map format, which follows the
definition from AMD's programmer manual.
SmmCpuPlatformHookLib provides platform specific functions that are used
to initialize SMM and process SMIs. Resolve it to the one Null instance
provided by UefiCpuPkg, which is expected to work for most platforms.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
[pbonzini@redhat.com: resolve the SmmCpuFeaturesLib class to OVMF's own
instance]
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Michael Kinney <michael.d.kinney@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19061 6f19259b-4bc3-4df7-8a09-765794883524
The PiSmmCpuDxeSmm driver from UefiCpuPkg depends on the ACPI_CPU_DATA
structure -- created by a platform- and CPU-specific driver -- in order to
support ACPI S3. The address of this structure is communicated through the
dynamic PCD PcdCpuS3DataAddress.
The "UefiCpuPkg/Include/AcpiCpuData.h" header file documents the fields of
this structure in detail.
The simple/generic "UefiCpuPkg/CpuS3DataDxe" driver creates and populates
the structure in a conformant way, and it co-operates well with
PiSmmCpuDxeSmm, for OVMF's purposes.
PlatformBdsLib CpuS3DataDxe PiSmmCpuDxeSmm S3Resume2Pei
(DXE_DRIVER) (DXE_DRIVER) (DXE_SMM_DRIVER) (PEIM)
-------------- --------------- ---------------- --------------
normal collects data
boot except MTRR
settings into
ACPI_CPU_DATA
sets
PcdCpuS3Da...
signals
End-of-Dxe
|
+----------> collects MTRR
settings into
ACPI_CPU_DATA
installs
[Dxe]Smm
ReadyToLock
|
+---------------------------> fetches
PcdCpuS3Dat...
copies
ACPI_CPU_DATA
into SMRAM
runtime
S3
suspend
S3 transfers
resume control to
PiSmmCpuDxe...
|
uses <----+
ACPI_CPU_DATA
from SMRAM
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Michael Kinney <michael.d.kinney@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Michael Kinney <michael.d.kinney@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19060 6f19259b-4bc3-4df7-8a09-765794883524
During DXE, drivers save data in the LockBox. A save operation is layered
as follows:
- The unprivileged driver wishing to store data in the LockBox links
against the "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxDxeLib.inf"
library instance.
The library allows the unprivileged driver to format requests for the
privileged SMM LockBox driver (see below), and to parse responses.
We apply this resolution for DXE_DRIVER modules.
- The privileged SMM LockBox driver is built from
"MdeModulePkg/Universal/LockBox/SmmLockBox/SmmLockBox.inf". This driver
has module type DXE_SMM_DRIVER and can access SMRAM.
The driver delegates command parsing and response formatting to
"MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxSmmLib.inf".
Therefore we include this DXE_SMM_DRIVER in the build, and apply said
resolution specifically to it.
(Including the driver requires us to resolve a few of other library
classes for DXE_SMM_DRIVER modules.)
- In PEI, the S3 Resume PEIM (UefiCpuPkg/Universal/Acpi/S3Resume2Pei)
retrieves data from the LockBox. It is capable of searching SMRAM
itself.
We resolve LockBoxLib to
"MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxPeiLib.inf" specifically
for this one PEIM.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19048 6f19259b-4bc3-4df7-8a09-765794883524
This driver provides EFI_SMM_CPU_IO2_PROTOCOL, which the SMM core depends
on in its gEfiDxeSmmReadyToLockProtocolGuid callback
(SmmReadyToLockHandler(), "MdeModulePkg/Core/PiSmmCore/PiSmmCore.c").
Approached on a higher level, this driver provides the SmmIo member of the
EFI_SMM_SYSTEM_TABLE2 (SMST).
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19044 6f19259b-4bc3-4df7-8a09-765794883524
"MdeModulePkg/Core/PiSmmCore/PiSmmIpl.inf" (a DXE_RUNTIME_DRIVER)
implements the SMM Initial Program Loader. It produces
EFI_SMM_BASE2_PROTOCOL and EFI_SMM_COMMUNICATION_PROTOCOL, relying on:
- EFI_SMM_ACCESS2_PROTOCOL
(provided by OvmfPkg/SmmAccess/SmmAccess2Dxe.inf),
- EFI_SMM_CONTROL2_PROTOCOL
(provided by OvmfPkg/SmmControl2Dxe/SmmControl2Dxe.inf).
(The SMM IPL also depends on EFI_SMM_CONFIGURATION_PROTOCOL_GUID, but this
dependency is not enforced in the entry point. A protocol notify callback
is registered instead, hence we can delay providing that protocol via the
PiSmmCpuDxeSmm driver that is (to be) imported from UefiCpuPkg/.)
The SMM IPL loads the SMM core into SMRAM and executes it from there.
Therefore we add the SMM core to the build as well.
For the SMM core, a number of library classes need to be resolved.
Furthermore, each FDF file must provide the GenFds.py BaseTools utility
with a build rule for SMM_CORE; we copy the DXE_CORE's rule.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19043 6f19259b-4bc3-4df7-8a09-765794883524
The EFI_SMM_COMMUNICATION_PROTOCOL implementation that is provided by the
SMM core depends on EFI_SMM_CONTROL2_PROTOCOL; see the
mSmmControl2->Trigger() call in the SmmCommunicationCommunicate() function
[MdeModulePkg/Core/PiSmmCore/PiSmmIpl.c].
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Michael Kinney <michael.d.kinney@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19042 6f19259b-4bc3-4df7-8a09-765794883524
The SMM core depends on EFI_SMM_ACCESS2_PROTOCOL. This small driver (which
is a thin wrapper around "OvmfPkg/SmmAccess/SmramInternal.c" that was
added in the previous patch) provides that protocol.
