audk/OvmfPkg/Library/PlatformInitLib/Platform.c

817 lines
25 KiB
C

/**@file
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2011, Andrei Warkentin <andreiw@motorola.com>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
//
// The package level header files this module uses
//
#include <PiPei.h>
//
// The Library classes this module consumes
//
#include <Library/BaseMemoryLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/HobLib.h>
#include <Library/IoLib.h>
#include <IndustryStandard/I440FxPiix4.h>
#include <IndustryStandard/Microvm.h>
#include <IndustryStandard/Pci22.h>
#include <IndustryStandard/Q35MchIch9.h>
#include <IndustryStandard/QemuCpuHotplug.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/QemuFwCfgLib.h>
#include <Library/QemuFwCfgS3Lib.h>
#include <Library/QemuFwCfgSimpleParserLib.h>
#include <Library/PciLib.h>
#include <Guid/SystemNvDataGuid.h>
#include <Guid/VariableFormat.h>
#include <OvmfPlatforms.h>
#include <Library/PlatformInitLib.h>
VOID
EFIAPI
PlatformAddIoMemoryBaseSizeHob (
IN EFI_PHYSICAL_ADDRESS MemoryBase,
IN UINT64 MemorySize
)
{
BuildResourceDescriptorHob (
EFI_RESOURCE_MEMORY_MAPPED_IO,
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_TESTED,
MemoryBase,
MemorySize
);
}
VOID
EFIAPI
PlatformAddReservedMemoryBaseSizeHob (
IN EFI_PHYSICAL_ADDRESS MemoryBase,
IN UINT64 MemorySize,
IN BOOLEAN Cacheable
)
{
BuildResourceDescriptorHob (
EFI_RESOURCE_MEMORY_RESERVED,
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
(Cacheable ?
EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE :
0
) |
EFI_RESOURCE_ATTRIBUTE_TESTED,
MemoryBase,
MemorySize
);
}
VOID
EFIAPI
PlatformAddIoMemoryRangeHob (
IN EFI_PHYSICAL_ADDRESS MemoryBase,
IN EFI_PHYSICAL_ADDRESS MemoryLimit
)
{
PlatformAddIoMemoryBaseSizeHob (MemoryBase, (UINT64)(MemoryLimit - MemoryBase));
}
VOID
EFIAPI
PlatformAddMemoryBaseSizeHob (
IN EFI_PHYSICAL_ADDRESS MemoryBase,
IN UINT64 MemorySize
)
{
BuildResourceDescriptorHob (
EFI_RESOURCE_SYSTEM_MEMORY,
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_TESTED,
MemoryBase,
MemorySize
);
}
VOID
EFIAPI
PlatformAddMemoryRangeHob (
IN EFI_PHYSICAL_ADDRESS MemoryBase,
IN EFI_PHYSICAL_ADDRESS MemoryLimit
)
{
PlatformAddMemoryBaseSizeHob (MemoryBase, (UINT64)(MemoryLimit - MemoryBase));
}
VOID
EFIAPI
PlatformMemMapInitialization (
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
UINT64 PciIoBase;
UINT64 PciIoSize;
UINT32 TopOfLowRam;
UINT64 PciExBarBase;
UINT32 PciBase;
UINT32 PciSize;
PciIoBase = 0xC000;
PciIoSize = 0x4000;
//
// Video memory + Legacy BIOS region
//
if (!TdIsEnabled ()) {
PlatformAddIoMemoryRangeHob (0x0A0000, BASE_1MB);
}
if (PlatformInfoHob->HostBridgeDevId == 0xffff /* microvm */) {
PlatformAddIoMemoryBaseSizeHob (MICROVM_GED_MMIO_BASE, SIZE_4KB);
PlatformAddIoMemoryBaseSizeHob (0xFEC00000, SIZE_4KB); /* ioapic #1 */
PlatformAddIoMemoryBaseSizeHob (0xFEC10000, SIZE_4KB); /* ioapic #2 */
return;
}
TopOfLowRam = PlatformGetSystemMemorySizeBelow4gb (PlatformInfoHob);
PciExBarBase = 0;
if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
//
// The MMCONFIG area is expected to fall between the top of low RAM and
// the base of the 32-bit PCI host aperture.
