audk/BaseTools/Source/C/GenFw/Elf32Convert.c

1179 lines
35 KiB
C

/** @file
Elf32 Convert solution
Copyright (c) 2010 - 2018, Intel Corporation. All rights reserved.<BR>
Portions copyright (c) 2013, ARM Ltd. All rights reserved.<BR>
Portions Copyright (c) 2020, Hewlett Packard Enterprise Development LP. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "WinNtInclude.h"
#ifndef __GNUC__
#include <windows.h>
#include <io.h>
#endif
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>
#include <Common/UefiBaseTypes.h>
#include <IndustryStandard/PeImage.h>
#include "PeCoffLib.h"
#include "EfiUtilityMsgs.h"
#include "GenFw.h"
#include "ElfConvert.h"
#include "Elf32Convert.h"
STATIC
VOID
ScanSections32 (
VOID
);
STATIC
BOOLEAN
WriteSections32 (
SECTION_FILTER_TYPES FilterType
);
STATIC
VOID
WriteRelocations32 (
VOID
);
STATIC
VOID
WriteDebug32 (
VOID
);
STATIC
VOID
SetImageSize32 (
VOID
);
STATIC
VOID
CleanUp32 (
VOID
);
//
// Rename ELF32 structures to common names to help when porting to ELF64.
//
typedef Elf32_Shdr Elf_Shdr;
typedef Elf32_Ehdr Elf_Ehdr;
typedef Elf32_Rel Elf_Rel;
typedef Elf32_Sym Elf_Sym;
typedef Elf32_Phdr Elf_Phdr;
typedef Elf32_Dyn Elf_Dyn;
#define ELFCLASS ELFCLASS32
#define ELF_R_TYPE(r) ELF32_R_TYPE(r)
#define ELF_R_SYM(r) ELF32_R_SYM(r)
//
// Well known ELF structures.
//
STATIC Elf_Ehdr *mEhdr;
STATIC Elf_Shdr *mShdrBase;
STATIC Elf_Phdr *mPhdrBase;
//
// Coff information
//
STATIC UINT32 mCoffAlignment = 0x20;
//
// PE section alignment.
//
STATIC const UINT16 mCoffNbrSections = 4;
//
// ELF sections to offset in Coff file.
//
STATIC UINT32 *mCoffSectionsOffset = NULL;
//
// Offsets in COFF file
//
STATIC UINT32 mNtHdrOffset;
STATIC UINT32 mTextOffset;
STATIC UINT32 mDataOffset;
STATIC UINT32 mHiiRsrcOffset;
STATIC UINT32 mRelocOffset;
STATIC UINT32 mDebugOffset;
//
// Initialization Function
//
BOOLEAN
InitializeElf32 (
UINT8 *FileBuffer,
ELF_FUNCTION_TABLE *ElfFunctions
)
{
//
// Initialize data pointer and structures.
//
mEhdr = (Elf_Ehdr*) FileBuffer;
//
// Check the ELF32 specific header information.
//
if (mEhdr->e_ident[EI_CLASS] != ELFCLASS32) {
Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFCLASS32");
return FALSE;
}
if (mEhdr->e_ident[EI_DATA] != ELFDATA2LSB) {
Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFDATA2LSB");
return FALSE;
}
if ((mEhdr->e_type != ET_EXEC) && (mEhdr->e_type != ET_DYN)) {
Error (NULL, 0, 3000, "Unsupported", "ELF e_type not ET_EXEC or ET_DYN");
return FALSE;
}
if (!((mEhdr->e_machine == EM_386) || (mEhdr->e_machine == EM_ARM) || (mEhdr->e_machine == EM_RISCV))) {
Error (NULL, 0, 3000, "Unsupported", "ELF e_machine is not Elf32 machine.");
return FALSE;
}
if (mEhdr->e_version != EV_CURRENT) {
Error (NULL, 0, 3000, "Unsupported", "ELF e_version (%u) not EV_CURRENT (%d)", (unsigned) mEhdr->e_version, EV_CURRENT);
return FALSE;
}
//
// Update section header pointers
//
mShdrBase = (Elf_Shdr *)((UINT8 *)mEhdr + mEhdr->e_shoff);
mPhdrBase = (Elf_Phdr *)((UINT8 *)mEhdr + mEhdr->e_phoff);
//
// Create COFF Section offset buffer and zero.
