mirror of https://github.com/acidanthera/audk.git
742 lines
24 KiB
C
742 lines
24 KiB
C
/** @file
|
|
* File managing the MMU for ARMv8 architecture
|
|
*
|
|
* Copyright (c) 2011-2014, ARM Limited. All rights reserved.
|
|
*
|
|
* This program and the accompanying materials
|
|
* are licensed and made available under the terms and conditions of the BSD License
|
|
* which accompanies this distribution. The full text of the license may be found at
|
|
* http://opensource.org/licenses/bsd-license.php
|
|
*
|
|
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
*
|
|
**/
|
|
|
|
#include <Uefi.h>
|
|
#include <Chipset/AArch64.h>
|
|
#include <Library/BaseMemoryLib.h>
|
|
#include <Library/MemoryAllocationLib.h>
|
|
#include <Library/ArmLib.h>
|
|
#include <Library/BaseLib.h>
|
|
#include <Library/DebugLib.h>
|
|
#include "AArch64Lib.h"
|
|
#include "ArmLibPrivate.h"
|
|
|
|
// We use this index definition to define an invalid block entry
|
|
#define TT_ATTR_INDX_INVALID ((UINT32)~0)
|
|
|
|
STATIC
|
|
UINT64
|
|
ArmMemoryAttributeToPageAttribute (
|
|
IN ARM_MEMORY_REGION_ATTRIBUTES Attributes
|
|
)
|
|
{
|
|
switch (Attributes) {
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK:
|
|
return TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE;
|
|
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH:
|
|
return TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;
|
|
|
|
// Uncached and device mappings are treated as outer shareable by default,
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED:
|
|
return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
|
|
|
|
default:
|
|
ASSERT(0);
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:
|
|
if (ArmReadCurrentEL () == AARCH64_EL2)
|
|
return TT_ATTR_INDX_DEVICE_MEMORY | TT_TABLE_XN;
|
|
else
|
|
return TT_ATTR_INDX_DEVICE_MEMORY | TT_TABLE_UXN | TT_TABLE_PXN;
|
|
}
|
|
}
|
|
|
|
UINT64
|
|
PageAttributeToGcdAttribute (
|
|
IN UINT64 PageAttributes
|
|
)
|
|
{
|
|
UINT64 GcdAttributes;
|
|
|
|
switch (PageAttributes & TT_ATTR_INDX_MASK) {
|
|
case TT_ATTR_INDX_DEVICE_MEMORY:
|
|
GcdAttributes = EFI_MEMORY_UC;
|
|
break;
|
|
case TT_ATTR_INDX_MEMORY_NON_CACHEABLE:
|
|
GcdAttributes = EFI_MEMORY_WC;
|
|
break;
|
|
case TT_ATTR_INDX_MEMORY_WRITE_THROUGH:
|
|
GcdAttributes = EFI_MEMORY_WT;
|
|
break;
|
|
case TT_ATTR_INDX_MEMORY_WRITE_BACK:
|
|
GcdAttributes = EFI_MEMORY_WB;
|
|
break;
|
|
default:
|
|
DEBUG ((EFI_D_ERROR, "PageAttributeToGcdAttribute: PageAttributes:0x%lX not supported.\n", PageAttributes));
|
|
ASSERT (0);
|
|
// The Global Coherency Domain (GCD) value is defined as a bit set.
|
|
// Returning 0 means no attribute has been set.
