REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3760
Update all use of ', OPTIONAL' to ' OPTIONAL,' for function params.
Cc: Andrew Fish <afish@apple.com>
Cc: Leif Lindholm <leif@nuviainc.com>
Cc: Michael Kubacki <michael.kubacki@microsoft.com>
Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com>
Reviewed-by: Sami Mujawar <sami.mujawar@arm.com>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=3204
Fixes the following compiler warning in VS2019 by changing defining
the MmramRangeCount variable to be UINTN and type casting prior
to value assignment.
\edk2\StandaloneMmPkg\Core\StandaloneMmCore.c(570): error C2220:
the following warning is treated as an error
\edk2\StandaloneMmPkg\Core\StandaloneMmCore.c(570): warning C4244:
'=': conversion from 'UINT64' to 'UINT32', possible loss of data
Signed-off-by: Michael Kubacki <michael.kubacki@microsoft.com>
Reviewed-by: Sami Mujawar <sami.mujawar@arm.com>
Bugzilla: 3150 (https://bugzilla.tianocore.org/show_bug.cgi?id=3150)
Add doxygen style function documentation headers to fix the ECC
reported errors:
- [4002] Function header doesn't exist.
- [9002] The function headers should follow Doxygen special
documentation blocks in section 2.3.5.
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Acked-by: Jiewen Yao <Jiewen.yao@intel.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@arm.com>
Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn>
Bugzilla: 3150 (https://bugzilla.tianocore.org/show_bug.cgi?id=3150)
Fix ECC error "[5007] There should be no initialization of a variable
as part of its declaration Variable."
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Acked-by: Jiewen Yao <Jiewen.yao@intel.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@arm.com>
Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn>
Bugzilla: 3150 (https://bugzilla.tianocore.org/show_bug.cgi?id=3150)
Fix the spelling mistakes reported by the spell check utility
that is run as part of the Core CI.
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Acked-by: Jiewen Yao <Jiewen.yao@intel.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@arm.com>
Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn>
Fix few typos in comments.
Cc: Achin Gupta <achin.gupta@arm.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com>
Signed-off-by: Antoine Coeur <coeur@gmx.fr>
Reviewed-by: Philippe Mathieu-Daude <philmd@redhat.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
Signed-off-by: Philippe Mathieu-Daude <philmd@redhat.com>
Message-Id: <20200207010831.9046-76-philmd@redhat.com>
Remove the support that permits calls into the MM context to dispatch
firmware volumes that are not part of the initial standalone MM firmware
volume.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: "Yao, Jiewen" <jiewen.yao@intel.com>
Reviewed-by: Achin Gupta <achin.gupta@arm.com>
Instead of deferring dispatch of the remaining MM drivers once the
CPU driver has been dispatched, proceed and dispatch all drivers.
This makes sense for standalone MM, since all dispatchable drivers
should be present in the initial firmware volume anyway: dispatch
of additional FVs originating in the non-secure side is not supported.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: "Yao, Jiewen" <jiewen.yao@intel.com>
Reviewed-by: Achin Gupta <achin.gupta@arm.com>
Management Mode (MM) is a generic term used to describe a secure
execution environment provided by the CPU and related silicon that is
entered when the CPU detects a MMI. For x86 systems, this can be
implemented with System Management Mode (SMM). For ARM systems, this can
be implemented with TrustZone (TZ).
A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a
CPU will jump to the MM Entry Point and save some portion of its state
(the "save state") such that execution can be resumed.
The MMI can be generated synchronously by software or asynchronously by
a hardware event. Each MMI source can be detected, cleared and disabled.
Some systems provide for special memory (Management Mode RAM or MMRAM)
which is set aside for software running in MM. Usually the MMRAM is
hidden during normal CPU execution, but this is not required. Usually,
after MMRAM is hidden it cannot be exposed until the next system reset.
The MM Core Interface Specification describes three pieces of the PI
Management Mode architecture:
1. MM Dispatch
During DXE, the DXE Foundation works with the MM Foundation to
schedule MM drivers for execution in the discovered firmware volumes.
2. MM Initialization
MM related code opens MMRAM, creates the MMRAM memory map, and
launches the MM Foundation, which provides the necessary services to
launch MM-related drivers. Then, sometime before boot, MMRAM is
closed and locked. This piece may be completed during the
SEC, PEI or DXE phases.
3. MMI Management
When an MMI generated, the MM environment is created and then the MMI
sources are detected and MMI handlers called.
This patch implements the MM Core.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com>
Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>