52 KiB
Monitoring Basics
This part of the Icinga 2 documentation provides an overview of all the basic monitoring concepts you need to know to run Icinga 2.
Hosts and Services
Icinga 2 can be used to monitor the availability of hosts and services. Hosts and services can be virtually anything which can be checked in some way:
- Network services (HTTP, SMTP, SNMP, SSH, etc.)
- Printers
- Switches / Routers
- Temperature Sensors
- Other local or network-accessible services
Host objects provide a mechanism to group services that are running on the same physical device.
Here is an example of a host object which defines two child services:
object Host "my-server1" {
address = "10.0.0.1"
check_command = "hostalive"
}
object Service "ping4" {
host_name = "localhost"
check_command = "ping4"
}
object Service "http" {
host_name = "localhost"
check_command = "http_ip"
}
The example creates two services ping4
and http
which belong to the
host my-server1
.
It also specifies that the host should perform its own check using the hostalive
check command.
The address
custom attribute is used by check commands to determine which network
address is associated with the host object.
Host States
Hosts can be in any of the following states:
Name | Description |
---|---|
UP | The host is available. |
DOWN | The host is unavailable. |
Service States
Services can be in any of the following states:
Name | Description |
---|---|
OK | The service is working properly. |
WARNING | The service is experiencing some problems but is still considered to be in working condition. |
CRITICAL | The service is in a critical state. |
UNKNOWN | The check could not determine the service's state. |
Hard and Soft States
When detecting a problem with a host/service Icinga re-checks the object a number of
times (based on the max_check_attempts
and retry_interval
settings) before sending
notifications. This ensures that no unnecessary notifications are sent for
transient failures. During this time the object is in a SOFT
state.
After all re-checks have been executed and the object is still in a non-OK
state the host/service switches to a HARD
state and notifications are sent.
Name | Description |
---|---|
HARD | The host/service's state hasn't recently changed. |
SOFT | The host/service has recently changed state and is being re-checked. |
Using Templates
Templates may be used to apply a set of identical attributes to more than one object:
template Service "generic-service" {
max_check_attempts = 3
check_interval = 5m
retry_interval = 1m
enable_perfdata = true
}
object Service "ping4" {
import "generic-service"
host_name = "localhost"
check_command = "ping4"
}
object Service "ping6" {
import "generic-service"
host_name = "localhost"
check_command = "ping6"
}
In this example the ping4
and ping6
services inherit properties from the
template generic-service
.
Objects as well as templates themselves can import an arbitrary number of templates. Attributes inherited from a template can be overridden in the object if necessary.
Apply objects based on rules
Instead of assigning each object (Service
, Notification
, Dependency
, ScheduledDowntime
)
based on attribute identifiers for example host_name
objects can be applied.
apply Service "ping4" {
import "generic-service"
check_command = "ping4"
assign where "generic-host" in host.templates
ignore where !host.address
}
In this example the ping4
service will be created as object for all hosts importing
the generic-host
template. If the address
attribute is not set, the host will be
ignored.
Groups
Groups are used for combining hosts, services, and users into accessible configuration attributes and views in external (web) interfaces.
Group membership is defined at the respective object itself. If
you have a hostgroup name windows
for example, and want to assign
specific hosts to this group for later viewing the group on your
alert dashboard, first create the hostgroup:
object HostGroup "windows" {
display_name = "Windows Servers"
}
Then add your hosts to this hostgroup
template Host "windows-server" {
groups += [ "windows" ]
}
object Host "mssql-srv1" {
import "windows-server"
vars.mssql_port = 1433
}
object Host "mssql-srv2" {
import "windows-server"
vars.mssql_port = 1433
}
This can be done for service and user groups the same way. Additionally
the user groups are associated as attributes in Notification
objects.
object UserGroup "windows-mssql-admins" {
display_name = "Windows MSSQL Admins"
}
template User "generic-windows-mssql-users" {
groups += [ "windows-mssql-admins" ]
}
object User "win-mssql-noc" {
import "generic-windows-mssql-users"
email = "noc@example.com"
}
object User "win-mssql-ops" {
import "generic-windows-mssql-users"
email = "ops@example.com"
}
Group Membership Assign
If there is a certain number of hosts, services or users matching a pattern
it's reasonable to assign the group object to these members.