//
PciExBarBase = PcdGet64 (PcdPciExpressBaseAddress);
ASSERT (TopOfLowRam <= PciExBarBase);
ASSERT (PciExBarBase <= MAX_UINT32 - SIZE_256MB);
PciBase = (UINT32)(PciExBarBase + SIZE_256MB);
} else {
ASSERT (TopOfLowRam <= PlatformInfoHob->Uc32Base);
PciBase = PlatformInfoHob->Uc32Base;
}
//
// address purpose size
// ------------ -------- -------------------------
// max(top, 2g) PCI MMIO 0xFC000000 - max(top, 2g)
// 0xFC000000 gap 44 MB
// 0xFEC00000 IO-APIC 4 KB
// 0xFEC01000 gap 1020 KB
// 0xFED00000 HPET 1 KB
// 0xFED00400 gap 111 KB
// 0xFED1C000 gap (PIIX4) / RCRB (ICH9) 16 KB
// 0xFED20000 gap 896 KB
// 0xFEE00000 LAPIC 1 MB
//
PciSize = 0xFC000000 - PciBase;
PlatformAddIoMemoryBaseSizeHob (PciBase, PciSize);
PlatformInfoHob->PcdPciMmio32Base = PciBase;
PlatformInfoHob->PcdPciMmio32Size = PciSize;
PlatformAddIoMemoryBaseSizeHob (0xFEC00000, SIZE_4KB);
PlatformAddIoMemoryBaseSizeHob (0xFED00000, SIZE_1KB);
if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
PlatformAddIoMemoryBaseSizeHob (ICH9_ROOT_COMPLEX_BASE, SIZE_16KB);
//
// Note: there should be an
//
// PlatformAddIoMemoryBaseSizeHob (PciExBarBase, SIZE_256MB);
//
// call below, just like the one above for RCBA. However, Linux insists
// that the MMCONFIG area be marked in the E820 or UEFI memory map as
// "reserved memory" -- Linux does not content itself with a simple gap
// in the memory map wherever the MCFG ACPI table points to.
//
// This appears to be a safety measure. The PCI Firmware Specification
// (rev 3.1) says in 4.1.2. "MCFG Table Description": "The resources can
// *optionally* be returned in [...] EFIGetMemoryMap as reserved memory
// [...]". (Emphasis added here.)
//
// Normally we add memory resource descriptor HOBs in
// QemuInitializeRam(), and pre-allocate from those with memory
// allocation HOBs in InitializeRamRegions(). However, the MMCONFIG area
// is most definitely not RAM; so, as an exception, cover it with
// uncacheable reserved memory right here.
//
PlatformAddReservedMemoryBaseSizeHob (PciExBarBase, SIZE_256MB, FALSE);
BuildMemoryAllocationHob (
PciExBarBase,
SIZE_256MB,
EfiReservedMemoryType
);
}
PlatformAddIoMemoryBaseSizeHob (PcdGet32 (PcdCpuLocalApicBaseAddress), SIZE_1MB);
//
// On Q35, the IO Port space is available for PCI resource allocations from
// 0x6000 up.
//
if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
PciIoBase = 0x6000;
PciIoSize = 0xA000;
ASSERT ((ICH9_PMBASE_VALUE & 0xF000) < PciIoBase);
}
//
// Add PCI IO Port space available for PCI resource allocations.
//
BuildResourceDescriptorHob (
EFI_RESOURCE_IO,
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED,
PciIoBase,
PciIoSize
);
PlatformInfoHob->PcdPciIoBase = PciIoBase;
PlatformInfoHob->PcdPciIoSize = PciIoSize;
}
/**
* Fetch "opt/ovmf/PcdSetNxForStack" from QEMU
*
* @param Setting The pointer to the setting of "/opt/ovmf/PcdSetNxForStack".
* @return EFI_SUCCESS Successfully fetch the settings.