//
mCoffSectionsOffset = (UINT32 *)malloc(mEhdr->e_shnum * sizeof (UINT32));
if (mCoffSectionsOffset == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
return FALSE;
}
memset(mCoffSectionsOffset, 0, mEhdr->e_shnum * sizeof(UINT32));
//
// Fill in function pointers.
//
ElfFunctions->ScanSections = ScanSections32;
ElfFunctions->WriteSections = WriteSections32;
ElfFunctions->WriteRelocations = WriteRelocations32;
ElfFunctions->WriteDebug = WriteDebug32;
ElfFunctions->SetImageSize = SetImageSize32;
ElfFunctions->CleanUp = CleanUp32;
return TRUE;
}
//
// Header by Index functions
//
STATIC
Elf_Shdr*
GetShdrByIndex (
UINT32 Num
)
{
if (Num >= mEhdr->e_shnum) {
Error (NULL, 0, 3000, "Invalid", "GetShdrByIndex: Index %u is too high.", Num);
exit(EXIT_FAILURE);
}
return (Elf_Shdr*)((UINT8*)mShdrBase + Num * mEhdr->e_shentsize);
}
STATIC
Elf_Phdr*
GetPhdrByIndex (
UINT32 num
)
{
if (num >= mEhdr->e_phnum) {
Error (NULL, 0, 3000, "Invalid", "GetPhdrByIndex: Index %u is too high.", num);
exit(EXIT_FAILURE);
}
return (Elf_Phdr *)((UINT8*)mPhdrBase + num * mEhdr->e_phentsize);
}
STATIC
UINT32
CoffAlign (
UINT32 Offset
)
{
return (Offset + mCoffAlignment - 1) & ~(mCoffAlignment - 1);
}
STATIC
UINT32
DebugRvaAlign (
UINT32 Offset
)
{
return (Offset + 3) & ~3;
}
//
// filter functions
//
STATIC
BOOLEAN
IsTextShdr (
Elf_Shdr *Shdr
)
{
return (BOOLEAN) ((Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == SHF_ALLOC);
}
STATIC
BOOLEAN
IsHiiRsrcShdr (
Elf_Shdr *Shdr
)
{
Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);
return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_HII_SECTION_NAME) == 0);
}
STATIC
BOOLEAN
IsDataShdr (
Elf_Shdr *Shdr
)
{
if (IsHiiRsrcShdr(Shdr)) {
return FALSE;
}
return (BOOLEAN) (Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == (SHF_ALLOC | SHF_WRITE);
}
STATIC
BOOLEAN
IsStrtabShdr (
Elf_Shdr *Shdr
)
{
Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);
return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_STRTAB_SECTION_NAME) == 0);
}
STATIC
Elf_Shdr *
FindStrtabShdr (
VOID
)
{
UINT32 i;
for (i = 0; i < mEhdr->e_shnum; i++) {
Elf_Shdr *shdr = GetShdrByIndex(i);
if (IsStrtabShdr(shdr)) {
return shdr;
}
}
return NULL;
}
STATIC
const UINT8 *
GetSymName (
Elf_Sym *Sym
)
{
Elf_Shdr *StrtabShdr;
UINT8 *StrtabContents;
BOOLEAN foundEnd;
UINT32 i;
if (Sym->st_name == 0) {
return NULL;
}
StrtabShdr = FindStrtabShdr();
if (StrtabShdr == NULL) {
return NULL;
}
assert(Sym->st_name < StrtabShdr->sh_size);
StrtabContents = (UINT8*)mEhdr + StrtabShdr->sh_offset;
foundEnd = FALSE;
for (i = Sym->st_name; (i < StrtabShdr->sh_size) && !foundEnd; i++) {
foundEnd = (BOOLEAN)(StrtabContents[i] == 0);
}
assert(foundEnd);
return StrtabContents + Sym->st_name;
}
//
// Elf functions interface implementation
//
STATIC
VOID
ScanSections32 (
VOID
)
{
UINT32 i;
EFI_IMAGE_DOS_HEADER *DosHdr;
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
UINT32 CoffEntry;
UINT32 SectionCount;
BOOLEAN FoundSection;
CoffEntry = 0;
mCoffOffset = 0;
//
// Coff file start with a DOS header.