Notably, EFI_SMM_ACCESS2_PROTOCOL is for boot time only, therefore
our MODULE_TYPE is not DXE_RUNTIME_DRIVER.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Michael Kinney <michael.d.kinney@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19041 6f19259b-4bc3-4df7-8a09-765794883524
"MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxPeiLib.inf" is the
LockBoxLib instance with SMRAM access for the PEI phase.
Said library instance must, and can, access the LockBox data in SMRAM
directly if it is invoked before SMBASE relocation / SMI handler
installation. In that case, it only needs PEI_SMM_ACCESS_PPI from the
platform, and it doesn't depend on EFI_PEI_SMM_COMMUNICATION_PPI.
OVMF satisfies the description in SVN r18823 ("MdeModulePkg:
SmmLockBoxPeiLib: work without EFI_PEI_SMM_COMMUNICATION_PPI"): in OVMF,
only S3Resume2Pei links against SmmLockBoxPeiLib.
Therefore, introduce a PEIM that produces the PEI_SMM_ACCESS_PPI
interface, enabling SmmLockBoxPeiLib to work; we can omit including
"UefiCpuPkg/PiSmmCommunication/PiSmmCommunicationPei.inf".
The load / installation order of S3Resume2Pei and SmmAccessPei is
indifferent. SmmAccessPei produces the gEfiAcpiVariableGuid HOB during its
installation (which happens during PEI), but S3Resume2Pei accesses the HOB
only when the DXE IPL calls its S3RestoreConfig2 PPI member, as last act
of PEI.
MCH_SMRAM_D_LCK and MCH_ESMRAMC_T_EN are masked out the way they are, in
SmmAccessPeiEntryPoint() and SmramAccessOpen() respectively, in order to
prevent VS20xx from warning about the (otherwise fully intentional)
truncation in the UINT8 casts. (Warnings reported by Michael Kinney.)
Cc: Michael Kinney <michael.d.kinney@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Michael Kinney <michael.d.kinney@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19040 6f19259b-4bc3-4df7-8a09-765794883524
The DecompressMemFvs() function in "OvmfPkg/Sec/SecMain.c" uses more
memory, temporarily, than what PEIFV and DXEFV will ultimately need.
First, it uses an output buffer for decompression, second, the
decompression itself needs a scratch buffer (and this scratch buffer is
the highest area that SEC uses).
DecompressMemFvs() used to be called on normal boots only (ie. not on S3
resume), which is why the decompression output buffer and the scratch
buffer were allowed to scribble over RAM. However, we'll soon start to
worry during S3 resume that the runtime OS might tamper with the
pre-decompressed PEIFV, and we'll decompress the firmware volumes on S3
resume too, from pristine flash. For this we'll need to know the end of
the scratch buffer in advance, so we can prepare a non-malicious OS for
it.
Calculate the end of the scratch buffer statically in the FDF files, and
assert in DecompressMemFvs() that the runtime decompression will match it.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19036 6f19259b-4bc3-4df7-8a09-765794883524
With gcc5 and enabling SECURE_BOOT and NETWORK_IP6, the build
failed with this error:
GenFv: ERROR 3000: Invalid
the required fv image size 0x814c18 exceeds the set fv image size 0x800000
Raise the DXEFV size to 9 MB to fix the build error.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gary Ching-Pang Lin <glin@suse.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18577 6f19259b-4bc3-4df7-8a09-765794883524
In this patch, we replace the traditional IDE driver stack that comes from
PcAtChipsetPkg and IntelFrameworkModulePkg with more featureful drivers
from OvmfPkg and MdeModulePkg. The resultant driver stack is compatible
with the previous one, but provides more protocols, on more kinds of
virtual hardware.
Remove:
- PcAtChipsetPkg/Bus/Pci/IdeControllerDxe/IdeControllerDxe.inf
(removing EFI_IDE_CONTROLLER_INIT_PROTOCOL [1])
Remove the dependent:
- IntelFrameworkModulePkg/Bus/Pci/IdeBusDxe/IdeBusDxe.inf
(removing EFI_DISK_INFO_PROTOCOL [2],
EFI_BLOCK_IO_PROTOCOL [3])
As replacement, add:
- OvmfPkg/SataControllerDxe/SataControllerDxe.inf
(supplying EFI_IDE_CONTROLLER_INIT_PROTOCOL [1])
On top of which, add the dependent:
- MdeModulePkg/Bus/Ata/AtaAtapiPassThru/AtaAtapiPassThru.inf
(providing EFI_ATA_PASS_THRU_PROTOCOL,
EFI_EXT_SCSI_PASS_THRU_PROTOCOL)
On top of which, add the dependent:
- MdeModulePkg/Bus/Ata/AtaBusDxe/AtaBusDxe.inf
(supplying EFI_DISK_INFO_PROTOCOL [2],
EFI_BLOCK_IO_PROTOCOL [3],
providing EFI_BLOCK_IO2PROTOCOL,
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL)
Cc: Alexander Graf <agraf@suse.de>
Cc: Reza Jelveh <reza.jelveh@tuhh.de>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Gabriel L. Somlo <somlo@cmu.edu>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Reza Jelveh <reza.jelveh@tuhh.de>
[lersek@redhat.com: rewrote commit message]
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18532 6f19259b-4bc3-4df7-8a09-765794883524
Since SVN r18316 / git 5ca29abe52, the HTTP driver needs the HTTP
utilities driver to parse the headers of HTTP requests. Add the driver
into OVMF so that the HTTP driver can work properly.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gary Ching-Pang Lin <glin@suse.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18359 6f19259b-4bc3-4df7-8a09-765794883524
This commit introdues a new build option to OvmfPkg: HTTP_BOOT_ENABLE.
When HttpBoot is enabled, a new Network boot option will show in the
boot manager menu with the device path like this:
PciRoot(0x0)/Pci(0x3,0x0)/MAC(525400123456,0x1)/IPv4(0.0.0.0)/Uri()
It works like the PXE one but fetches the NBP from the given http
url instead of the tftp service.