|
|
GcdAttributes = 0;
|
|
}
|
|
|
|
// Determine protection attributes
|
|
if (((PageAttributes & TT_AP_MASK) == TT_AP_NO_RO) || ((PageAttributes & TT_AP_MASK) == TT_AP_RO_RO)) {
|
|
// Read only cases map to write-protect
|
|
GcdAttributes |= EFI_MEMORY_WP;
|
|
}
|
|
|
|
// Process eXecute Never attribute
|
|
if ((PageAttributes & (TT_PXN_MASK | TT_UXN_MASK)) != 0 ) {
|
|
GcdAttributes |= EFI_MEMORY_XP;
|
|
}
|
|
|
|
return GcdAttributes;
|
|
}
|
|
|
|
ARM_MEMORY_REGION_ATTRIBUTES
|
|
GcdAttributeToArmAttribute (
|
|
IN UINT64 GcdAttributes
|
|
)
|
|
{
|
|
switch (GcdAttributes & 0xFF) {
|
|
case EFI_MEMORY_UC:
|
|
return ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
|
|
case EFI_MEMORY_WC:
|
|
return ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED;
|
|
case EFI_MEMORY_WT:
|
|
return ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH;
|
|
case EFI_MEMORY_WB:
|
|
return ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK;
|
|
default:
|
|
DEBUG ((EFI_D_ERROR, "GcdAttributeToArmAttribute: 0x%lX attributes is not supported.\n", GcdAttributes));
|
|
ASSERT (0);
|
|
return ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
|
|
}
|
|
}
|
|
|
|
// Describe the T0SZ values for each translation table level
|
|
typedef struct {
|
|
UINTN MinT0SZ;
|
|
UINTN MaxT0SZ;
|
|
UINTN LargestT0SZ; // Generally (MaxT0SZ == LargestT0SZ) but at the Level3 Table
|
|
// the MaxT0SZ is not at the boundary of the table
|
|
} T0SZ_DESCRIPTION_PER_LEVEL;
|
|
|
|
// Map table for the corresponding Level of Table
|
|
STATIC CONST T0SZ_DESCRIPTION_PER_LEVEL T0SZPerTableLevel[] = {
|
|
{ 16, 24, 24 }, // Table Level 0
|
|
{ 25, 33, 33 }, // Table Level 1
|
|
{ 34, 39, 42 } // Table Level 2
|
|
};
|
|
|
|
VOID
|
|
GetRootTranslationTableInfo (
|
|
IN UINTN T0SZ,
|
|
OUT UINTN *TableLevel,
|
|
OUT UINTN *TableEntryCount
|
|
)
|
|
{
|
|
UINTN Index;
|
|
|
|
// Identify the level of the root table from the given T0SZ
|
|
for (Index = 0; Index < sizeof (T0SZPerTableLevel) / sizeof (T0SZ_DESCRIPTION_PER_LEVEL); Index++) {
|
|
if (T0SZ <= T0SZPerTableLevel[Index].MaxT0SZ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we have not found the corresponding maximum T0SZ then we use the last one
|
|
if (Index == sizeof (T0SZPerTableLevel) / sizeof (T0SZ_DESCRIPTION_PER_LEVEL)) {
|
|
Index--;
|
|
}
|
|
|
|
// Get the level of the root table
|
|
if (TableLevel) {
|
|
*TableLevel = Index;
|
|
}
|
|
|
|
// The Size of the Table is 2^(T0SZ-LargestT0SZ)
|
|
if (TableEntryCount) {
|
|
*TableEntryCount = 1 << (T0SZPerTableLevel[Index].LargestT0SZ - T0SZ + 1);
|
|
}
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
LookupAddresstoRootTable (
|
|
IN UINT64 MaxAddress,
|
|
OUT UINTN *T0SZ,
|
|