//
mCoffOffset = sizeof(EFI_IMAGE_DOS_HEADER) + 0x40;
mNtHdrOffset = mCoffOffset;
switch (mEhdr->e_machine) {
case EM_386:
case EM_ARM:
mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32);
break;
default:
VerboseMsg ("%s unknown e_machine type. Assume IA-32", (UINTN)mEhdr->e_machine);
mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32);
break;
}
mTableOffset = mCoffOffset;
mCoffOffset += mCoffNbrSections * sizeof(EFI_IMAGE_SECTION_HEADER);
//
// Set mCoffAlignment to the maximum alignment of the input sections
// we care about
//
for (i = 0; i < mEhdr->e_shnum; i++) {
Elf_Shdr *shdr = GetShdrByIndex(i);
if (shdr->sh_addralign <= mCoffAlignment) {
continue;
}
if (IsTextShdr(shdr) || IsDataShdr(shdr) || IsHiiRsrcShdr(shdr)) {
mCoffAlignment = (UINT32)shdr->sh_addralign;
}
}
//
// Check if mCoffAlignment is larger than MAX_COFF_ALIGNMENT
//
if (mCoffAlignment > MAX_COFF_ALIGNMENT) {
Error (NULL, 0, 3000, "Invalid", "Section alignment is larger than MAX_COFF_ALIGNMENT.");
assert (FALSE);
}
//
// Move the PE/COFF header right before the first section. This will help us
// save space when converting to TE.
//
if (mCoffAlignment > mCoffOffset) {
mNtHdrOffset += mCoffAlignment - mCoffOffset;
mTableOffset += mCoffAlignment - mCoffOffset;
mCoffOffset = mCoffAlignment;
}
//
// First text sections.
//
mCoffOffset = CoffAlign(mCoffOffset);
mTextOffset = mCoffOffset;
FoundSection = FALSE;
SectionCount = 0;
for (i = 0; i < mEhdr->e_shnum; i++) {
Elf_Shdr *shdr = GetShdrByIndex(i);
if (IsTextShdr(shdr)) {
if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
// the alignment field is valid
if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
// if the section address is aligned we must align PE/COFF
mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
} else {
Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
}
}
/* Relocate entry. */
if ((mEhdr->e_entry >= shdr->sh_addr) &&
(mEhdr->e_entry < shdr->sh_addr + shdr->sh_size)) {
CoffEntry = mCoffOffset + mEhdr->e_entry - shdr->sh_addr;
}
//
// Set mTextOffset with the offset of the first '.text' section
//
if (!FoundSection) {
mTextOffset = mCoffOffset;
FoundSection = TRUE;
}
mCoffSectionsOffset[i] = mCoffOffset;
mCoffOffset += shdr->sh_size;
SectionCount ++;
}
}
if (!FoundSection) {
Error (NULL, 0, 3000, "Invalid", "Did not find any '.text' section.");
assert (FALSE);
}
mDebugOffset = DebugRvaAlign(mCoffOffset);
mCoffOffset = CoffAlign(mCoffOffset);
if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
Warning (NULL, 0, 0, NULL, "Multiple sections in %s are merged into 1 text section. Source level debug might not work correctly.", mInImageName);
}
//
// Then data sections.
//
mDataOffset = mCoffOffset;
FoundSection = FALSE;
SectionCount = 0;
for (i = 0; i < mEhdr->e_shnum; i++) {
Elf_Shdr *shdr = GetShdrByIndex(i);
if (IsDataShdr(shdr)) {
if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
// the alignment field is valid
if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
// if the section address is aligned we must align PE/COFF
mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
} else {
Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
}
}
//
// Set mDataOffset with the offset of the first '.data' section
//
if (!FoundSection) {
mDataOffset = mCoffOffset;
FoundSection = TRUE;
}
mCoffSectionsOffset[i] = mCoffOffset;
mCoffOffset += shdr->sh_size;
SectionCount ++;
}
}
if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
Warning (NULL, 0, 0, NULL, "Multiple sections in %s are merged into 1 data section. Source level debug might not work correctly.", mInImageName);
}
//
// Make room for .debug data in .data (or .text if .data is empty) instead of
// putting it in a section of its own. This is explicitly allowed by the
// PE/COFF spec, and prevents bloat in the binary when using large values for
// section alignment.
//
if (SectionCount > 0) {
mDebugOffset = DebugRvaAlign(mCoffOffset);
}
mCoffOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY) +
sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) +
strlen(mInImageName) + 1;
mCoffOffset = CoffAlign(mCoffOffset);
if (SectionCount == 0) {
mDataOffset = mCoffOffset;
}
//
// The HII resource sections.