*/
EFI_STATUS
EFIAPI
PlatformNoexecDxeInitialization (
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
return QemuFwCfgParseBool ("opt/ovmf/PcdSetNxForStack", &PlatformInfoHob->PcdSetNxForStack);
}
VOID
PciExBarInitialization (
VOID
)
{
union {
UINT64 Uint64;
UINT32 Uint32[2];
} PciExBarBase;
//
// We only support the 256MB size for the MMCONFIG area:
// 256 buses * 32 devices * 8 functions * 4096 bytes config space.
//
// The masks used below enforce the Q35 requirements that the MMCONFIG area
// be (a) correctly aligned -- here at 256 MB --, (b) located under 64 GB.
//
// Note that (b) also ensures that the minimum address width we have
// determined in AddressWidthInitialization(), i.e., 36 bits, will suffice
// for DXE's page tables to cover the MMCONFIG area.
//
PciExBarBase.Uint64 = PcdGet64 (PcdPciExpressBaseAddress);
ASSERT ((PciExBarBase.Uint32[1] & MCH_PCIEXBAR_HIGHMASK) == 0);
ASSERT ((PciExBarBase.Uint32[0] & MCH_PCIEXBAR_LOWMASK) == 0);
//
// Clear the PCIEXBAREN bit first, before programming the high register.
//
PciWrite32 (DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_LOW), 0);
//
// Program the high register. Then program the low register, setting the
// MMCONFIG area size and enabling decoding at once.
//
PciWrite32 (DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_HIGH), PciExBarBase.Uint32[1]);
PciWrite32 (
DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_LOW),
PciExBarBase.Uint32[0] | MCH_PCIEXBAR_BUS_FF | MCH_PCIEXBAR_EN
);
}
VOID
EFIAPI
PlatformMiscInitialization (
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
UINTN PmCmd;
UINTN Pmba;
UINT32 PmbaAndVal;
UINT32 PmbaOrVal;
UINTN AcpiCtlReg;
UINT8 AcpiEnBit;
//
// Disable A20 Mask
//
if (PlatformInfoHob->HostBridgeDevId != CLOUDHV_DEVICE_ID) {
IoOr8 (0x92, BIT1);
}
//
// Build the CPU HOB with guest RAM size dependent address width and 16-bits
// of IO space. (Side note: unlike other HOBs, the CPU HOB is needed during
// S3 resume as well, so we build it unconditionally.)
//
BuildCpuHob (PlatformInfoHob->PhysMemAddressWidth, 16);
//
// Determine platform type and save Host Bridge DID to PCD
//
switch (PlatformInfoHob->HostBridgeDevId) {
case INTEL_82441_DEVICE_ID:
PmCmd = POWER_MGMT_REGISTER_PIIX4 (PCI_COMMAND_OFFSET);
Pmba = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMBA);
PmbaAndVal = ~(UINT32)PIIX4_PMBA_MASK;
PmbaOrVal = PIIX4_PMBA_VALUE;
AcpiCtlReg = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMREGMISC);
AcpiEnBit = PIIX4_PMREGMISC_PMIOSE;
break;
case INTEL_Q35_MCH_DEVICE_ID:
PmCmd = POWER_MGMT_REGISTER_Q35 (PCI_COMMAND_OFFSET);
Pmba = POWER_MGMT_REGISTER_Q35 (ICH9_PMBASE);
PmbaAndVal = ~(UINT32)ICH9_PMBASE_MASK;
PmbaOrVal = ICH9_PMBASE_VALUE;
AcpiCtlReg = POWER_MGMT_REGISTER_Q35 (ICH9_ACPI_CNTL);
AcpiEnBit = ICH9_ACPI_CNTL_ACPI_EN;
break;
case CLOUDHV_DEVICE_ID:
break;
default:
DEBUG ((
DEBUG_ERROR,
"%a: Unknown Host Bridge Device ID: 0x%04x\n",
__FUNCTION__,
PlatformInfoHob->HostBridgeDevId
));
ASSERT (FALSE);
return;
}
if (PlatformInfoHob->HostBridgeDevId == CLOUDHV_DEVICE_ID) {
DEBUG ((DEBUG_INFO, "%a: Cloud Hypervisor is done.\n", __FUNCTION__));
return;
}
//
// If the appropriate IOspace enable bit is set, assume the ACPI PMBA has
// been configured and skip the setup here. This matches the logic in
// AcpiTimerLibConstructor ().