OUT UINTN *TableEntryCount
|
|
)
|
|
{
|
|
UINTN TopBit;
|
|
|
|
// Check the parameters are not NULL
|
|
ASSERT ((T0SZ != NULL) && (TableEntryCount != NULL));
|
|
|
|
// Look for the highest bit set in MaxAddress
|
|
for (TopBit = 63; TopBit != 0; TopBit--) {
|
|
if ((1ULL << TopBit) & MaxAddress) {
|
|
// MaxAddress top bit is found
|
|
TopBit = TopBit + 1;
|
|
break;
|
|
}
|
|
}
|
|
ASSERT (TopBit != 0);
|
|
|
|
// Calculate T0SZ from the top bit of the MaxAddress
|
|
*T0SZ = 64 - TopBit;
|
|
|
|
// Get the Table info from T0SZ
|
|
GetRootTranslationTableInfo (*T0SZ, NULL, TableEntryCount);
|
|
}
|
|
|
|
STATIC
|
|
UINT64*
|
|
GetBlockEntryListFromAddress (
|
|
IN UINT64 *RootTable,
|
|
IN UINT64 RegionStart,
|
|
OUT UINTN *TableLevel,
|
|
IN OUT UINT64 *BlockEntrySize,
|
|
OUT UINT64 **LastBlockEntry
|
|
)
|
|
{
|
|
UINTN RootTableLevel;
|
|
UINTN RootTableEntryCount;
|
|
UINT64 *TranslationTable;
|
|
UINT64 *BlockEntry;
|
|
UINT64 *SubTableBlockEntry;
|
|
UINT64 BlockEntryAddress;
|
|
UINTN BaseAddressAlignment;
|
|
UINTN PageLevel;
|
|
UINTN Index;
|
|
UINTN IndexLevel;
|
|
UINTN T0SZ;
|
|
UINT64 Attributes;
|
|
UINT64 TableAttributes;
|
|
|
|
// Initialize variable
|
|
BlockEntry = NULL;
|
|
|
|
// Ensure the parameters are valid
|
|
if (!(TableLevel && BlockEntrySize && LastBlockEntry)) {
|
|
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
|
|
return NULL;
|
|
}
|
|
|
|
// Ensure the Region is aligned on 4KB boundary
|
|
if ((RegionStart & (SIZE_4KB - 1)) != 0) {
|
|
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
|
|
return NULL;
|
|
}
|
|
|
|
// Ensure the required size is aligned on 4KB boundary and not 0
|
|
if ((*BlockEntrySize & (SIZE_4KB - 1)) != 0 || *BlockEntrySize == 0) {
|
|
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
|
|
return NULL;
|
|
}
|
|
|
|
T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;
|
|
// Get the Table info from T0SZ
|
|
GetRootTranslationTableInfo (T0SZ, &RootTableLevel, &RootTableEntryCount);
|
|
|
|
// If the start address is 0x0 then we use the size of the region to identify the alignment
|
|
if (RegionStart == 0) {
|
|
// Identify the highest possible alignment for the Region Size
|
|
BaseAddressAlignment = LowBitSet64 (*BlockEntrySize);
|
|
} else {
|
|
// Identify the highest possible alignment for the Base Address
|
|
BaseAddressAlignment = LowBitSet64 (RegionStart);
|
|
}
|
|
|
|
// Identify the Page Level the RegionStart must belong to. Note that PageLevel
|
|
// should be at least 1 since block translations are not supported at level 0
|
|
PageLevel = MAX (3 - ((BaseAddressAlignment - 12) / 9), 1);
|
|
|
|
// If the required size is smaller than the current block size then we need to go to the page below.