A simple testing environment can be set up with the QEMU tap network
and dnsmasq + lighttpd.
Here is the example of the dnsmasq config:
interface=<tap interface>
dhcp-range=192.168.111.100,192.168.111.120,12h
dhcp-option=60,"HTTPClient"
dhcp-boot="http://<tap ip>/<efi file>"
It's similar to the PXE server settings except the tftp function is
disabled, the option 60 must be "HTTPClient", and the boot uri is a
http url.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gary Ching-Pang Lin <glin@suse.com>
Reviewed-by: Fu Siyuan <siyuan.fu@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18258 6f19259b-4bc3-4df7-8a09-765794883524
The source code is copied verbatim, with the following two exceptions:
- the UNI files are dropped, together with the corresponding UNI
references in the INF file,
- the INF file receives a new FILE_GUID.
The OVMF DSC and FDF files are at once flipped to the cloned driver.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Regression-tested-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17951 6f19259b-4bc3-4df7-8a09-765794883524
Ip4ConfigDxe driver is deprecated in UEFI 2.5, so we will not support original Ip4Config Protocol,
which is replace by Ip4Config2 Protocol integrated in Ip4Dxe driver(git commit 1f6729ff (SVN r17853)).
Therefore we can remove Ip4ConfigDxe driver from this build.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jiaxin Wu <jiaxin.wu@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17914 6f19259b-4bc3-4df7-8a09-765794883524
PeiCore hang when loads a PEIM whose section alignment requirement is 0x40
but the actual base address is 0x20 aligned.
The issue is caused by the following facts, in order:
1. GCC49 requires the section alignment of .data to be 0x40. So a new link
script gcc4.9-ld-script was added for GCC49 to specify the 0x40
alignment.
2. GenFw tool was enhanced to sync ELF's section alignment to PE header.
Before the enhancement, the section alignment of converted PE image
always equals to 0x20.
If only with #1 change, GCC49 build image won't hang in PeiCore because
the converted PE image still claims 0x20 section alignment which is
aligned to the align setting set in FDF file. But later with #2 change,
the converted PE image starts to claims 0x40 section alignment, while
build tool still puts the PEIM in 0x20 aligned address, resulting the
PeCoffLoaderLoadImage() reports IMAGE_ERROR_INVALID_SECTION_ALIGNMENT
error.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <ruiyu.ni@intel.com>
Reviewed-by: Liming Gao <liming.gao@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17902 6f19259b-4bc3-4df7-8a09-765794883524
QEMU commit aa685789 ("xhci: generate a Transfer Event for each Transfer
TRB with the IOC bit set") fixed an emulation problem in QEMU; we can now
drive that host controller with edk2's XhciDxe. Include it in OvmfPkg, as
XHCI emulation is reportedly more virtualization-friendly than EHCI,
consuming less CPU.
The driver can be tested with the following QEMU command line options:
-device nec-usb-xhci -device usb-kbd
This patch should not regress existing QEMU command lines (ie. trigger an
ASSERT() in XhciDxe that fails on pre-aa685789 QEMU) because QEMU's
"-device nec-usb-xhci" has never before resulted in USB devices that
worked with edk2 firmware builds, hence users have never had a reason to
add that option.
Now that they learn about XHCI support in OVMF by reading this commit
message, they (or their packagers) will also know to update qemu to
aa685789 or later (in practice that means the upcoming 2.3 release), at
least if they want to use '-device nec-usb-xhci' with edk2, for the first
time ever.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Alexander Graf <agraf@suse.de>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17055 6f19259b-4bc3-4df7-8a09-765794883524
While Xen on Intel uses a virtual PCI device to communicate the
base address of the grant table, the ARM implementation uses a DT
node, which is fundamentally incompatible with the way XenBusDxe is
implemented, i.e., as a UEFI Driver Model implementation for a PCI
device.
Contributed-under: TianoCore Contribution Agreement 1.0
Acked-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Anthony PERARD <anthony.perard@citrix.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16973 6f19259b-4bc3-4df7-8a09-765794883524
There are several network stack drivers in MdeModulePkg or NetworkPkg.
Currently, we only use the drivers from MdeModulePkg which only provides
the IPv4 support. This commit adds the IPv6 drivers in NetworkPkg into
OVMF.
Here is the table of drivers from Laszlo.
currently included related driver add or replace
from MdeModulePkg in NetworkPkg from NetworkPkg
------------------ -------------- ---------------
SnpDxe n/a n/a
DpcDxe n/a n/a
MnpDxe n/a n/a
VlanConfigDxe n/a n/a
ArpDxe n/a n/a
Dhcp4Dxe Dhcp6Dxe add
Ip4ConfigDxe Ip6Dxe add
Ip4Dxe Ip6Dxe add
Mtftp4Dxe Mtftp6Dxe add
Tcp4Dxe TcpDxe replace
Udp4Dxe Udp6Dxe add
UefiPxeBcDxe UefiPxeBcDxe replace
IScsiDxe IScsiDxe replace
Since the TcpDxe, UefiPxeBcDxe, and IScsiDxe drivers in NetworkPkg also
support IPv4, we replace the ones in MdeModulePkg.
To enable the IPv6 support, build OVMF with "-D NETWORK_IP6_ENABLE".
A special case is NetworkPkg/IScsiDxe. It requires openssl. For convenience,
NetworkPkg/IScsiDxe is enabled only if both IPv6 and SecureBoot are enabled.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gary Lin <glin@suse.com>
[lersek@redhat.com: typo fix in commit message; specil -> special]
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16543 6f19259b-4bc3-4df7-8a09-765794883524
A ParaVirtualize block driver.
Change in V4:
- Replace the license by the commonly used file header text.
- Add brief description for the driver.