//
if ((PciRead8 (AcpiCtlReg) & AcpiEnBit) == 0) {
//
// The PEI phase should be exited with fully accessibe ACPI PM IO space:
// 1. set PMBA
//
PciAndThenOr32 (Pmba, PmbaAndVal, PmbaOrVal);
//
// 2. set PCICMD/IOSE
//
PciOr8 (PmCmd, EFI_PCI_COMMAND_IO_SPACE);
//
// 3. set ACPI PM IO enable bit (PMREGMISC:PMIOSE or ACPI_CNTL:ACPI_EN)
//
PciOr8 (AcpiCtlReg, AcpiEnBit);
}
if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
//
// Set Root Complex Register Block BAR
//
PciWrite32 (
POWER_MGMT_REGISTER_Q35 (ICH9_RCBA),
ICH9_ROOT_COMPLEX_BASE | ICH9_RCBA_EN
);
//
// Set PCI Express Register Range Base Address
//
PciExBarInitialization ();
}
}
/**
Fetch the boot CPU count and the possible CPU count from QEMU, and expose
them to UefiCpuPkg modules.
**/
VOID
EFIAPI
PlatformMaxCpuCountInitialization (
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
UINT16 BootCpuCount = 0;
UINT32 MaxCpuCount;
//
// Try to fetch the boot CPU count.
//
if (QemuFwCfgIsAvailable ()) {
QemuFwCfgSelectItem (QemuFwCfgItemSmpCpuCount);
BootCpuCount = QemuFwCfgRead16 ();
}
if (BootCpuCount == 0) {
//
// QEMU doesn't report the boot CPU count. (BootCpuCount == 0) will let
// MpInitLib count APs up to (PcdCpuMaxLogicalProcessorNumber - 1), or
// until PcdCpuApInitTimeOutInMicroSeconds elapses (whichever is reached
// first).
//
DEBUG ((DEBUG_WARN, "%a: boot CPU count unavailable\n", __FUNCTION__));
MaxCpuCount = PlatformInfoHob->DefaultMaxCpuNumber;
} else {
//
// We will expose BootCpuCount to MpInitLib. MpInitLib will count APs up to
// (BootCpuCount - 1) precisely, regardless of timeout.
//
// Now try to fetch the possible CPU count.
//
UINTN CpuHpBase;
UINT32 CmdData2;
CpuHpBase = ((PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) ?
ICH9_CPU_HOTPLUG_BASE : PIIX4_CPU_HOTPLUG_BASE);
//
// If only legacy mode is available in the CPU hotplug register block, or
// the register block is completely missing, then the writes below are
// no-ops.
//
// 1. Switch the hotplug register block to modern mode.
//
IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, 0);
//
// 2. Select a valid CPU for deterministic reading of
// QEMU_CPUHP_R_CMD_DATA2.
//
// CPU#0 is always valid; it is the always present and non-removable
// BSP.
//
IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, 0);
//
// 3. Send a command after which QEMU_CPUHP_R_CMD_DATA2 is specified to
// read as zero, and which does not invalidate the selector. (The
// selector may change, but it must not become invalid.)
//
// Send QEMU_CPUHP_CMD_GET_PENDING, as it will prove useful later.
//
IoWrite8 (CpuHpBase + QEMU_CPUHP_W_CMD, QEMU_CPUHP_CMD_GET_PENDING);
//
// 4. Read QEMU_CPUHP_R_CMD_DATA2.
//
// If the register block is entirely missing, then this is an unassigned
// IO read, returning all-bits-one.
//
// If only legacy mode is available, then bit#0 stands for CPU#0 in the
// "CPU present bitmap". CPU#0 is always present.