|
|
// The PageLevel was calculated on the Base Address alignment but did not take in account the alignment
|
|
// of the allocation size
|
|
while (*BlockEntrySize < TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel)) {
|
|
// It does not fit so we need to go a page level above
|
|
PageLevel++;
|
|
}
|
|
|
|
//
|
|
// Get the Table Descriptor for the corresponding PageLevel. We need to decompose RegionStart to get appropriate entries
|
|
//
|
|
|
|
TranslationTable = RootTable;
|
|
for (IndexLevel = RootTableLevel; IndexLevel <= PageLevel; IndexLevel++) {
|
|
BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, IndexLevel, RegionStart);
|
|
|
|
if ((IndexLevel != 3) && ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY)) {
|
|
// Go to the next table
|
|
TranslationTable = (UINT64*)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
|
|
|
|
// If we are at the last level then update the last level to next level
|
|
if (IndexLevel == PageLevel) {
|
|
// Enter the next level
|
|
PageLevel++;
|
|
}
|
|
} else if ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) {
|
|
// If we are not at the last level then we need to split this BlockEntry
|
|
if (IndexLevel != PageLevel) {
|
|
// Retrieve the attributes from the block entry
|
|
Attributes = *BlockEntry & TT_ATTRIBUTES_MASK;
|
|
|
|
// Convert the block entry attributes into Table descriptor attributes
|
|
TableAttributes = TT_TABLE_AP_NO_PERMISSION;
|
|
if (Attributes & TT_PXN_MASK) {
|
|
TableAttributes = TT_TABLE_PXN;
|
|
}
|
|
// XN maps to UXN in the EL1&0 translation regime
|
|
if (Attributes & TT_XN_MASK) {
|
|
TableAttributes = TT_TABLE_XN;
|
|
}
|
|
if (Attributes & TT_NS) {
|
|
TableAttributes = TT_TABLE_NS;
|
|
}
|
|
|
|
// Get the address corresponding at this entry
|
|
BlockEntryAddress = RegionStart;
|
|
BlockEntryAddress = BlockEntryAddress >> TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
|
|
// Shift back to right to set zero before the effective address
|
|
BlockEntryAddress = BlockEntryAddress << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
|
|
|
|
// Set the correct entry type for the next page level
|
|
if ((IndexLevel + 1) == 3) {
|
|
Attributes |= TT_TYPE_BLOCK_ENTRY_LEVEL3;
|
|
} else {
|
|
Attributes |= TT_TYPE_BLOCK_ENTRY;
|
|
}
|
|
|
|
// Create a new translation table
|
|
TranslationTable = (UINT64*)AllocateAlignedPages (EFI_SIZE_TO_PAGES(TT_ENTRY_COUNT * sizeof(UINT64)), TT_ALIGNMENT_DESCRIPTION_TABLE);
|
|
if (TranslationTable == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
// Populate the newly created lower level table
|
|
SubTableBlockEntry = TranslationTable;
|
|
for (Index = 0; Index < TT_ENTRY_COUNT; Index++) {
|
|
*SubTableBlockEntry = Attributes | (BlockEntryAddress + (Index << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel + 1)));
|
|
SubTableBlockEntry++;
|
|
}
|
|
|
|
// Fill the BlockEntry with the new TranslationTable
|
|
*BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TableAttributes | TT_TYPE_TABLE_ENTRY;
|
|
}
|
|
} else {
|
|
if (IndexLevel != PageLevel) {
|
|
//
|
|
// Case when we have an Invalid Entry and we are at a page level above of the one targetted.
|
|
//
|
|
|
|
// Create a new translation table
|
|
TranslationTable = (UINT64*)AllocateAlignedPages (EFI_SIZE_TO_PAGES(TT_ENTRY_COUNT * sizeof(UINT64)), TT_ALIGNMENT_DESCRIPTION_TABLE);
|
|
if (TranslationTable == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
ZeroMem (TranslationTable, TT_ENTRY_COUNT * sizeof(UINT64));
|
|
|
|
// Fill the new BlockEntry with the TranslationTable
|
|
*BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TT_TYPE_TABLE_ENTRY;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Expose the found PageLevel to the caller
|
|
*TableLevel = PageLevel;
|
|
|
|
// Now, we have the Table Level we can get the Block Size associated to this table
|
|
*BlockEntrySize = TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel);
|
|
|
|
// The last block of the root table depends on the number of entry in this table,
|
|
// otherwise it is always the (TT_ENTRY_COUNT - 1)th entry in the table.