Details on the assign where
syntax can be found [here]
object HostGroup "mssql" {
display_name = "MSSQL Servers"
assign where host.vars.mssql_port
}
In this inherited example from above all hosts with the var
mssql_port
set will be added as members to the host group mssql
.
Time Periods
Time Periods define time ranges in Icinga where event actions are
triggered, for example whether a service check is executed or not within
the check_period
attribute. Or a notification should be sent to
users or not, filtered by the period
and notification_period
configuration attributes for Notification
and User
objects.
Note
If you are familar with Icinga 1.x - these time period definitions are called
legacy timeperiods
in Icinga 2.An Icinga 2 legacy timeperiod requires the
ITL
provided templatelegacy-timeperiod
.
The TimePeriod
attribute ranges
may contain multiple directives,
including weekdays, days of the month, and calendar dates.
These types may overlap/override other types in your ranges dictionary.
The descending order of precedence is as follows:
- Calendar date (2008-01-01)
- Specific month date (January 1st)
- Generic month date (Day 15)
- Offset weekday of specific month (2nd Tuesday in December)
- Offset weekday (3rd Monday)
- Normal weekday (Tuesday)
If you don't set any check_period
or notification_period
attribute
on your configuration objects Icinga 2 assumes 24x7
as time period
as shown below.
object TimePeriod "24x7" {
import "legacy-timeperiod"
display_name = "Icinga 2 24x7 TimePeriod"
ranges = {
"monday" = "00:00-24:00"
"tuesday" = "00:00-24:00"
"wednesday" = "00:00-24:00"
"thursday" = "00:00-24:00"
"friday" = "00:00-24:00"
"saturday" = "00:00-24:00"
"sunday" = "00:00-24:00"
}
}
If your operation staff should only be notified during workhours
create a new timeperiod named workhours
defining a work day from
09:00 to 17:00.
object TimePeriod "workhours" {
import "legacy-timeperiod"
display_name = "Icinga 2 8x5 TimePeriod"
ranges = {
"monday" = "09:00-17:00"
"tuesday" = "09:00-17:00"
"wednesday" = "09:00-17:00"
"thursday" = "09:00-17:00"
"friday" = "09:00-17:00"
}
}
Use the period
attribute to assign time periods to
Notification
and Dependency
objects:
object Notification "mail" {
import "generic-notification"
host_name = "localhost"
command = "mail-notification"
users = [ "icingaadmin" ]
period = "workhours"
}
Commands
Icinga 2 uses three different command object types to specify how checks should be performed, notifications should be sent and events should be handled.
Environment Variables for Commands
Please check Runtime Custom Attributes as Environment Variables.
Check Commands
CheckCommand
objects define the command line how a check is called.
CheckCommand
objects require the ITL template
plugin-check-command
to support native plugin based check methods.
Unless you have done so already, download your check plugin and put it
into the PluginDir
directory. The following example uses the
check_disk
plugin shipped with the Monitoring Plugins package.
The plugin path and all command arguments are made a list of double-quoted string arguments for proper shell escaping.
Call the check_disk
plugin with the --help
parameter to see
all available options. Our example defines warning (-w
) and
critical (-c
) thresholds for the disk usage. Without any
partition defined (-p
) it will check all local partitions.
Define the default check command custom attribute disk_wfree
and disk_cfree
freely definable naming schema) and their default threshold values. You can
then use these custom attributes as runtime macros on the command line.
The default custom attributes can be overridden by the custom attributes
defined in the service using the check command disk
. The custom attributes
can also be inherited from a parent template using additive inheritance (+=
).
object CheckCommand "disk" {
import "plugin-check-command"
command = [
PluginDir + "/check_disk",
"-w", "$disk_wfree$%",
"-c", "$disk_cfree$%"
],
vars.disk_wfree = 20
vars.disk_cfree = 10
}
The host localhost
with the service disk
checks all disks with modified
custom attributes (warning thresholds at 10%
, critical thresholds at 5%
free disk space).
object Host "localhost" {
import "generic-host"
address = "127.0.0.1"
address6 = "::1"
}
object Service "disk" {
import "generic-service"
host_name = "localhost"
check_command = "disk"
vars.disk_wfree = 10
vars.disk_cfree = 5
}
Notification Commands
NotificationCommand
objects define how notifications are delivered to external
interfaces (E-Mail, XMPP, IRC, Twitter, etc).