//
// Otherwise, QEMU_CPUHP_R_CMD_DATA2 is either still reserved (returning
// all-bits-zero), or it is specified to read as zero after the above
// steps. Both cases confirm modern mode.
//
CmdData2 = IoRead32 (CpuHpBase + QEMU_CPUHP_R_CMD_DATA2);
DEBUG ((DEBUG_VERBOSE, "%a: CmdData2=0x%x\n", __FUNCTION__, CmdData2));
if (CmdData2 != 0) {
//
// QEMU doesn't support the modern CPU hotplug interface. Assume that the
// possible CPU count equals the boot CPU count (precluding hotplug).
//
DEBUG ((
DEBUG_WARN,
"%a: modern CPU hotplug interface unavailable\n",
__FUNCTION__
));
MaxCpuCount = BootCpuCount;
} else {
//
// Grab the possible CPU count from the modern CPU hotplug interface.
//
UINT32 Present, Possible, Selected;
Present = 0;
Possible = 0;
//
// We've sent QEMU_CPUHP_CMD_GET_PENDING last; this ensures
// QEMU_CPUHP_RW_CMD_DATA can now be read usefully. However,
// QEMU_CPUHP_CMD_GET_PENDING may have selected a CPU with actual pending
// hotplug events; therefore, select CPU#0 forcibly.
//
IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, Possible);
do {
UINT8 CpuStatus;
//
// Read the status of the currently selected CPU. This will help with a
// sanity check against "BootCpuCount".
//
CpuStatus = IoRead8 (CpuHpBase + QEMU_CPUHP_R_CPU_STAT);
if ((CpuStatus & QEMU_CPUHP_STAT_ENABLED) != 0) {
++Present;
}
//
// Attempt to select the next CPU.
//
++Possible;
IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, Possible);
//
// If the selection is successful, then the following read will return
// the selector (which we know is positive at this point). Otherwise,
// the read will return 0.
//
Selected = IoRead32 (CpuHpBase + QEMU_CPUHP_RW_CMD_DATA);
ASSERT (Selected == Possible || Selected == 0);
} while (Selected > 0);
//
// Sanity check: fw_cfg and the modern CPU hotplug interface should
// return the same boot CPU count.
//
if (BootCpuCount != Present) {
DEBUG ((
DEBUG_WARN,
"%a: QEMU v2.7 reset bug: BootCpuCount=%d "
"Present=%u\n",
__FUNCTION__,
BootCpuCount,
Present
));
//
// The handling of QemuFwCfgItemSmpCpuCount, across CPU hotplug plus
// platform reset (including S3), was corrected in QEMU commit
// e3cadac073a9 ("pc: fix FW_CFG_NB_CPUS to account for -device added
// CPUs", 2016-11-16), part of release v2.8.0.
//
BootCpuCount = (UINT16)Present;
}
MaxCpuCount = Possible;
}
}
DEBUG ((
DEBUG_INFO,
"%a: BootCpuCount=%d MaxCpuCount=%u\n",
__FUNCTION__,
BootCpuCount,
MaxCpuCount
));
ASSERT (BootCpuCount <= MaxCpuCount);
PlatformInfoHob->PcdCpuMaxLogicalProcessorNumber = MaxCpuCount;
PlatformInfoHob->PcdCpuBootLogicalProcessorNumber = BootCpuCount;
}
/**
Check padding data all bit should be 1.
@param[in] Buffer - A pointer to buffer header
@param[in] BufferSize - Buffer size
@retval TRUE - The padding data is valid.
@retval TRUE - The padding data is invalid.
**/
BOOLEAN
CheckPaddingData (
IN UINT8 *Buffer,
IN UINT32 BufferSize
)
{
UINT32 index;
for (index = 0; index < BufferSize; index++) {
if (Buffer[index] != 0xFF) {
return FALSE;
}
}
return TRUE;
}
/**
Check the integrity of NvVarStore.