|
|
*LastBlockEntry = TT_LAST_BLOCK_ADDRESS(TranslationTable,
|
|
(PageLevel == RootTableLevel) ? RootTableEntryCount : TT_ENTRY_COUNT);
|
|
|
|
return BlockEntry;
|
|
}
|
|
|
|
STATIC
|
|
RETURN_STATUS
|
|
UpdateRegionMapping (
|
|
IN UINT64 *RootTable,
|
|
IN UINT64 RegionStart,
|
|
IN UINT64 RegionLength,
|
|
IN UINT64 Attributes,
|
|
IN UINT64 BlockEntryMask
|
|
)
|
|
{
|
|
UINT32 Type;
|
|
UINT64 *BlockEntry;
|
|
UINT64 *LastBlockEntry;
|
|
UINT64 BlockEntrySize;
|
|
UINTN TableLevel;
|
|
|
|
// Ensure the Length is aligned on 4KB boundary
|
|
if ((RegionLength == 0) || ((RegionLength & (SIZE_4KB - 1)) != 0)) {
|
|
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
|
|
return RETURN_INVALID_PARAMETER;
|
|
}
|
|
|
|
do {
|
|
// Get the first Block Entry that matches the Virtual Address and also the information on the Table Descriptor
|
|
// such as the the size of the Block Entry and the address of the last BlockEntry of the Table Descriptor
|
|
BlockEntrySize = RegionLength;
|
|
BlockEntry = GetBlockEntryListFromAddress (RootTable, RegionStart, &TableLevel, &BlockEntrySize, &LastBlockEntry);
|
|
if (BlockEntry == NULL) {
|
|
// GetBlockEntryListFromAddress() return NULL when it fails to allocate new pages from the Translation Tables
|
|
return RETURN_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
if (TableLevel != 3) {
|
|
Type = TT_TYPE_BLOCK_ENTRY;
|
|
} else {
|
|
Type = TT_TYPE_BLOCK_ENTRY_LEVEL3;
|
|
}
|
|
|
|
do {
|
|
// Fill the Block Entry with attribute and output block address
|
|
*BlockEntry &= BlockEntryMask;
|
|
*BlockEntry |= (RegionStart & TT_ADDRESS_MASK_BLOCK_ENTRY) | Attributes | Type;
|
|
|
|
// Go to the next BlockEntry
|
|
RegionStart += BlockEntrySize;
|
|
RegionLength -= BlockEntrySize;
|
|
BlockEntry++;
|
|
|
|
// Break the inner loop when next block is a table
|
|
// Rerun GetBlockEntryListFromAddress to avoid page table memory leak
|
|
if (TableLevel != 3 &&
|
|
(*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY) {
|
|
break;
|
|
}
|
|
} while ((RegionLength >= BlockEntrySize) && (BlockEntry <= LastBlockEntry));
|
|
} while (RegionLength != 0);
|
|
|
|
return RETURN_SUCCESS;
|
|
}
|
|
|
|
STATIC
|
|
RETURN_STATUS
|
|
FillTranslationTable (
|
|
IN UINT64 *RootTable,
|
|
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion
|
|
)
|
|
{
|
|
return UpdateRegionMapping (
|
|
RootTable,
|
|
MemoryRegion->VirtualBase,
|
|
MemoryRegion->Length,
|
|
ArmMemoryAttributeToPageAttribute (MemoryRegion->Attributes) | TT_AF,
|
|
0
|
|
);
|
|
}
|
|
|
|
RETURN_STATUS
|
|
SetMemoryAttributes (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length,
|
|
IN UINT64 Attributes,
|
|
IN EFI_PHYSICAL_ADDRESS VirtualMask
|
|
)
|
|
{
|
|
RETURN_STATUS Status;
|
|
ARM_MEMORY_REGION_DESCRIPTOR MemoryRegion;
|
|
UINT64 *TranslationTable;
|
|
|
|
MemoryRegion.PhysicalBase = BaseAddress;
|
|
MemoryRegion.VirtualBase = BaseAddress;
|
|
MemoryRegion.Length = Length;
|
|
MemoryRegion.Attributes = GcdAttributeToArmAttribute (Attributes);
|
|
|
|
TranslationTable = ArmGetTTBR0BaseAddress ();
|
|
|
|
Status = FillTranslationTable (TranslationTable, &MemoryRegion);
|
|
if (RETURN_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
// Invalidate all TLB entries so changes are synced