//
mHiiRsrcOffset = mCoffOffset;
for (i = 0; i < mEhdr->e_shnum; i++) {
Elf_Shdr *shdr = GetShdrByIndex(i);
if (IsHiiRsrcShdr(shdr)) {
if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
// the alignment field is valid
if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
// if the section address is aligned we must align PE/COFF
mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
} else {
Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
}
}
if (shdr->sh_size != 0) {
mHiiRsrcOffset = mCoffOffset;
mCoffSectionsOffset[i] = mCoffOffset;
mCoffOffset += shdr->sh_size;
mCoffOffset = CoffAlign(mCoffOffset);
SetHiiResourceHeader ((UINT8*) mEhdr + shdr->sh_offset, mHiiRsrcOffset);
}
break;
}
}
mRelocOffset = mCoffOffset;
//
// Allocate base Coff file. Will be expanded later for relocations.
//
mCoffFile = (UINT8 *)malloc(mCoffOffset);
if (mCoffFile == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
}
assert (mCoffFile != NULL);
memset(mCoffFile, 0, mCoffOffset);
//
// Fill headers.
//
DosHdr = (EFI_IMAGE_DOS_HEADER *)mCoffFile;
DosHdr->e_magic = EFI_IMAGE_DOS_SIGNATURE;
DosHdr->e_lfanew = mNtHdrOffset;
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(mCoffFile + mNtHdrOffset);
NtHdr->Pe32.Signature = EFI_IMAGE_NT_SIGNATURE;
switch (mEhdr->e_machine) {
case EM_386:
NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32;
NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
break;
case EM_ARM:
NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_ARMT;
NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
break;
default:
VerboseMsg ("%s unknown e_machine type %hu. Assume IA-32", mInImageName, mEhdr->e_machine);
NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32;
NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
}
NtHdr->Pe32.FileHeader.NumberOfSections = mCoffNbrSections;
NtHdr->Pe32.FileHeader.TimeDateStamp = (UINT32) time(NULL);
mImageTimeStamp = NtHdr->Pe32.FileHeader.TimeDateStamp;
NtHdr->Pe32.FileHeader.PointerToSymbolTable = 0;
NtHdr->Pe32.FileHeader.NumberOfSymbols = 0;
NtHdr->Pe32.FileHeader.SizeOfOptionalHeader = sizeof(NtHdr->Pe32.OptionalHeader);
NtHdr->Pe32.FileHeader.Characteristics = EFI_IMAGE_FILE_EXECUTABLE_IMAGE
| EFI_IMAGE_FILE_LINE_NUMS_STRIPPED
| EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED
| EFI_IMAGE_FILE_32BIT_MACHINE;
NtHdr->Pe32.OptionalHeader.SizeOfCode = mDataOffset - mTextOffset;
NtHdr->Pe32.OptionalHeader.SizeOfInitializedData = mRelocOffset - mDataOffset;
NtHdr->Pe32.OptionalHeader.SizeOfUninitializedData = 0;
NtHdr->Pe32.OptionalHeader.AddressOfEntryPoint = CoffEntry;
NtHdr->Pe32.OptionalHeader.BaseOfCode = mTextOffset;
NtHdr->Pe32.OptionalHeader.BaseOfData = mDataOffset;
NtHdr->Pe32.OptionalHeader.ImageBase = 0;
NtHdr->Pe32.OptionalHeader.SectionAlignment = mCoffAlignment;
NtHdr->Pe32.OptionalHeader.FileAlignment = mCoffAlignment;
NtHdr->Pe32.OptionalHeader.SizeOfImage = 0;
NtHdr->Pe32.OptionalHeader.SizeOfHeaders = mTextOffset;
NtHdr->Pe32.OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES;
//
// Section headers.
//
if ((mDataOffset - mTextOffset) > 0) {
CreateSectionHeader (".text", mTextOffset, mDataOffset - mTextOffset,
EFI_IMAGE_SCN_CNT_CODE
| EFI_IMAGE_SCN_MEM_EXECUTE
| EFI_IMAGE_SCN_MEM_READ);
} else {
// Don't make a section of size 0.
NtHdr->Pe32.FileHeader.NumberOfSections--;
}
if ((mHiiRsrcOffset - mDataOffset) > 0) {
CreateSectionHeader (".data", mDataOffset, mHiiRsrcOffset - mDataOffset,
EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
| EFI_IMAGE_SCN_MEM_WRITE
| EFI_IMAGE_SCN_MEM_READ);
} else {
// Don't make a section of size 0.