@param[in] NvVarStoreBase - A pointer to NvVarStore header
@param[in] NvVarStoreSize - NvVarStore size
@retval TRUE - The NvVarStore is valid.
@retval FALSE - The NvVarStore is invalid.
**/
BOOLEAN
EFIAPI
PlatformValidateNvVarStore (
IN UINT8 *NvVarStoreBase,
IN UINT32 NvVarStoreSize
)
{
UINT16 Checksum;
UINTN VariableBase;
UINT32 VariableOffset;
UINT32 VariableOffsetBeforeAlign;
EFI_FIRMWARE_VOLUME_HEADER *NvVarStoreFvHeader;
VARIABLE_STORE_HEADER *NvVarStoreHeader;
AUTHENTICATED_VARIABLE_HEADER *VariableHeader;
static EFI_GUID FvHdrGUID = EFI_SYSTEM_NV_DATA_FV_GUID;
static EFI_GUID VarStoreHdrGUID = EFI_AUTHENTICATED_VARIABLE_GUID;
VariableOffset = 0;
if (NvVarStoreBase == NULL) {
DEBUG ((DEBUG_ERROR, "NvVarStore pointer is NULL.\n"));
return FALSE;
}
//
// Verify the header zerovetor, filesystemguid,
// revision, signature, attributes, fvlength, checksum
// HeaderLength cannot be an odd number
//
NvVarStoreFvHeader = (EFI_FIRMWARE_VOLUME_HEADER *)NvVarStoreBase;
if ((!IsZeroBuffer (NvVarStoreFvHeader->ZeroVector, 16)) ||
(!CompareGuid (&FvHdrGUID, &NvVarStoreFvHeader->FileSystemGuid)) ||
(NvVarStoreFvHeader->Signature != EFI_FVH_SIGNATURE) ||
(NvVarStoreFvHeader->Attributes != 0x4feff) ||
(NvVarStoreFvHeader->Revision != EFI_FVH_REVISION) ||
(NvVarStoreFvHeader->FvLength != NvVarStoreSize)
)
{
DEBUG ((DEBUG_ERROR, "NvVarStore FV headers were invalid.\n"));
return FALSE;
}
//
// Verify the header checksum
//
Checksum = CalculateSum16 ((VOID *)NvVarStoreFvHeader, NvVarStoreFvHeader->HeaderLength);
if (Checksum != 0) {
DEBUG ((DEBUG_ERROR, "NvVarStore FV checksum was invalid.\n"));
return FALSE;
}
//
// Verify the header signature, size, format, state
//
NvVarStoreHeader = (VARIABLE_STORE_HEADER *)(NvVarStoreBase + NvVarStoreFvHeader->HeaderLength);
if ((!CompareGuid (&VarStoreHdrGUID, &NvVarStoreHeader->Signature)) ||
(NvVarStoreHeader->Format != VARIABLE_STORE_FORMATTED) ||
(NvVarStoreHeader->State != VARIABLE_STORE_HEALTHY) ||
(NvVarStoreHeader->Size > (NvVarStoreFvHeader->FvLength - NvVarStoreFvHeader->HeaderLength)) ||
(NvVarStoreHeader->Size < sizeof (VARIABLE_STORE_HEADER))
)
{
DEBUG ((DEBUG_ERROR, "NvVarStore header signature/size/format/state were invalid.\n"));
return FALSE;
}
//
// Verify the header startId, state
// Verify data to the end
//
VariableBase = (UINTN)NvVarStoreBase + NvVarStoreFvHeader->HeaderLength + sizeof (VARIABLE_STORE_HEADER);
while (VariableOffset < (NvVarStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER))) {
VariableHeader = (AUTHENTICATED_VARIABLE_HEADER *)(VariableBase + VariableOffset);
if (VariableHeader->StartId != VARIABLE_DATA) {
if (!CheckPaddingData ((UINT8 *)VariableHeader, NvVarStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - VariableOffset)) {
DEBUG ((DEBUG_ERROR, "NvVarStore variable header StartId was invalid.\n"));
return FALSE;
}
VariableOffset = NvVarStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER);
} else {
if (!((VariableHeader->State == VAR_IN_DELETED_TRANSITION) ||
(VariableHeader->State == VAR_DELETED) ||
(VariableHeader->State == VAR_HEADER_VALID_ONLY) ||
