Commit Graph

6 Commits

Author SHA1 Message Date
Ard Biesheuvel 88899a372c StandaloneMmPkg: switch to MM communicate 2 protocol
Update the reference to MM communicate to refer to the MM communicate 2
protocol instead. This makes no difference for the MM side of the
implementation, but is more accurate nonetheless, since the original MM
protocol does not work in combination with standalone MM.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@arm.com>
Reviewed-by: Sami Mujawar <sami.mujawar@arm.com>
2020-05-12 19:23:44 +00:00
Laszlo Ersek 7f72ec0b15 StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking
The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure
that every firmware volume is processed only once (every driver in every
firmware volume should be discovered only once). For this, the functions
use a linked list.

In MdeModulePkg's DXE Core and SMM Core, the key used for identifying
those firmware volumes that have been processed is the EFI_HANDLE on which
the DXE or SMM firmware volume protocol is installed. In the
StandaloneMmPkg core however, the key is the address of the firmware
volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*).

(EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE.
EFI_HANDLE just happens to be specified as (VOID*), and therefore the
conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent.

(The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely
copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not
flagged by the compiler in StandaloneMmPkg due to UEFI regrettably
specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit
conversion.)

We should not exploit this circumstance. Represent the key type faithfully
instead.

This is a semantic fix; there is no change in operation.

Cc: Achin Gupta <achin.gupta@arm.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com>
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com>
Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-10-09 09:40:10 +02:00
Michael D Kinney 86094561f6 StandaloneMmPkg: Replace BSD License with BSD+Patent License
https://bugzilla.tianocore.org/show_bug.cgi?id=1373

Replace BSD 2-Clause License with BSD+Patent License.  This change is
based on the following emails:

  https://lists.01.org/pipermail/edk2-devel/2019-February/036260.html
  https://lists.01.org/pipermail/edk2-devel/2018-October/030385.html

RFCs with detailed process for the license change:

  V3: https://lists.01.org/pipermail/edk2-devel/2019-March/038116.html
  V2: https://lists.01.org/pipermail/edk2-devel/2019-March/037669.html
  V1: https://lists.01.org/pipermail/edk2-devel/2019-March/037500.html

Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com>
Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com>
2019-04-09 10:58:27 -07:00
Ard Biesheuvel b2877855c7 StandaloneMmPkg/Core: remove legacy boot support
Remove the support for booting 'legacy' (i.e., non-UEFI boot) OSes.

Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: "Yao, Jiewen" <jiewen.yao@intel.com>
Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-03-11 12:51:12 +01:00
Ard Biesheuvel 094c0bc7d7 StandaloneMmPkg/Core: drop support for dispatching FVs into MM
Remove the support that permits calls into the MM context to dispatch
firmware volumes that are not part of the initial standalone MM firmware
volume.

Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: "Yao, Jiewen" <jiewen.yao@intel.com>
Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-03-11 12:51:12 +01:00
Supreeth Venkatesh 6b46d77243 StandaloneMmPkg/Core: Implementation of Standalone MM Core Module.
Management Mode (MM) is a generic term used to describe a secure
execution environment provided by the CPU and related silicon that is
entered when the CPU detects a MMI. For x86 systems, this can be
implemented with System Management Mode (SMM). For ARM systems, this can
be implemented with TrustZone (TZ).
A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a
CPU will jump to the MM Entry Point and save some portion of its state
(the "save state") such that execution can be resumed.
The MMI can be generated synchronously by software or asynchronously by
a hardware event. Each MMI source can be detected, cleared and disabled.
Some systems provide for special memory (Management Mode RAM or MMRAM)
which is set aside for software running in MM. Usually the MMRAM is
hidden during normal CPU execution, but this is not required. Usually,
after MMRAM is hidden it cannot be exposed until the next system reset.

The MM Core Interface Specification describes three pieces of the PI
Management Mode architecture:
1. MM Dispatch
   During DXE, the DXE Foundation works with the MM Foundation to
   schedule MM drivers for execution in the discovered firmware volumes.
2. MM Initialization
   MM related code opens MMRAM, creates the MMRAM memory map, and
   launches the MM Foundation, which provides the necessary services to
   launch MM-related drivers. Then, sometime before boot, MMRAM is
   closed and locked. This piece may be completed during the
   SEC, PEI or DXE phases.
3. MMI Management
   When an MMI generated, the MM environment is created and then the MMI

   sources are detected and MMI handlers called.

This patch implements the MM Core.

Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com>
Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-20 10:55:51 +08:00