|
|
ArmInvalidateTlb ();
|
|
|
|
return RETURN_SUCCESS;
|
|
}
|
|
|
|
STATIC
|
|
RETURN_STATUS
|
|
SetMemoryRegionAttribute (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length,
|
|
IN UINT64 Attributes,
|
|
IN UINT64 BlockEntryMask
|
|
)
|
|
{
|
|
RETURN_STATUS Status;
|
|
UINT64 *RootTable;
|
|
|
|
RootTable = ArmGetTTBR0BaseAddress ();
|
|
|
|
Status = UpdateRegionMapping (RootTable, BaseAddress, Length, Attributes, BlockEntryMask);
|
|
if (RETURN_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
// Invalidate all TLB entries so changes are synced
|
|
ArmInvalidateTlb ();
|
|
|
|
return RETURN_SUCCESS;
|
|
}
|
|
|
|
RETURN_STATUS
|
|
ArmSetMemoryRegionNoExec (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length
|
|
)
|
|
{
|
|
UINT64 Val;
|
|
|
|
if (ArmReadCurrentEL () == AARCH64_EL1) {
|
|
Val = TT_PXN_MASK | TT_UXN_MASK;
|
|
} else {
|
|
Val = TT_XN_MASK;
|
|
}
|
|
|
|
return SetMemoryRegionAttribute (
|
|
BaseAddress,
|
|
Length,
|
|
Val,
|
|
~TT_ADDRESS_MASK_BLOCK_ENTRY);
|
|
}
|
|
|
|
RETURN_STATUS
|
|
ArmClearMemoryRegionNoExec (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length
|
|
)
|
|
{
|
|
UINT64 Mask;
|
|
|
|
// XN maps to UXN in the EL1&0 translation regime
|
|
Mask = ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_PXN_MASK | TT_XN_MASK);
|
|
|
|
return SetMemoryRegionAttribute (
|
|
BaseAddress,
|
|
Length,
|
|
0,
|
|
Mask);
|
|
}
|
|
|
|
RETURN_STATUS
|
|
ArmSetMemoryRegionReadOnly (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length
|
|
)
|
|
{
|
|
return SetMemoryRegionAttribute (
|
|
BaseAddress,
|
|
Length,
|
|
TT_AP_RO_RO,
|
|
~TT_ADDRESS_MASK_BLOCK_ENTRY);
|
|
}
|
|
|
|
RETURN_STATUS
|
|
ArmClearMemoryRegionReadOnly (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length
|
|
)
|
|
{
|
|
return SetMemoryRegionAttribute (
|
|
BaseAddress,
|
|
Length,
|
|
TT_AP_RW_RW,
|
|
~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK));
|
|
}
|
|
|
|
RETURN_STATUS
|
|
EFIAPI
|
|
ArmConfigureMmu (
|
|
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,
|
|
OUT VOID **TranslationTableBase OPTIONAL,
|
|
OUT UINTN *TranslationTableSize OPTIONAL
|
|
)
|
|
{
|
|
VOID* TranslationTable;
|
|
UINTN TranslationTablePageCount;
|
|
UINT32 TranslationTableAttribute;
|
|
ARM_MEMORY_REGION_DESCRIPTOR *MemoryTableEntry;
|
|
UINT64 MaxAddress;
|
|
UINT64 TopAddress;
|
|
UINTN T0SZ;
|
|
UINTN RootTableEntryCount;
|
|
UINT64 TCR;
|
|
RETURN_STATUS Status;
|
|
|
|
if(MemoryTable == NULL) {
|
|
ASSERT (MemoryTable != NULL);
|
|
return RETURN_INVALID_PARAMETER;
|
|
}
|
|
|
|
// Identify the highest address of the memory table
|
|
MaxAddress = MemoryTable->PhysicalBase + MemoryTable->Length - 1;
|
|
MemoryTableEntry = MemoryTable;
|
|
while (MemoryTableEntry->Length != 0) {
|
|
TopAddress = MemoryTableEntry->PhysicalBase + MemoryTableEntry->Length - 1;
|
|
if (TopAddress > MaxAddress) {
|
|
MaxAddress = TopAddress;
|
|
}
|
|
MemoryTableEntry++;
|
|
}
|
|
|
|
// Lookup the Table Level to get the information
|
|
LookupAddresstoRootTable (MaxAddress, &T0SZ, &RootTableEntryCount);
|
|
|
|
//
|
|
// Set TCR that allows us to retrieve T0SZ in the subsequent functions
|
|
//
|
|
// Ideally we will be running at EL2, but should support EL1 as well.