NtHdr->Pe32.FileHeader.NumberOfSections--;
}
if ((mRelocOffset - mHiiRsrcOffset) > 0) {
CreateSectionHeader (".rsrc", mHiiRsrcOffset, mRelocOffset - mHiiRsrcOffset,
EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
| EFI_IMAGE_SCN_MEM_READ);
NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = mRelocOffset - mHiiRsrcOffset;
NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = mHiiRsrcOffset;
} else {
// Don't make a section of size 0.
NtHdr->Pe32.FileHeader.NumberOfSections--;
}
}
STATIC
BOOLEAN
WriteSections32 (
SECTION_FILTER_TYPES FilterType
)
{
UINT32 Idx;
Elf_Shdr *SecShdr;
UINT32 SecOffset;
BOOLEAN (*Filter)(Elf_Shdr *);
//
// Initialize filter pointer
//
switch (FilterType) {
case SECTION_TEXT:
Filter = IsTextShdr;
break;
case SECTION_HII:
Filter = IsHiiRsrcShdr;
break;
case SECTION_DATA:
Filter = IsDataShdr;
break;
default:
return FALSE;
}
//
// First: copy sections.
//
for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
Elf_Shdr *Shdr = GetShdrByIndex(Idx);
if ((*Filter)(Shdr)) {
switch (Shdr->sh_type) {
case SHT_PROGBITS:
/* Copy. */
if (Shdr->sh_offset + Shdr->sh_size > mFileBufferSize) {
return FALSE;
}
memcpy(mCoffFile + mCoffSectionsOffset[Idx],
(UINT8*)mEhdr + Shdr->sh_offset,
Shdr->sh_size);
break;
case SHT_NOBITS:
memset(mCoffFile + mCoffSectionsOffset[Idx], 0, Shdr->sh_size);
break;
default:
//
// Ignore for unknown section type.
//
VerboseMsg ("%s unknown section type %x. We ignore this unknown section type.", mInImageName, (unsigned)Shdr->sh_type);
break;
}
}
}
//
// Second: apply relocations.
//
for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
//
// Determine if this is a relocation section.
//
Elf_Shdr *RelShdr = GetShdrByIndex(Idx);
if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) {
continue;
}
//
// Relocation section found. Now extract section information that the relocations
// apply to in the ELF data and the new COFF data.
//
SecShdr = GetShdrByIndex(RelShdr->sh_info);
SecOffset = mCoffSectionsOffset[RelShdr->sh_info];
//
// Only process relocations for the current filter type.
//
if (RelShdr->sh_type == SHT_REL && (*Filter)(SecShdr)) {
UINT32 RelOffset;
//
// Determine the symbol table referenced by the relocation data.
//
Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link);
UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset;
//
// Process all relocation entries for this section.
//
for (RelOffset = 0; RelOffset < RelShdr->sh_size; RelOffset += RelShdr->sh_entsize) {
//
// Set pointer to relocation entry
//
Elf_Rel *Rel = (Elf_Rel *)((UINT8*)mEhdr + RelShdr->sh_offset + RelOffset);
//
// Set pointer to symbol table entry associated with the relocation entry.
//
Elf_Sym *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize);
Elf_Shdr *SymShdr;
UINT8 *Targ;
UINT16 Address;
//
// Check section header index found in symbol table and get the section
// header location.
//
if (Sym->st_shndx == SHN_UNDEF
|| Sym->st_shndx >= mEhdr->e_shnum) {
const UINT8 *SymName = GetSymName(Sym);
if (SymName == NULL) {
SymName = (const UINT8 *)"<unknown>";
}
Error (NULL, 0, 3000, "Invalid",
"%s: Bad definition for symbol '%s'@%#x or unsupported symbol type. "
"For example, absolute and undefined symbols are not supported.",
mInImageName, SymName, Sym->st_value);
exit(EXIT_FAILURE);
}
SymShdr = GetShdrByIndex(Sym->st_shndx);
//
// Convert the relocation data to a pointer into the coff file.
//
// Note:
// r_offset is the virtual address of the storage unit to be relocated.
// sh_addr is the virtual address for the base of the section.
//
Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr);
//
// Determine how to handle each relocation type based on the machine type.