NotificationCommand
objects require the ITL template
plugin-notification-command
to support native plugin-based notifications.
Below is an example using runtime macros from Icinga 2 (such as $service.output$
for
the current check output) sending an email to the user(s) associated with the
notification itself ($user.email$
).
If you want to specify default values for some of the custom attribute definitions,
you can add a vars
dictionary as shown for the CheckCommand
object.
object NotificationCommand "mail-service-notification" {
import "plugin-notification-command"
command = [ SysconfDir + "/icinga2/scripts/mail-notification.sh" ]
env = {
"NOTIFICATIONTYPE" = "$notification.type$"
"SERVICEDESC" = "$service.name$"
"HOSTALIAS" = "$host.display_name$",
"HOSTADDRESS" = "$address$",
"SERVICESTATE" = "$service.state$",
"LONGDATETIME" = "$icinga.long_date_time$",
"SERVICEOUTPUT" = "$service.output$",
"NOTIFICATIONAUTHORNAME" = "$notification.author$",
"NOTIFICATIONCOMMENT" = "$notification.comment$",
"HOSTDISPLAYNAME" = "$host.display_name$",
"SERVICEDISPLAYNAME" = "$service.display_name$",
"USEREMAIL" = "$user.email$"
}
}
The command attribute in the mail-service-notification
command refers to the following
shell script. The macros specified in the env
array are exported
as environment variables and can be used in the notification script:
#!/usr/bin/env bash
template=$(cat <<TEMPLATE
***** Icinga *****
Notification Type: $NOTIFICATIONTYPE
Service: $SERVICEDESC
Host: $HOSTALIAS
Address: $HOSTADDRESS
State: $SERVICESTATE
Date/Time: $LONGDATETIME
Additional Info: $SERVICEOUTPUT
Comment: [$NOTIFICATIONAUTHORNAME] $NOTIFICATIONCOMMENT
TEMPLATE
)
/usr/bin/printf "%b" $template | mail -s "$NOTIFICATIONTYPE - $HOSTDISPLAYNAME - $SERVICEDISPLAYNAME is $SERVICESTATE" $USEREMAIL
While it's possible to specify the entire notification command right
in the NotificationCommand object it is generally advisable to create a
shell script in the /etc/icinga2/scripts
directory and have the
NotificationCommand object refer to that.
Event Commands
Unlike notifications event commands are called on every service state change
if defined. Therefore the EventCommand
object should define a command line
evaluating the current service state and other service runtime attributes
available through runtime vars. Runtime macros such as $SERVICESTATETYPE$
and $SERVICESTATE$
will be processed by Icinga 2 helping on fine-granular
events being triggered.
Common use case scenarios are a failing HTTP check requiring an immediate restart via event command, or if an application is locked and requires a restart upon detection.
EventCommand
objects require the ITL template plugin-event-command
to support native plugin based checks.
When the event command is triggered on a service state change, it will
send a check result using the process_check_result
script forcibly
changing the service state back to OK
(-r 0
) providing some debug
information in the check output (-o
).
object EventCommand "plugin-event-process-check-result" {
import "plugin-event-command"
command = [
PluginDir + "/process_check_result",
"-H", "$host.name$",
"-S", "$service.name$",
"-c", LocalStateDir + "/run/icinga2/cmd/icinga2.cmd",
"-r", "0",
"-o", "Event Handler triggered in state '$service.state$' with output '$service.output$'."
]
}
Command Arguments
By defining a check command line using the command
attribute Icinga 2
will resolve all macros in the static string or array. Sometimes it is
required to extend the arguments list based on a met condition evaluated
at command execution. Or making arguments optional - only set if the
macro value can be resolved by Icinga 2.
object CheckCommand "check_http" {
import "plugin-check-command"
command = PluginDir + "/check_http"
arguments = {
"-H" = "$http_vhost$"
"-I" = "$http_address$"
"-u" = "$http_uri$"
"-p" = "$http_port$"
"-S" = {
set_if = "$http_ssl$"
}
"-w" = "$http_warn_time$"
"-c" = "$http_critical_time$"
}
vars.http_address = "$address$"
vars.http_ssl = false
}
The example shows the check_http
check command defining the most common
arguments. Each of them is optional by default and will be omitted if
the value is not set. For example if the service calling the check command
does not have vars.http_port
set, it won't get added to the command
line.