Change in V3:
- enable compilation for Ia32 and Ia32X64
- fix version (driver binding)
Change in V2:
- Add minimal support for controller name
- Remove stuff about BlockIo2
- Little cleanup
- Licenses and file headers
- Rename XenbusIo into XenBusIo
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Anthony PERARD <anthony.perard@citrix.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16272 6f19259b-4bc3-4df7-8a09-765794883524
This includes Component Name and Driver Binding.
Change in V4:
- Replace the license by the commonly used file header text.
- Add brief description for the driver.
Change in V3:
- enable compilation for Ia32 and Ia32X64
- fix version (driver binding)
Change in V2:
- Simple support of controller name.
- Cleaning up comments, files header.
- Add Licenses
- Rename XenbusDxe to XenBusDxe.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Anthony PERARD <anthony.perard@citrix.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16258 6f19259b-4bc3-4df7-8a09-765794883524
OvmfPkg forked SecureBootConfigDxe from SecurityPkg in SVN r13635 (git
commit 8c71ec8f). Since then, the original (in
"SecurityPkg/VariableAuthenticated/SecureBootConfigDxe") has diverged
significantly.
The initial diff between the original and the fork, when the fork was made
(ie. at SVN r13635), reads as follows:
> diff -ur SecurityPkg/VariableAuthenticated/SecureBootConfigDxe/SecureBootConfig.vfr OvmfPkg/SecureBootConfigDxe/SecureBootConfig.vfr
> --- SecurityPkg/VariableAuthenticated/SecureBootConfigDxe/SecureBootConfig.vfr 2014-09-30 23:35:28.598067147 +0200
> +++ OvmfPkg/SecureBootConfigDxe/SecureBootConfig.vfr 2014-08-09 02:40:35.824851626 +0200
> @@ -51,7 +51,7 @@
> questionid = KEY_SECURE_BOOT_ENABLE,
> prompt = STRING_TOKEN(STR_SECURE_BOOT_PROMPT),
> help = STRING_TOKEN(STR_SECURE_BOOT_HELP),
> - flags = INTERACTIVE | RESET_REQUIRED,
> + flags = INTERACTIVE,
> endcheckbox;
> endif;
>
> @@ -158,7 +158,7 @@
> questionid = KEY_SECURE_BOOT_DELETE_PK,
> prompt = STRING_TOKEN(STR_DELETE_PK),
> help = STRING_TOKEN(STR_DELETE_PK_HELP),
> - flags = INTERACTIVE | RESET_REQUIRED,
> + flags = INTERACTIVE,
> endcheckbox;
> endif;
> endform;
> diff -ur SecurityPkg/VariableAuthenticated/SecureBootConfigDxe/SecureBootConfigDxe.inf OvmfPkg/SecureBootConfigDxe/SecureBootConfigDxe.inf
> --- SecurityPkg/VariableAuthenticated/SecureBootConfigDxe/SecureBootConfigDxe.inf 2014-09-30 23:35:28.598067147 +0200
> +++ OvmfPkg/SecureBootConfigDxe/SecureBootConfigDxe.inf 2014-09-30 23:35:28.577067027 +0200
> @@ -1,5 +1,8 @@
> ## @file
> -# Component name for SecureBoot configuration module.
> +# Component name for SecureBoot configuration module for OVMF.
> +#
> +# Need custom SecureBootConfigDxe for OVMF that does not force
> +# resets after PK changes since OVMF doesn't have persistent variables
> #
> # Copyright (c) 2011 - 2012, Intel Corporation. All rights reserved.<BR>
> # This program and the accompanying materials
> diff -ur SecurityPkg/VariableAuthenticated/SecureBootConfigDxe/SecureBootConfigImpl.c OvmfPkg/SecureBootConfigDxe/SecureBootConfigImpl.c
> --- SecurityPkg/VariableAuthenticated/SecureBootConfigDxe/SecureBootConfigImpl.c 2014-09-30 23:35:28.599067153 +0200
> +++ OvmfPkg/SecureBootConfigDxe/SecureBootConfigImpl.c 2014-09-30 23:35:28.578067033 +0200
> @@ -2559,7 +2559,7 @@
> NULL
> );
> } else {
> - *ActionRequest = EFI_BROWSER_ACTION_REQUEST_RESET;
> + *ActionRequest = EFI_BROWSER_ACTION_REQUEST_SUBMIT;
> }
> break;
The commit message is not overly verbose:
OvmfPkg: Add custom SecureBootConfigDxe that doesn't reset
We don't force a platform reset for OVMF when PK is changed in custom
mode setup.
But the INF file hunk is telling:
Need custom SecureBootConfigDxe for OVMF that does not force resets
after PK changes since OVMF doesn't have persistent variables
We do have persistent variables now. Let's disable the (now obsolete)
OvmfPkg fork, and revert to the (well maintained) SecurityPkg-provided
config driver.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Tested-by: Gary Lin <glin@suse.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16191 6f19259b-4bc3-4df7-8a09-765794883524
OVMF_VARS.fd and OVMF_CODE.fd split the variable store and the firmware
code in separate files.
The PCDs' values continue to depend only on FD_SIZE_1MB vs. FD_SIZE_2MB.
With the split files, it must be ensured on the QEMU command line that
OVMF_VARS.fd and OVMF_CODE.fd be contiguously mapped so that they end
exactly at 4GB. See QEMU commit 637a5acb (first released in v2.0.0).
In this patch we must take care to assign each PCD only once.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15670 6f19259b-4bc3-4df7-8a09-765794883524
This saves code duplication between the Ia32, Ia32X64, and X64 flavors,
and enables the next patch to include the varstore in new FD files by
reference.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15669 6f19259b-4bc3-4df7-8a09-765794883524
OVMF's SecMain is unique in the sense that it links against the following
two libraries *in combination*:
- IntelFrameworkModulePkg/Library/LzmaCustomDecompressLib/
LzmaCustomDecompressLib.inf
- MdePkg/Library/BaseExtractGuidedSectionLib/
BaseExtractGuidedSectionLib.inf
The ExtractGuidedSectionLib library class allows decompressor modules to
register themselves (keyed by GUID) with it, and it allows clients to
decompress file sections with a registered decompressor module that
matches the section's GUID.