|
|
// UEFI should not run at EL3.
|
|
if (ArmReadCurrentEL () == AARCH64_EL2) {
|
|
//Note: Bits 23 and 31 are reserved(RES1) bits in TCR_EL2
|
|
TCR = T0SZ | (1UL << 31) | (1UL << 23) | TCR_TG0_4KB;
|
|
|
|
// Set the Physical Address Size using MaxAddress
|
|
if (MaxAddress < SIZE_4GB) {
|
|
TCR |= TCR_PS_4GB;
|
|
} else if (MaxAddress < SIZE_64GB) {
|
|
TCR |= TCR_PS_64GB;
|
|
} else if (MaxAddress < SIZE_1TB) {
|
|
TCR |= TCR_PS_1TB;
|
|
} else if (MaxAddress < SIZE_4TB) {
|
|
TCR |= TCR_PS_4TB;
|
|
} else if (MaxAddress < SIZE_16TB) {
|
|
TCR |= TCR_PS_16TB;
|
|
} else if (MaxAddress < SIZE_256TB) {
|
|
TCR |= TCR_PS_256TB;
|
|
} else {
|
|
DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
|
|
ASSERT (0); // Bigger than 48-bit memory space are not supported
|
|
return RETURN_UNSUPPORTED;
|
|
}
|
|
} else if (ArmReadCurrentEL () == AARCH64_EL1) {
|
|
// Due to Cortex-A57 erratum #822227 we must set TG1[1] == 1, regardless of EPD1.
|
|
TCR = T0SZ | TCR_TG0_4KB | TCR_TG1_4KB | TCR_EPD1;
|
|
|
|
// Set the Physical Address Size using MaxAddress
|
|
if (MaxAddress < SIZE_4GB) {
|
|
TCR |= TCR_IPS_4GB;
|
|
} else if (MaxAddress < SIZE_64GB) {
|
|
TCR |= TCR_IPS_64GB;
|
|
} else if (MaxAddress < SIZE_1TB) {
|
|
TCR |= TCR_IPS_1TB;
|
|
} else if (MaxAddress < SIZE_4TB) {
|
|
TCR |= TCR_IPS_4TB;
|
|
} else if (MaxAddress < SIZE_16TB) {
|
|
TCR |= TCR_IPS_16TB;
|
|
} else if (MaxAddress < SIZE_256TB) {
|
|
TCR |= TCR_IPS_256TB;
|
|
} else {
|
|
DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
|
|
ASSERT (0); // Bigger than 48-bit memory space are not supported
|
|
return RETURN_UNSUPPORTED;
|
|
}
|
|
} else {
|
|
ASSERT (0); // UEFI is only expected to run at EL2 and EL1, not EL3.
|
|
return RETURN_UNSUPPORTED;
|
|
}
|
|
|
|
// Set TCR
|
|
ArmSetTCR (TCR);
|
|
|
|
// Allocate pages for translation table
|
|
TranslationTablePageCount = EFI_SIZE_TO_PAGES(RootTableEntryCount * sizeof(UINT64));
|
|
TranslationTable = (UINT64*)AllocateAlignedPages (TranslationTablePageCount, TT_ALIGNMENT_DESCRIPTION_TABLE);
|
|
if (TranslationTable == NULL) {
|
|
return RETURN_OUT_OF_RESOURCES;
|
|
}
|
|
// We set TTBR0 just after allocating the table to retrieve its location from the subsequent
|
|
// functions without needing to pass this value across the functions. The MMU is only enabled
|
|
// after the translation tables are populated.