If the vars.http_ssl
custom attribute is set in the service, host or command
object definition, Icinga 2 will add the -S
argument based on the set_if
option to the command line.
That way you can use the check_http
command definition for both, with and
without SSL enabled checks saving you duplicated command definitions.
Details on all available options can be found in the CheckCommand object definition.
Notifications
Notifications for service and host problems are an integral part of your monitoring setup.
There are many ways of sending notifications, e.g. by e-mail, XMPP, IRC, Twitter, etc. On its own Icinga 2 does not know how to send notifications. Instead it relies on external mechanisms such as shell scripts to notify users.
A notification specification requires one or more users (and/or user groups)
who will be notified in case of problems. These users must have all custom
attributes defined which will be used in the NotificationCommand
on execution.
The user icingaadmin
in the example below will get notified only on WARNING
and
CRITICAL
states and problem
and recovery
notification types.
object User "icingaadmin" {
display_name = "Icinga 2 Admin"
enable_notifications = true
states = [ OK, Warning, Critical ]
types = [ Problem, Recovery ]
email = "icinga@localhost"
}
If you don't set the states
and types
configuration attributes for the User
object, notifications for all states and types
will be sent.
You should choose which information you (and your notified users) are interested in case of emergency, and also which information does not provide any value to you and your environment.
An example notification command is explained here.
You can add all shared attributes to a Notification
template which is inherited
to the defined notifications. That way you'll save duplicated attributes in each
Notification
object. Attributes can be overridden locally.
template Notification "generic-notification" {
interval = 15m
command = "mail-service-notification"
states = [ Warning, Critical, Unknown ]
types = [ Problem, Acknowledgement, Recovery, Custom, FlappingStart,
FlappingEnd, DowntimeStart,DowntimeEnd, DowntimeRemoved ]
period = "24x7"
}
The time period 24x7
is shipped as example configuration with Icinga 2.
Use the apply
keyword to create Notification
objects for your services:
apply Notification "mail" to Service {
import "generic-notification"
command = "mail-notification"
users = [ "icingaadmin" ]
assign where service.name == "mysql"
}
Instead of assigning users to notifications, you can also add the user_groups
attribute with a list of user groups to the Notification
object. Icinga 2 will
send notifications to all group members.
Notification Escalations
When a problem notification is sent and a problem still exists after re-notification you may want to escalate the problem to the next support level. A different approach is to configure the default notification by email, and escalate the problem via sms if not already solved.
You can define notification start and end times as additional configuration
attributes making the Notification
object a so-called notification escalation
.
Using templates you can share the basic notification attributes such as users or the
interval
(and override them for the escalation then).
Using the example from above, you can define additional users being escalated for sms notifications between start and end time.
object User "icinga-oncall-2nd-level" {
display_name = "Icinga 2nd Level"
vars.mobile = "+1 555 424642"
}
object User "icinga-oncall-1st-level" {
display_name = "Icinga 1st Level"
vars.mobile = "+1 555 424642"
}
Define an additional NotificationCommand
for SMS notifications.
Note
The example is not complete as there are many different SMS providers. Please note that sending SMS notifications will require an SMS provider or local hardware with a SIM card active.
object NotificationCommand "sms-notification" {
command = [
PluginDir + "/send_sms_notification",
"$mobile$",
"..."
}
The two new notification escalations are added onto the host localhost
and its service ping4
using the generic-notification
template.
The user icinga-oncall-2nd-level
will get notified by SMS (sms-notification
command) after 30m
until 1h
.
Note
The
interval
was set to 15m in thegeneric-notification
template example. Lower that value in your escalations by using a secondary template or overriding the attribute directly in thenotifications
array position forescalation-sms-2nd-level
.