BaseExtractGuidedSectionLib is a library instance (of type BASE) for this
library class. It has no constructor function.
LzmaCustomDecompressLib is a compatible decompressor module (of type
BASE). Its section type GUID is
gLzmaCustomDecompressGuid == EE4E5898-3914-4259-9D6E-DC7BD79403CF
When OVMF's SecMain module starts, the LzmaCustomDecompressLib constructor
function is executed, which registers its LZMA decompressor with the above
GUID, by calling into BaseExtractGuidedSectionLib:
LzmaDecompressLibConstructor() [GuidedSectionExtraction.c]
ExtractGuidedSectionRegisterHandlers() [BaseExtractGuidedSectionLib.c]
GetExtractGuidedSectionHandlerInfo()
PcdGet64 (PcdGuidedExtractHandlerTableAddress) -- NOTE THIS
Later, during a normal (non-S3) boot, SecMain utilizes this decompressor
to get information about, and to decompress, sections of the OVMF firmware
image:
SecCoreStartupWithStack() [OvmfPkg/Sec/SecMain.c]
SecStartupPhase2()
FindAndReportEntryPoints()
FindPeiCoreImageBase()
DecompressMemFvs()
ExtractGuidedSectionGetInfo() [BaseExtractGuidedSectionLib.c]
ExtractGuidedSectionDecode() [BaseExtractGuidedSectionLib.c]
Notably, only the extraction depends on full-config-boot; the registration
of LzmaCustomDecompressLib occurs unconditionally in the SecMain EFI
binary, triggered by the library constructor function.
This is where the bug happens. BaseExtractGuidedSectionLib maintains the
table of GUIDed decompressors (section handlers) at a fixed memory
location; selected by PcdGuidedExtractHandlerTableAddress (declared in
MdePkg.dec). The default value of this PCD is 0x1000000 (16 MB).
This causes SecMain to corrupt guest OS memory during S3, leading to
random crashes. Compare the following two memory dumps, the first taken
right before suspending, the second taken right after resuming a RHEL-7
guest:
crash> rd -8 -p 1000000 0x50
1000000: c0 00 08 00 02 00 00 00 00 00 00 00 00 00 00 00 ................
1000010: d0 33 0c 00 00 c9 ff ff c0 10 00 01 00 88 ff ff .3..............
1000020: 0a 6d 57 32 0f 00 00 00 38 00 00 01 00 88 ff ff .mW2....8.......
1000030: 00 00 00 00 00 00 00 00 73 69 67 6e 61 6c 6d 6f ........signalmo
1000040: 64 75 6c 65 2e 73 6f 00 00 00 00 00 00 00 00 00 dule.so.........
vs.
crash> rd -8 -p 1000000 0x50
1000000: 45 47 53 49 01 00 00 00 20 00 00 01 00 00 00 00 EGSI.... .......
1000010: 20 01 00 01 00 00 00 00 a0 01 00 01 00 00 00 00 ...............
1000020: 98 58 4e ee 14 39 59 42 9d 6e dc 7b d7 94 03 cf .XN..9YB.n.{....
1000030: 00 00 00 00 00 00 00 00 73 69 67 6e 61 6c 6d 6f ........signalmo
1000040: 64 75 6c 65 2e 73 6f 00 00 00 00 00 00 00 00 00 dule.so.........
The "EGSI" signature corresponds to EXTRACT_HANDLER_INFO_SIGNATURE
declared in
MdePkg/Library/BaseExtractGuidedSectionLib/BaseExtractGuidedSectionLib.c.
Additionally, the gLzmaCustomDecompressGuid (quoted above) is visible at
guest-phys offset 0x1000020.
Fix the problem as follows:
- Carve out 4KB from the 36KB gap that we currently have between
PcdOvmfLockBoxStorageBase + PcdOvmfLockBoxStorageSize == 8220 KB
and
PcdOvmfSecPeiTempRamBase == 8256 KB.
- Point PcdGuidedExtractHandlerTableAddress to 8220 KB (0x00807000).
- Cover the area with an EfiACPIMemoryNVS type memalloc HOB, if S3 is
supported and we're not currently resuming.
The 4KB size that we pick is an upper estimate for
BaseExtractGuidedSectionLib's internal storage size. The latter is
calculated as follows (see GetExtractGuidedSectionHandlerInfo()):
sizeof(EXTRACT_GUIDED_SECTION_HANDLER_INFO) + // 32
PcdMaximumGuidedExtractHandler * (
sizeof(GUID) + // 16
sizeof(EXTRACT_GUIDED_SECTION_DECODE_HANDLER) + // 8
sizeof(EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER) // 8
)
OVMF sets PcdMaximumGuidedExtractHandler to 16 decimal (which is the
MdePkg default too), yielding 32 + 16 * (16 + 8 + 8) == 544 bytes.
Regarding the lifecycle of the new area:
(a) when and how it is initialized after first boot of the VM
The library linked into SecMain finds that the area lacks the signature.
It initializes the signature, plus the rest of the structure. This is
independent of S3 support.
Consumption of the area is also limited to SEC (but consumption does
depend on full-config-boot).
(b) how it is protected from memory allocations during DXE
It is not, in the general case; and we don't need to. Nothing else links
against BaseExtractGuidedSectionLib; it's OK if DXE overwrites the area.
(c) how it is protected from the OS
When S3 is enabled, we cover it with AcpiNVS in InitializeRamRegions().
When S3 is not supported, the range is not protected.
(d) how it is accessed on the S3 resume path
Examined by the library linked into SecMain. Registrations update the
table in-place (based on GUID matches).
(e) how it is accessed on the warm reset path
If S3 is enabled, then the OS won't damage the table (due to (c)), hence
see (d).