//
if (mEhdr->e_machine == EM_386) {
switch (ELF_R_TYPE(Rel->r_info)) {
case R_386_NONE:
break;
case R_386_32:
//
// Absolute relocation.
// Converts Targ from a absolute virtual address to the absolute
// COFF address.
//
*(UINT32 *)Targ = *(UINT32 *)Targ - SymShdr->sh_addr
+ mCoffSectionsOffset[Sym->st_shndx];
break;
case R_386_PC32:
//
// Relative relocation: Symbol - Ip + Addend
//
*(UINT32 *)Targ = *(UINT32 *)Targ
+ (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr)
- (SecOffset - SecShdr->sh_addr);
break;
default:
Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_386 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
}
} else if (mEhdr->e_machine == EM_ARM) {
switch (ELF32_R_TYPE(Rel->r_info)) {
case R_ARM_RBASE:
// No relocation - no action required
// break skipped
case R_ARM_PC24:
case R_ARM_REL32:
case R_ARM_XPC25:
case R_ARM_THM_PC22:
case R_ARM_THM_JUMP19:
case R_ARM_CALL:
case R_ARM_JMP24:
case R_ARM_THM_JUMP24:
case R_ARM_PREL31:
case R_ARM_MOVW_PREL_NC:
case R_ARM_MOVT_PREL:
case R_ARM_THM_MOVW_PREL_NC:
case R_ARM_THM_MOVT_PREL:
case R_ARM_THM_JMP6:
case R_ARM_THM_ALU_PREL_11_0:
case R_ARM_THM_PC12:
case R_ARM_REL32_NOI:
case R_ARM_ALU_PC_G0_NC:
case R_ARM_ALU_PC_G0:
case R_ARM_ALU_PC_G1_NC:
case R_ARM_ALU_PC_G1:
case R_ARM_ALU_PC_G2:
case R_ARM_LDR_PC_G1:
case R_ARM_LDR_PC_G2:
case R_ARM_LDRS_PC_G0:
case R_ARM_LDRS_PC_G1:
case R_ARM_LDRS_PC_G2:
case R_ARM_LDC_PC_G0:
case R_ARM_LDC_PC_G1:
case R_ARM_LDC_PC_G2:
case R_ARM_THM_JUMP11:
case R_ARM_THM_JUMP8:
case R_ARM_TLS_GD32:
case R_ARM_TLS_LDM32:
case R_ARM_TLS_IE32:
// Thease are all PC-relative relocations and don't require modification
// GCC does not seem to have the concept of a application that just needs to get relocated.
break;
case R_ARM_THM_MOVW_ABS_NC:
// MOVW is only lower 16-bits of the addres
Address = (UINT16)(Sym->st_value - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
ThumbMovtImmediatePatch ((UINT16 *)Targ, Address);
break;
case R_ARM_THM_MOVT_ABS:
// MOVT is only upper 16-bits of the addres
Address = (UINT16)((Sym->st_value - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]) >> 16);
ThumbMovtImmediatePatch ((UINT16 *)Targ, Address);
break;
case R_ARM_ABS32:
case R_ARM_RABS32:
//
// Absolute relocation.
//
*(UINT32 *)Targ = *(UINT32 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
break;
default:
Error (NULL, 0, 3000, "Invalid", "WriteSections (): %s unsupported ELF EM_ARM relocation 0x%x.", mInImageName, (unsigned) ELF32_R_TYPE(Rel->r_info));
}
}
}
}
}
return TRUE;
}
UINTN gMovwOffset = 0;
STATIC
VOID
WriteRelocations32 (
VOID
)
{
UINT32 Index;
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
EFI_IMAGE_DATA_DIRECTORY *Dir;
BOOLEAN FoundRelocations;
Elf_Dyn *Dyn;
Elf_Rel *Rel;
UINTN RelElementSize;
UINTN RelSize;
UINTN RelOffset;
UINTN K;
Elf32_Phdr *DynamicSegment;
for (Index = 0, FoundRelocations = FALSE; Index < mEhdr->e_shnum; Index++) {
Elf_Shdr *RelShdr = GetShdrByIndex(Index);
if ((RelShdr->sh_type == SHT_REL) || (RelShdr->sh_type == SHT_RELA)) {
Elf_Shdr *SecShdr = GetShdrByIndex (RelShdr->sh_info);
if (IsTextShdr(SecShdr) || IsDataShdr(SecShdr)) {
UINT32 RelIdx;
FoundRelocations = TRUE;
for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += RelShdr->sh_entsize) {
Rel = (Elf_Rel *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);
if (mEhdr->e_machine == EM_386) {
switch (ELF_R_TYPE(Rel->r_info)) {
case R_386_NONE:
case R_386_PC32:
//
// No fixup entry required.