If the problem does not get resolved or acknowledged preventing further notifications
the escalation-sms-1st-level
user will be escalated 1h
after the initial problem was
notified, but only for one hour (2h
as end
key for the times
dictionary).
apply Notification "mail" to Service {
import "generic-notification"
command = "mail-notification"
users = [ "icingaadmin" ]
assign where service.name == "ping4"
}
apply Notification "escalation-sms-2nd-level" to Service {
import "generic-notification"
command = "sms-notification"
users = [ "icinga-oncall-2nd-level" ]
times = {
begin = 30m
end = 1h
}
assign where service.name == "ping4"
}
apply Notification "escalation-sms-1st-level" to Service {
import "generic-notification"
command = "sms-notification"
users = [ "icinga-oncall-1st-level" ]
times = {
begin = 1h
end = 2h
}
assign where service.name == "ping4"
}
First Notification Delay
Sometimes the problem in question should not be notified when the first notification
happens, but a defined time duration afterwards. In Icinga 2 you can use the times
dictionary and set begin = 15m
as key and value if you want to suppress notifications
in the first 15 minutes. Leave out the end
key - if not set, Icinga 2 will not check against any
end time for this notification.
apply Notification "mail" to Service {
import "generic-notification"
command = "mail-notification"
users = [ "icingaadmin" ]
times.begin = 15m // delay first notification
assign where service.name == "ping4"
}
Notification Filters by State and Type
If there are no notification state and type filter attributes defined at the Notification
or User
object Icinga 2 assumes that all states and types are being notified.
Available state and type filters for notifications are:
template Notification "generic-notification" {
states = [ Warning, Critical, Unknown ]
types = [ Problem, Acknowledgement, Recovery, Custom, FlappingStart,
FlappingEnd, DowntimeStart, DowntimeEnd, DowntimeRemoved ]
}
If you are familiar with Icinga 1.x notification_options
please note that they have been split
into type and state, and allow more fine granular filtering for example on downtimes and flapping.
You can filter for acknowledgements and custom notifications too.
Downtimes
Downtimes can be scheduled for planned server maintenance or any other targetted service outage you are aware of in advance.
Downtimes will suppress any notifications, and may trigger other downtimes too. If the downtime was set by accident, or the duration exceeds the maintenance, you can manually cancel the downtime. Planned downtimes will also be taken into account for SLA reporting tools calculating the SLAs based on the state and downtime history.
Downtimes may overlap with their start and end times. If there
are multiple downtimes triggered for one object, the overall downtime depth
will be more than 1
. This is useful when you want to extend
your maintenance window taking longer than expected.
Fixed and Flexible Downtimes
A fixed
downtime will be activated at the defined start time, and
removed at the end time. During this time window the service state
will change to NOT-OK
and then actually trigger the downtime.
Notifications are suppressed and the downtime depth is incremented.
Common scenarios are a planned distribution upgrade on your linux
servers, or database updates in your warehouse. The customer knows
about a fixed downtime window between 23:00 and 24:00. After 24:00
all problems should be alerted again. Solution is simple -
schedule a fixed
downtime starting at 23:00 and ending at 24:00.
Unlike a fixed
downtime, a flexible
downtime end does not necessarily
happen at the provided end time. Instead the downtime will be triggered
by the state change in the time span defined by start and end time, but
then last a defined duration in minutes.
Imagine the following scenario: Your service is frequently polled by users trying to grab free deleted domains for immediate registration. Between 07:30 and 08:00 the impact will hit for 15 minutes and generate a network outage visible to the monitoring. The service is still alive, but answering too slow to Icinga 2 service checks. For that reason, you may want to schedule a downtime between 07:30 and 08:00 with a duration of 15 minutes. The downtime will then last from its trigger time until the duration is over. After that, the downtime is removed (may happen before or after the actual end time!).
Scheduling a downtime
This can either happen through a web interface or by sending an external command
to the external command pipe provided by the ExternalCommandListener
configuration.
Fixed downtimes require a start and end time (a duration will be ignored). Flexible downtimes need a start and end time for the time span, and a duration independent from that time span.
Triggered Downtimes
This is optional when scheduling a downtime. If there is already a downtime scheduled for a future maintenance, the current downtime can be triggered by that downtime. This renders useful if you have scheduled a host downtime and are now scheduling a child host's downtime getting triggered by the parent downtime on NOT-OK state change.
Recurring Downtimes
ScheduledDowntime objects can be used to set up recurring downtimes for services.