If S3 is unsupported, then the OS may or may not overwrite the
signature. (It likely will.) This is identical to the pre-patch status.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15433 6f19259b-4bc3-4df7-8a09-765794883524
This DXE driver will load/save persistent values for OVMF's config knobs,
plus expose those knobs via HII.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15364 6f19259b-4bc3-4df7-8a09-765794883524
This driver (from
"MdeModulePkg/Universal/Acpi/BootScriptExecutorDxe/BootScriptExecutorDxe.inf")
is first loaded normally during DXE. When the
EFI_DXE_SMM_READY_TO_LOCK_PROTOCOL is installed by any DXE driver (purely
as a form of notification), the driver reloads itself to reserved memory.
During S3 Resume / PEI, the driver image is executed from there. In order
to access the boot script saved during S3 Suspend, LockBox access is
needed.
The boot script is transferred internal to PiDxeS3BootScriptLib:
Both S3SaveStateDxe and BootScriptExecutorDxe are statically linked
against PiDxeS3BootScriptLib. Whichever is loaded first (during normal
boot, in the DXE phase), allocates the root storage for the script. The
address is then passed between the PiDxeS3BootScriptLib instances living
in the two separate drivers thru the dynamic
PcdS3BootScriptTablePrivateDataPtr PCD.
Dependencies:
BootScriptExecutorDxe
gEfiLockBoxProtocolGuid [OvmfPkg/AcpiS3SaveDxe]
S3BootScriptLib [PiDxeS3BootScriptLib]
SmbusLib [BaseSmbusLibNull]
LockBoxLib [OvmfPkg/Library/LockBoxLib]
LockBoxLib [OvmfPkg/Library/LockBoxLib]
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15307 6f19259b-4bc3-4df7-8a09-765794883524
"MdeModulePkg/Universal/Acpi/S3SaveStateDxe/S3SaveStateDxe.inf" produces
the EFI_S3_SAVE_STATE_PROTOCOL which allows creation and saving of an S3
Boot Script, to be replayed in PEI during S3 Resume. The script contains
opcodes and opcode arguments to configure CPU, PCI and IO resources.
S3SaveStateDxe relies on the S3BootScriptLib library. The Null
implementation is not useful for actually saving the boot script, we need
the PiDxeS3BootScriptLib instance.
The PiDxeS3BootScriptLib library instance depends on LockBoxLib,
implemented for OVMF in one of the previous patches.
PiDxeS3BootScriptLib also depends on SmbusLib. For now we opt for the Null
instance of the latter. It means that SMBus commands in the boot script
will have no effect when interpreted during S3 Resume. This should be fine
for OvmfPkg and QEMU.
EFI_S3_SAVE_STATE_PROTOCOL [S3SaveStateDxe]
S3BootScriptLib [PiDxeS3BootScriptLib]
SmbusLib [BaseSmbusLibNull]
LockBoxLib [OvmfPkg/Library/LockBoxLib]
When the EFI_DXE_SMM_READY_TO_LOCK_PROTOCOL is installed by any DXE driver
(purely as a form of notification), the S3SaveStateDxe driver saves the
boot script to EfiACPIMemoryNVS, and links it into the LockBox.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15304 6f19259b-4bc3-4df7-8a09-765794883524
"OvmfPkg/AcpiS3SaveDxe/AcpiS3SaveDxe.inf" (originally:
"IntelFrameworkModulePkg/Universal/Acpi/AcpiS3SaveDxe/AcpiS3SaveDxe.inf")
produces the EFI_ACPI_S3_SAVE_PROTOCOL.
When found, this protocol is automatically invoked by
BdsLibBootViaBootOption(), in file
"IntelFrameworkModulePkg/Library/GenericBdsLib/BdsBoot.c", right before
booting a boot option, to save ACPI S3 context.
At that point during BDS, our AcpiPlatformDxe driver will have installed
the FACS table (which AcpiS3SaveDxe has a use-time dependency upon).
With regard to dependencies: AcpiS3SaveDxe implements
EFI_ACPI_S3_SAVE_PROTOCOL by relying on LockBoxLib.
BdsLibBootViaBootOption()
EFI_ACPI_S3_SAVE_PROTOCOL [AcpiS3SaveDxe]
LockBoxLib [OvmfPkg/Library/LockBoxLib]
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
[jordan.l.justen@intel.com: Remove EmuNvramLib]
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15303 6f19259b-4bc3-4df7-8a09-765794883524
The S3 suspend/resume infrastructure depends on the LockBox library class.
The edk2 tree currently contains Null and SMM instances. The Null instance
is useless, and the SMM instance would require SMM emulation by including
the SMM core and adding several new drivers, which is deemed too complex.
Hence add a simple LockBoxLib instance for OVMF.
jordan.l.justen@intel.com:
* use PCDs instead of EmuNvramLib
- clear memory in PlatformPei on non S3 boots
* allocate NVS memory and store a pointer to that memory
- reduces memory use at fixed locations
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15301 6f19259b-4bc3-4df7-8a09-765794883524
"UefiCpuPkg/Universal/Acpi/S3Resume2Pei/S3Resume2Pei.inf" produces the
EFI_PEI_S3_RESUME2 PEIM-to-PEIM Interface.
When the platform-specific initialization code (in PEI) sets the Boot Mode
to BOOT_ON_S3_RESUME, the DXE IPL (which is the last step in PEI) skips
the DXE phase entirely, and executes the S3 Resume PEIM through the
EFI_PEI_S3_RESUME2 interface instead. (See DxeLoadCore() in
"MdeModulePkg/Core/DxeIplPeim/DxeLoad.c".)
S3Resume2Pei depends on LockBoxLib.
EFI_PEI_S3_RESUME2 [S3Resume2Pei]
LockBoxLib [OvmfPkg/Library/LockBoxLib]
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15300 6f19259b-4bc3-4df7-8a09-765794883524
This 32k section of RAM will be declared to the PEI Core on
S3 resume to allow memory allocations during S3 resume PEI.