|
|
ArmSetTTBR0 (TranslationTable);
|
|
|
|
if (TranslationTableBase != NULL) {
|
|
*TranslationTableBase = TranslationTable;
|
|
}
|
|
|
|
if (TranslationTableSize != NULL) {
|
|
*TranslationTableSize = RootTableEntryCount * sizeof(UINT64);
|
|
}
|
|
|
|
ZeroMem (TranslationTable, RootTableEntryCount * sizeof(UINT64));
|
|
|
|
// Disable MMU and caches. ArmDisableMmu() also invalidates the TLBs
|
|
ArmDisableMmu ();
|
|
ArmDisableDataCache ();
|
|
ArmDisableInstructionCache ();
|
|
|
|
// Make sure nothing sneaked into the cache
|
|
ArmCleanInvalidateDataCache ();
|
|
ArmInvalidateInstructionCache ();
|
|
|
|
TranslationTableAttribute = TT_ATTR_INDX_INVALID;
|
|
while (MemoryTable->Length != 0) {
|
|
// Find the memory attribute for the Translation Table
|
|
if (((UINTN)TranslationTable >= MemoryTable->PhysicalBase) &&
|
|
((UINTN)TranslationTable <= MemoryTable->PhysicalBase - 1 + MemoryTable->Length)) {
|
|
TranslationTableAttribute = MemoryTable->Attributes;
|
|
}
|
|
|
|
Status = FillTranslationTable (TranslationTable, MemoryTable);
|
|
if (RETURN_ERROR (Status)) {
|
|
goto FREE_TRANSLATION_TABLE;
|
|
}
|
|
MemoryTable++;
|
|
}
|
|
|
|
// Translate the Memory Attributes into Translation Table Register Attributes
|
|
if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED) ||
|
|
(TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED)) {
|
|
TCR |= TCR_SH_NON_SHAREABLE | TCR_RGN_OUTER_NON_CACHEABLE | TCR_RGN_INNER_NON_CACHEABLE;
|
|
} else if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK) ||
|
|
(TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK)) {
|
|
TCR |= TCR_SH_INNER_SHAREABLE | TCR_RGN_OUTER_WRITE_BACK_ALLOC | TCR_RGN_INNER_WRITE_BACK_ALLOC;
|
|
} else if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH) ||
|
|
(TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH)) {
|
|
TCR |= TCR_SH_NON_SHAREABLE | TCR_RGN_OUTER_WRITE_THROUGH | TCR_RGN_INNER_WRITE_THROUGH;
|
|
} else {
|
|
// If we failed to find a mapping that contains the root translation table then it probably means the translation table
|
|
// is not mapped in the given memory map.
|
|
ASSERT (0);
|
|
Status = RETURN_UNSUPPORTED;
|
|
goto FREE_TRANSLATION_TABLE;
|
|
}
|
|
|
|
// Set again TCR after getting the Translation Table attributes
|
|
ArmSetTCR (TCR);
|
|
|
|
ArmSetMAIR (MAIR_ATTR(TT_ATTR_INDX_DEVICE_MEMORY, MAIR_ATTR_DEVICE_MEMORY) | // mapped to EFI_MEMORY_UC
|
|
MAIR_ATTR(TT_ATTR_INDX_MEMORY_NON_CACHEABLE, MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE) | // mapped to EFI_MEMORY_WC
|
|
MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_THROUGH, MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH) | // mapped to EFI_MEMORY_WT
|
|
MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_BACK, MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK)); // mapped to EFI_MEMORY_WB
|
|
|
|
ArmDisableAlignmentCheck ();
|
|
ArmEnableInstructionCache ();
|
|
ArmEnableDataCache ();
|
|
|
|
ArmEnableMmu ();
|
|
return RETURN_SUCCESS;
|
|
|
|
FREE_TRANSLATION_TABLE:
|
|
FreePages (TranslationTable, TranslationTablePageCount);
|
|
return Status;
|
|
}
|