Example:
apply ScheduledDowntime "backup-downtime" to Service {
author = "icingaadmin"
comment = "Scheduled downtime for backup"
ranges = {
monday = "02:00-03:00"
tuesday = "02:00-03:00"
wednesday = "02:00-03:00"
thursday = "02:00-03:00"
friday = "02:00-03:00"
saturday = "02:00-03:00"
sunday = "02:00-03:00"
}
assign where "backup" in service.groups
}
Comments
Comments can be added at runtime and are persistent over restarts. You can add useful information for others on repeating incidents (for example "last time syslog at 100% cpu on 17.10.2013 due to stale nfs mount") which is primarly accessible using web interfaces.
Adding and deleting comment actions are possible through the external command pipe
provided with the ExternalCommandListener
configuration. The caller must
pass the comment id in case of manipulating an existing comment.
Acknowledgements
If a problem is alerted and notified you may signal the other notification receipients that you are aware of the problem and will handle it.
By sending an acknowledgement to Icinga 2 (using the external command pipe
provided with ExternalCommandListener
configuration) all future notifications
are suppressed, a new comment is added with the provided description and
a notification with the type NotificationFilterAcknowledgement
is sent
to all notified users.
Expiring Acknowledgements
Once a problem is acknowledged it may disappear from your handled problems
dashboard and no-one ever looks at it again since it will suppress
notifications too.
This fire-and-forget
action is quite common. If you're sure that a
current problem should be resolved in the future at a defined time,
you can define an expiration time when acknowledging the problem.
Icinga 2 will clear the acknowledgement when expired and start to re-notify if the problem persists.
Dependencies
Icinga 2 uses host and service Dependency objects.
The parent_host_name
and parent_service_name
attributes are mandatory for
service dependencies, parent_host_name
is required for host dependencies.
A service can depend on a host, and vice versa. A service has an implicit dependency (parent) to its host. A host to host dependency acts implicit as host parent relation. When dependencies are calculated, not only the immediate parent is taken into account but all parents are inherited.
A common scenario is the Icinga 2 server behind a router. Checking internet
access by pinging the Google DNS server google-dns
is a common method, but
will fail in case the dsl-router
host is down. Therefore the example below
defines a host dependency which acts implicit as parent relation too.
Furthermore the host may be reachable but ping probes are dropped by the
router's firewall. In case the dsl-router``ping4
service check fails, all
further checks for the ping4
service on host google-dns
service should
be suppressed. This is achieved by setting the disable_checks
attribute to true
.
object Host "dsl-router" {
address = "192.168.1.1"
}
object Host "google-dns" {
address = "8.8.8.8"
}
apply Service "ping4" {
import "generic-service"
check_command = "ping4"
assign where host.address
}
apply Dependency "internet" to Service {
parent_host_name = "dsl-router"
disable_checks = true
assign where host.name != "dsl-router"
}
Custom Attributes
Using Custom Attributes at Runtime
Custom attributes may be used in command definitions to dynamically change how the command is executed.
Additionally there are Icinga 2 features such as the PerfDataWriter
type
which use custom attributes to format their output.
Tip
Custom attributes are identified by the 'vars' dictionary attribute as short name. Accessing the different attribute keys is possible using the '.' accessor.
Custom attributes in command definitions or performance data templates are evaluated at runtime when executing a command. These custom attributes cannot be used elsewhere (e.g. in other configuration attributes).
Here is an example of a command definition which uses user-defined custom attributes:
object CheckCommand "my-ping" {
import "plugin-check-command"
command = [
PluginDir + "/check_ping",
"-4",
"-H", "$address$",
"-w", "$ping_wrta$,$ping_wpl$%",
"-c", "$ping_crta$,$ping_cpl$%",
"-p", "$ping_packets$",
"-t", "$ping_timeout$"
]
vars.ping_wrta = 100
vars.ping_wpl = 5
vars.ping_crta = 200
vars.ping_cpl = 15
vars.ping_packets = 5
vars.ping_timeout = 0
}
Custom attribute names used at runtime must be enclosed in two $
signs, e.g.
$address$
. When using the $
sign as single character, you need to escape
it with an additional dollar sign ($$
).