If the boot mode is BOOT_ON_S3_RESUME, then we publish
the pre-reserved PcdS3AcpiReservedMemory range to PEI.
If the boot mode is not BOOT_ON_S3_RESUME, then we reserve
this range as ACPI NVS so the OS will not use it.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15294 6f19259b-4bc3-4df7-8a09-765794883524
By splitting the PEI and DXE phases into separate FVs,
we can only reserve the PEI FV for ACPI S3 support.
This should save about 7MB.
Unfortunately, this all has to happen in a single commit.
DEC:
* Remove PcdOvmfMemFv(Base|Size)
* Add PcdOvmfPeiMemFv(Base|Size)
* Add PcdOvmfDxeMemFv(Base|Size)
FDF:
* Add new PEIFV. Move PEI modules here.
* Remove MAINFV
* Add PEIFV and DXEFV into FVMAIN_COMPACT
- They are added as 2 sections of a file, and compressed
together so they should retain good compression
* PcdOvmf(Pei|Dxe)MemFv(Base|Size) are set
SEC:
* Find both the PEI and DXE FVs after decompression.
- Copy them separately to their memory locations.
Platform PEI driver:
* Fv.c: Publish both FVs as appropriate
* MemDetect.c: PcdOvmfMemFv(Base|Size) =>
PcdOvmfDxeMemFv(Base|Size)
OVMF.fd before:
Non-volatile data storage
FVMAIN_COMPACT uncompressed
FV FFS file LZMA compressed
MAINFV uncompressed
individual PEI modules uncompressed
FV FFS file compressed with PI_NONE
DXEFV uncompressed
individual DXE modules uncompressed
SECFV uncompressed
OVMF.fd after:
Non-volatile data storage
FVMAIN_COMPACT uncompressed
FV FFS file LZMA compressed
PEIFV uncompressed
individual PEI modules uncompressed
DXEFV uncompressed
individual DXE modules uncompressed
SECFV uncompressed
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15151 6f19259b-4bc3-4df7-8a09-765794883524
Note: The Temporary RAM memory size is being reduced from
64KB to 32KB. This still appears to be more than
adequate for OVMF's early PEI phase. We will be adding
another 32KB range of RAM just above this range for
use on S3 resume.
The range is declared as part of MEMFD, so it is easier
to identify the memory range.
We also now assign PCDs to the memory range.
The PCDs are used to set the initial SEC/PEI stack in
SEC's assembly code.
The PCDs are also used in the SEC C code to setup
the Temporary RAM PPI.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15147 6f19259b-4bc3-4df7-8a09-765794883524
To help consolidate OVMF fixed memory uses, we declare this
range in MEMFD and thereby move it to 8MB.
We also now declare the table range in the FDF to set
PCDs. This allows us to ASSERT that CR3 is set as expected
in OVMF SEC.
OvmfPkgIa32.fdf and OvmfPkgIa32X64.fdf are updated simply
for consistency.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15146 6f19259b-4bc3-4df7-8a09-765794883524
This change replaces the accesses to the PCI bus from the Block, Scsi and Net drivers by
the use of the new VIRTIO_DEVICE_PROTOCOL protocol that abstracts the transport layer.
It means these drivers can be used on PCI and MMIO transport layer.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Olivier Martin <olivier.martin@arm.com>
v5:
- VirtioFlush(): update comment block in VirtioLib.[hc]; error code is
propagated from VirtIo->SetQueueNotify().
- VirtioBlkInit(): jump to Failed label if SetPageSize() fails
- VirtioBlkInit(): fixup comment, and add error handling, near
SetQueueNum() call
- VirtioBlkDriverBindingStart(): remove redundant (always false) check for
a subsystem device ID different from VIRTIO_SUBSYSTEM_BLOCK_DEVICE;
VirtioBlkDriverBindingSupported() handles it already
- VirtioNetGetFeatures(): update stale comment block
- VirtioNetGetFeatures(): retrieve MAC address byte for byte (open-coded
loop)
- VirtioNetDriverBindingStart(): remove redundant (always false) check for
a subsystem device ID different from VIRTIO_SUBSYSTEM_NETWORK_CARD;
VirtioNetDriverBindingSupported() handles it already
- VirtioNetInitRing(): call SetQueueNum() and SetQueueAlign() for proper
MMIO operation
- VirtioNetInitialize(): fix destination error label for when
SetPageSize() fails
- VirtioScsi.c: fix comment block of VIRTIO_CFG_WRITE()/VIRTIO_CFG_READ()
- VirtioScsiInit(): fix destination error label for when SetPageSize()
fails
- VirtioScsiInit(): call SetQueueNum() and SetQueueAlign() for proper MMIO
operation
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14966 6f19259b-4bc3-4df7-8a09-765794883524
This driver will support a flash FVB implementation if QEMU flash
is detected.
The driver is added to the apriori list to make sure it runs
before the EmuVariableFvbRuntimeDxe driver. If this driver detects
flash support, then it will disable the EmuVariableFvbRuntimeDxe
driver by setting PcdFlashNvStorageVariableBase64.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14840 6f19259b-4bc3-4df7-8a09-765794883524
This is to prepare for QEMU flash support which will allow
non-volatile variables to be saved in the flash image.
Note two size changes:
* NV Varstore size increased from 0xc000 to 0xe000
* FTW work size decreased from 0x2000 to 0x1000
The reason for this change is that the fault-tolerant write
support requires that the work area fit within the block
just before the fault-tolerant write spare storage blocks.
Since QEMU flash blocks have a size of 0x1000, this means
that the maximum FTW work size is 0x1000.
v2:
* Update commit message and PcdVariableStoreSize
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14835 6f19259b-4bc3-4df7-8a09-765794883524
The 1MB image with full debug and the shell included is too
large to implement flash based non-volatile variable.