//
break;
case R_386_32:
//
// Creates a relative relocation entry from the absolute entry.
//
CoffAddFixup(mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr),
EFI_IMAGE_REL_BASED_HIGHLOW);
break;
default:
Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_386 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
}
} else if (mEhdr->e_machine == EM_ARM) {
switch (ELF32_R_TYPE(Rel->r_info)) {
case R_ARM_RBASE:
// No relocation - no action required
// break skipped
case R_ARM_PC24:
case R_ARM_REL32:
case R_ARM_XPC25:
case R_ARM_THM_PC22:
case R_ARM_THM_JUMP19:
case R_ARM_CALL:
case R_ARM_JMP24:
case R_ARM_THM_JUMP24:
case R_ARM_PREL31:
case R_ARM_MOVW_PREL_NC:
case R_ARM_MOVT_PREL:
case R_ARM_THM_MOVW_PREL_NC:
case R_ARM_THM_MOVT_PREL:
case R_ARM_THM_JMP6:
case R_ARM_THM_ALU_PREL_11_0:
case R_ARM_THM_PC12:
case R_ARM_REL32_NOI:
case R_ARM_ALU_PC_G0_NC:
case R_ARM_ALU_PC_G0:
case R_ARM_ALU_PC_G1_NC:
case R_ARM_ALU_PC_G1:
case R_ARM_ALU_PC_G2:
case R_ARM_LDR_PC_G1:
case R_ARM_LDR_PC_G2:
case R_ARM_LDRS_PC_G0:
case R_ARM_LDRS_PC_G1:
case R_ARM_LDRS_PC_G2:
case R_ARM_LDC_PC_G0:
case R_ARM_LDC_PC_G1:
case R_ARM_LDC_PC_G2:
case R_ARM_THM_JUMP11:
case R_ARM_THM_JUMP8:
case R_ARM_TLS_GD32:
case R_ARM_TLS_LDM32:
case R_ARM_TLS_IE32:
// Thease are all PC-relative relocations and don't require modification
break;
case R_ARM_THM_MOVW_ABS_NC:
CoffAddFixup (
mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr),
EFI_IMAGE_REL_BASED_ARM_MOV32T
);
// PE/COFF treats MOVW/MOVT relocation as single 64-bit instruction
// Track this address so we can log an error for unsupported sequence of MOVW/MOVT
gMovwOffset = mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr);
break;
case R_ARM_THM_MOVT_ABS:
if ((gMovwOffset + 4) != (mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr))) {
Error (NULL, 0, 3000, "Not Supported", "PE/COFF requires MOVW+MOVT instruction sequence %x +4 != %x.", gMovwOffset, mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
}
break;
case R_ARM_ABS32:
case R_ARM_RABS32:
CoffAddFixup (
mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr),
EFI_IMAGE_REL_BASED_HIGHLOW
);
break;
default:
Error (NULL, 0, 3000, "Invalid", "WriteRelocations(): %s unsupported ELF EM_ARM relocation 0x%x.", mInImageName, (unsigned) ELF32_R_TYPE(Rel->r_info));
}
} else {
Error (NULL, 0, 3000, "Not Supported", "This tool does not support relocations for ELF with e_machine %u (processor type).", (unsigned) mEhdr->e_machine);
}
}
}
}
}
if (!FoundRelocations && (mEhdr->e_machine == EM_ARM)) {
/* Try again, but look for PT_DYNAMIC instead of SHT_REL */
for (Index = 0; Index < mEhdr->e_phnum; Index++) {
RelElementSize = 0;
RelSize = 0;
RelOffset = 0;
DynamicSegment = GetPhdrByIndex (Index);
if (DynamicSegment->p_type == PT_DYNAMIC) {
Dyn = (Elf32_Dyn *) ((UINT8 *)mEhdr + DynamicSegment->p_offset);
while (Dyn->d_tag != DT_NULL) {
switch (Dyn->d_tag) {
case DT_REL:
RelOffset = Dyn->d_un.d_val;
break;
case DT_RELSZ:
RelSize = Dyn->d_un.d_val;
break;
case DT_RELENT:
RelElementSize = Dyn->d_un.d_val;
break;
default:
break;
}
Dyn++;
}
if (( RelOffset == 0 ) || ( RelSize == 0 ) || ( RelElementSize == 0 )) {
Error (NULL, 0, 3000, "Invalid", "%s bad ARM dynamic relocations.", mInImageName);
}
for (Index = 0; Index < mEhdr->e_shnum; Index++) {
Elf_Shdr *shdr = GetShdrByIndex(Index);
//
// The PT_DYNAMIC section contains DT_REL relocations whose r_offset
// field is relative to the base of a segment (or the entire image),
// and not to the base of an ELF input section as is the case for
// SHT_REL sections. This means that we cannot fix up such relocations
// unless we cross-reference ELF sections and segments, considering
// that the output placement recorded in mCoffSectionsOffset[] is
// section based, not segment based.