Runtime Custom Attributes Evaluation Order
When executing commands Icinga 2 checks the following objects in this order to look up custom attributes and their respective values:
- User object (only for notifications)
- Service object
- Host object
- Command object
- Global custom attributes in the Vars constant
This execution order allows you to define default values for custom attributes
in your command objects. The my-ping
command shown above uses this to set
default values for some of the latency thresholds and timeouts.
When using the my-ping
command you can override all or some of the custom
attributes in the service definition like this:
object Service "ping" {
host_name = "localhost"
check_command = "my-ping"
vars.ping_packets = 10 // Overrides the default value of 5 given in the command
}
If a custom attribute isn't defined anywhere an empty value is used and a warning is emitted to the Icinga 2 log.
Best Practice
By convention every host should have an
address
attribute. Hosts which have an IPv6 address should also have anaddress6
attribute.
Runtime Custom Attributes as Environment Variables
The env
command object attribute specifies a list of environment variables with values calculated
from either runtime macros or custom attributes which should be exported as environment variables
prior to executing the command.
This is useful for example for hiding sensitive information on the command line output when passing credentials to database checks:
object CheckCommand "mysql-health" {
import "plugin-check-command",
command = PluginDir + "/check_mysql -H $address$ -d $db$",
vars.mysql_user = "icinga_check",
vars.mysql_pass = "password"
env.MYSQLUSER = "$mysql_user$",
env.MYSQLPASS = "$mysql_pass$"
}
Modified Attributes
Icinga 2 allows you to modify defined object attributes at runtime different to the local configuration object attributes. These modified attributes are stored as bit-shifted-value and made available in backends. Icinga 2 stores modified attributes in its state file and restores them on restart.
Modified Attributes can be reset using external commands.
Runtime Macros
Next to custom attributes there are additional runtime macros made available by Icinga 2. These runtime macros reflect the current object state and may change over time while custom attributes are configured statically (but can be modified at runtime using external commands).
Host Runtime Macros
The following host custom attributes are available in all commands that are executed for hosts or services:
Name | Description |
---|---|
host.name | The name of the host object. |
host.display_name | The value of the display_name attribute. |
host.state | The host's current state. Can be one of UNREACHABLE , UP and DOWN . |
host.state_id | The host's current state. Can be one of 0 (up), 1 (down) and 2 (unreachable). |
host.state_type | The host's current state type. Can be one of SOFT and HARD . |
host.check_attempt | The current check attempt number. |
host.max_check_attempts | The maximum number of checks which are executed before changing to a hard state. |
host.last_state | The host's previous state. Can be one of UNREACHABLE , UP and DOWN . |
host.last_state_id | The host's previous state. Can be one of 0 (up), 1 (down) and 2 (unreachable). |
host.last_state_type | The host's previous state type. Can be one of SOFT and HARD . |
host.last_state_change | The last state change's timestamp. |
host.duration_sec | The time since the last state change. |
host.latency | The host's check latency. |
host.execution_time | The host's check execution time. |
host.output | The last check's output. |
host.perfdata | The last check's performance data. |
host.last_check | The timestamp when the last check was executed. |
host.num_services | Number of services associated with the host. |
host.num_services_ok | Number of services associated with the host which are in an OK state. |
host.num_services_warning | Number of services associated with the host which are in a WARNING state. |
host.num_services_unknown | Number of services associated with the host which are in an UNKNOWN state. |
host.num_services_critical | Number of services associated with the host which are in a CRITICAL state. |
Service Runtime Macros
The following service macros are available in all commands that are executed for services:
Name | Description |
---|---|
service.name | The short name of the service object. |
service.display_name | The value of the display_name attribute. |
service.check_command | The short name of the command along with any arguments to be used for the check. |
service.state | The service's current state. Can be one of OK , WARNING , CRITICAL and UNKNOWN . |
service.state_id | The service's current state. Can be one of 0 (ok), 1 (warning), 2 (critical) and 3 (unknown). |
service.state_type | The service's current state type. Can be one of SOFT and HARD . |
service.check_attempt | The current check attempt number. |
service.max_check_attempts | The maximum number of checks which are executed before changing to a hard state. |