(VariableHeader->State == VAR_ADDED)))
{
DEBUG ((DEBUG_ERROR, "NvVarStore Variable header State was invalid.\n"));
return FALSE;
}
VariableOffset += sizeof (AUTHENTICATED_VARIABLE_HEADER) + VariableHeader->NameSize + VariableHeader->DataSize;
// Verify VariableOffset should be less than or equal NvVarStoreHeader->Size - sizeof(VARIABLE_STORE_HEADER)
if (VariableOffset > (NvVarStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER))) {
DEBUG ((DEBUG_ERROR, "NvVarStore Variable header VariableOffset was invalid.\n"));
return FALSE;
}
VariableOffsetBeforeAlign = VariableOffset;
// 4 byte align
VariableOffset = (VariableOffset + 3) & (UINTN)(~3);
if (!CheckPaddingData ((UINT8 *)(VariableBase + VariableOffsetBeforeAlign), VariableOffset - VariableOffsetBeforeAlign)) {
DEBUG ((DEBUG_ERROR, "NvVarStore Variable header PaddingData was invalid.\n"));
return FALSE;
}
}
}
return TRUE;
}
/**
Allocate storage for NV variables early on so it will be
at a consistent address. Since VM memory is preserved
across reboots, this allows the NV variable storage to survive
a VM reboot.
*
* @retval VOID* The pointer to the storage for NV Variables
*/
VOID *
EFIAPI
PlatformReserveEmuVariableNvStore (
VOID
)
{
VOID *VariableStore;
UINT32 VarStoreSize;
VarStoreSize = 2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize);
//
// Allocate storage for NV variables early on so it will be
// at a consistent address. Since VM memory is preserved
// across reboots, this allows the NV variable storage to survive
// a VM reboot.
//
VariableStore =
AllocateRuntimePages (
EFI_SIZE_TO_PAGES (VarStoreSize)
);
DEBUG ((
DEBUG_INFO,
"Reserved variable store memory: 0x%p; size: %dkb\n",
VariableStore,
VarStoreSize / 1024
));
return VariableStore;
}
/**
When OVMF is lauched with -bios parameter, UEFI variables will be
partially emulated, and non-volatile variables may lose their contents
after a reboot. This makes the secure boot feature not working.
This function is used to initialize the EmuVariableNvStore
with the conent in PcdOvmfFlashNvStorageVariableBase.
@param[in] EmuVariableNvStore - A pointer to EmuVariableNvStore
@retval EFI_SUCCESS - Successfully init the EmuVariableNvStore
@retval Others - As the error code indicates
*/
EFI_STATUS
EFIAPI
PlatformInitEmuVariableNvStore (
IN VOID *EmuVariableNvStore
)
{
UINT8 *Base;
UINT32 Size;
UINT32 EmuVariableNvStoreSize;
EmuVariableNvStoreSize = 2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize);
if ((EmuVariableNvStore == NULL) || (EmuVariableNvStoreSize == 0)) {
DEBUG ((DEBUG_ERROR, "Invalid EmuVariableNvStore parameter.\n"));
return EFI_INVALID_PARAMETER;
}
Base = (UINT8 *)(UINTN)PcdGet32 (PcdOvmfFlashNvStorageVariableBase);
Size = (UINT32)PcdGet32 (PcdFlashNvStorageVariableSize);
ASSERT (Size < EmuVariableNvStoreSize);
if (!PlatformValidateNvVarStore (Base, PcdGet32 (PcdCfvRawDataSize))) {
ASSERT (FALSE);
return EFI_INVALID_PARAMETER;
}
DEBUG ((DEBUG_INFO, "Init EmuVariableNvStore with the content in FlashNvStorage\n"));
CopyMem (EmuVariableNvStore, Base, Size);
return EFI_SUCCESS;
}