//
// Fortunately, there is a simple way around this: we require that the
// in-memory layout of the ELF and PE/COFF versions of the binary is
// identical. That way, r_offset will retain its validity as a PE/COFF
// image offset, and we can record it in the COFF fixup table
// unmodified.
//
if (shdr->sh_addr != mCoffSectionsOffset[Index]) {
Error (NULL, 0, 3000,
"Invalid", "%s: PT_DYNAMIC relocations require identical ELF and PE/COFF section offsets.",
mInImageName);
}
}
for (K = 0; K < RelSize; K += RelElementSize) {
if (DynamicSegment->p_paddr == 0) {
// Older versions of the ARM ELF (SWS ESPC 0003 B-02) specification define DT_REL
// as an offset in the dynamic segment. p_paddr is defined to be zero for ARM tools
Rel = (Elf32_Rel *) ((UINT8 *) mEhdr + DynamicSegment->p_offset + RelOffset + K);
} else {
// This is how it reads in the generic ELF specification
Rel = (Elf32_Rel *) ((UINT8 *) mEhdr + RelOffset + K);
}
switch (ELF32_R_TYPE (Rel->r_info)) {
case R_ARM_RBASE:
break;
case R_ARM_RABS32:
CoffAddFixup (Rel->r_offset, EFI_IMAGE_REL_BASED_HIGHLOW);
break;
default:
Error (NULL, 0, 3000, "Invalid", "%s bad ARM dynamic relocations, unknown type %d.", mInImageName, ELF32_R_TYPE (Rel->r_info));
break;
}
}
break;
}
}
}
//
// Pad by adding empty entries.
//
while (mCoffOffset & (mCoffAlignment - 1)) {
CoffAddFixupEntry(0);
}
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
Dir = &NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC];
Dir->Size = mCoffOffset - mRelocOffset;
if (Dir->Size == 0) {
// If no relocations, null out the directory entry and don't add the .reloc section
Dir->VirtualAddress = 0;
NtHdr->Pe32.FileHeader.NumberOfSections--;
} else {
Dir->VirtualAddress = mRelocOffset;
CreateSectionHeader (".reloc", mRelocOffset, mCoffOffset - mRelocOffset,
EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
| EFI_IMAGE_SCN_MEM_DISCARDABLE
| EFI_IMAGE_SCN_MEM_READ);
}
}
STATIC
VOID
WriteDebug32 (
VOID
)
{
UINT32 Len;
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
EFI_IMAGE_DATA_DIRECTORY *DataDir;
EFI_IMAGE_DEBUG_DIRECTORY_ENTRY *Dir;
EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY *Nb10;
Len = strlen(mInImageName) + 1;
Dir = (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY*)(mCoffFile + mDebugOffset);
Dir->Type = EFI_IMAGE_DEBUG_TYPE_CODEVIEW;
Dir->SizeOfData = sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) + Len;
Dir->RVA = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
Dir->FileOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
Nb10 = (EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY*)(Dir + 1);
Nb10->Signature = CODEVIEW_SIGNATURE_NB10;
strcpy ((char *)(Nb10 + 1), mInImageName);
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
DataDir = &NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG];
DataDir->VirtualAddress = mDebugOffset;
DataDir->Size = sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
}
STATIC
VOID
SetImageSize32 (
VOID
)
{
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
//
// Set image size
//
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
NtHdr->Pe32.OptionalHeader.SizeOfImage = mCoffOffset;
}
STATIC
VOID
CleanUp32 (
VOID
)
{
if (mCoffSectionsOffset != NULL) {
free (mCoffSectionsOffset);
}
}