After this change, building with -D FD_SIZE_1MB will
force the smaller flash size.
The default size for RELEASE build remains at 1MB, so using
-b RELEASE on the build command line will result in a
1MB flash size. For RELEASE builds -D FD_SIZE_2MB can be
used to produce a 2MB flash image.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14833 6f19259b-4bc3-4df7-8a09-765794883524
Previously OVMF included the older EFI shell binary when building.
Now we will build and use the UEFI shell (ShellPkg) instead.
v2:
* Don't bother building UEFI shell when USE_OLD_SHELL is defined
* Fix errors in OvmfPkgIa32X64.fdf
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14600 6f19259b-4bc3-4df7-8a09-765794883524
Also summarize the resultant NIC driver options in the README file.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14421 6f19259b-4bc3-4df7-8a09-765794883524
DHCP, PXE, and StdLib socket apps are enabled in OVMF by the sum of:
(a) a UEFI NIC driver,
(b) the generic network stack.
The only choice for (a) used to be the proprietary Intel E1000 driver,
which is cumbersome to obtain and enable.
The iPXE UEFI NIC drivers packaged with qemu-1.5 cover (a) for each NIC
type supported by qemu, and are easy to obtain & configure, even for
earlier qemu versions. Therefore enable (b) per default as well.
This doesn't take up much space; the binaries (b) adds to the firmware
don't seem to need -D FD_SIZE_2MB.
Intel's e1000 driver remains an option, requested by the -D E1000_ENABLE
build flag.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14366 6f19259b-4bc3-4df7-8a09-765794883524
With reference to
<http://sourceforge.net/mailarchive/message.php?msg_id=30359322>:
"MEMFD is built so MAINFV's contents will be relocated during the build to
address 0x800000", and it "is a firmware volume with most OVMF code/data
uncompressed. [...] Increasing its size has a little impact on the size of
the resulting firmware image since the blank part of the firmware volume
will compress well."
Let's increase the size to 8MB, since the current limit can get in the way
(for example when building-in the Intel3.5 drivers for e1000 with
-D FD_SIZE_2MB -D NETWORK_ENABLE -D SECURE_BOOT_ENABLE).
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14133 6f19259b-4bc3-4df7-8a09-765794883524
We don't force a platform reset for OVMF when PK is changed in
custom mode setup.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Lee Rosenbaum <lee.g.rosenbaum@intel.com>
Reviewed-by: Erik Bjorge <erik.c.bjorge@intel.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13635 6f19259b-4bc3-4df7-8a09-765794883524
This enables qemu to use OVMF with a single -bios option. Based on
<http://lists.xen.org/archives/html/xen-devel/2012-03/msg01992.html>.
v1->v2:
- move xen-devel link from code to commit message
- cover all three FDF files
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
[jordan.l.justen@intel.com: remove vgabios-cirrus.bin from build.sh/README]
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13520 6f19259b-4bc3-4df7-8a09-765794883524
This driver is currently a direct copy of
MdeModulePkg/Universal/Acpi/AcpiPlatformDxe.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13384 6f19259b-4bc3-4df7-8a09-765794883524
If –D SECURE_BOOT_ENABLE is specified with the build command, Secure Boot support is enabled including custom mode setup.
This allows Secure Boot to be configured through setup allowing OvmfPkgX64, OvmfPkgIa32 and OvmfPkg3264 to be a fully functional Secure Boot reference platforms.
Remove redundant library class definitions for BaseCryptLib and OpenSslLib.
Signed-off-by: Lee Rosenbaum <lee.g.rosenbaum@intel.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Erik Bjorge <erik.c.bjorge@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13160 6f19259b-4bc3-4df7-8a09-765794883524
Adjust PCD settings, library mappings and driver usage
to enable secure-boot when -D SECURE_BOOT_ENABLE=TRUE
is used on the build command line.
Signed-off-by: lgrosenb
Reviewed-by: jljusten
Reviewed-by: mdkinney
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13093 6f19259b-4bc3-4df7-8a09-765794883524
Note: The CSM16 binary must be copied into the tree at
OvmfPkg/Csm/Csm16/Csm16.bin in order to use CSM_ENABLE.
If CSM_ENABLE is set during the build, then the CSM16 binary
and the CSM support (Legacy BIOS) drivers will be added to
the build.
Signed-off-by: jljusten
Reviewed-by: geekboy15a
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@12682 6f19259b-4bc3-4df7-8a09-765794883524
Locates Xen SMBIOS data and installs it using the SMBIOS
protocol.
Signed-off-by: gavinguan
Reviewed-by: Andrei Warkentin <andreiw@motorola.com>
Signed-off-by: jljusten
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@12125 6f19259b-4bc3-4df7-8a09-765794883524
When building:
-D BUILD_NEW_SHELL - Build and include UEFI shell in firmware
-D USE_NEW_SHELL - Include UEFI shell binary build in firmware
The default is to use the older EFI shell.
Signed-off-by: jljusten
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@11890 6f19259b-4bc3-4df7-8a09-765794883524
In some configurations the UNIXGCC build will run out of
space when a DEBUG build is enabled. This change adjusts
the flash configuration a bit to allow the build succeed
on UNIXGCC.
The final flash image still remains 1MB in size.
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@11547 6f19259b-4bc3-4df7-8a09-765794883524
This driver provides a UEFI Graphics Output Protocol (GOP) driver
for the QEMU Cirrus VGA hardware. It enables 24-bit color,
and uses the standard 32-bit GOP pixel format whenever possible.
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@11524 6f19259b-4bc3-4df7-8a09-765794883524
1) Update README describing the QEMU version required for e1000, where to download the UEFI drivers for e1000, and how to enable network drivers in the platform firmware
2) Update DSC/FDF files NETWORK_ENABLE switch to enable e1000 and network driver support
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@10697 6f19259b-4bc3-4df7-8a09-765794883524