service.last_state | The service's previous state. Can be one of OK , WARNING , CRITICAL and UNKNOWN . |
service.last_state_id | The service's previous state. Can be one of 0 (ok), 1 (warning), 2 (critical) and 3 (unknown). |
service.last_state_type | The service's previous state type. Can be one of SOFT and HARD . |
service.last_state_change | The last state change's timestamp. |
service.duration_sec | The time since the last state change. |
service.latency | The service's check latency. |
service.execution_time | The service's check execution time. |
service.output | The last check's output. |
service.perfdata | The last check's performance data. |
service.last_check | The timestamp when the last check was executed. |
Command Runtime Macros
The following custom attributes are available in all commands:
Name | Description |
---|---|
command.name | The name of the command object. |
User Runtime Macros
The following custom attributes are available in all commands that are executed for users:
Name | Description |
---|---|
user.name | The name of the user object. |
user.display_name | The value of the display_name attribute. |
Notification Runtime Macros
Name | Description |
---|---|
notification.type | The type of the notification. |
notification.author | The author of the notification comment, if existing. |
notification.comment | The comment of the notification, if existing. |
Global Runtime Macros
The following macros are available in all executed commands:
Name | Description |
---|---|
icinga.timet | Current UNIX timestamp. |
icinga.long_date_time | Current date and time including timezone information. Example: 2014-01-03 11:23:08 +0000 |
icinga.short_date_time | Current date and time. Example: 2014-01-03 11:23:08 |
icinga.date | Current date. Example: 2014-01-03 |
icinga.time | Current time including timezone information. Example: 11:23:08 +0000 |
icinga.uptime | Current uptime of the Icinga 2 process. |
The following macros provide global statistics:
Name | Description |
---|---|
icinga.num_services_ok | Current number of services in state 'OK'. |
icinga.num_services_warning | Current number of services in state 'Warning'. |
icinga.num_services_critical | Current number of services in state 'Critical'. |
icinga.num_services_unknown | Current number of services in state 'Unknown'. |
icinga.num_services_pending | Current number of pending services. |
icinga.num_services_unreachable | Current number of unreachable services. |
icinga.num_services_flapping | Current number of flapping services. |
icinga.num_services_in_downtime | Current number of services in downtime. |
icinga.num_services_acknowledged | Current number of acknowledged service problems. |
icinga.num_hosts_up | Current number of hosts in state 'Up'. |
icinga.num_hosts_down | Current number of hosts in state 'Down'. |
icinga.num_hosts_unreachable | Current number of unreachable hosts. |
icinga.num_hosts_flapping | Current number of flapping hosts. |
icinga.num_hosts_in_downtime | Current number of hosts in downtime. |
icinga.num_hosts_acknowledged | Current number of acknowledged host problems. |
Check Result Freshness
In Icinga 2 active check freshness is enabled by default. It is determined by the
check_interval
attribute and no incoming check results in that period of time.
threshold = last check execution time + check interval
Passive check freshness is calculated from the check_interval
attribute if set.
threshold = last check result time + check interval
If the freshness checks are invalid, a new check is executed defined by the
check_command
attribute.
Check Flapping
The flapping algorithm used in Icinga 2 does not store the past states but
calculcates the flapping threshold from a single value based on counters and
half-life values. Icinga 2 compares the value with a single flapping threshold
configuration attribute named flapping_threshold
.
Flapping detection can be enabled or disabled using the enable_flapping
attribute.
Volatile Services
By default all services remain in a non-volatile state. When a problem
occurs, the SOFT
state applies and once max_check_attempts
attribute
is reached with the check counter, a HARD
state transition happens.
Notifications are only triggered by HARD
state changes and are then
re-sent defined by the interval
attribute.
It may be reasonable to have a volatile service which stays in a HARD
state type if the service stays in a NOT-OK
state. That way each
service recheck will automatically trigger a notification unless the
service is acknowledged or in a scheduled downtime.
External Commands
Icinga 2 provides an external command pipe for processing commands triggering specific actions (for example rescheduling a service check through the web interface).
In order to enable the ExternalCommandListener
configuration use the
following command and restart Icinga 2 afterwards:
# icinga2-enable-feature command
Icinga 2 creates the command pipe file as /var/run/icinga2/cmd/icinga2.cmd
using the default configuration.
Web interfaces and other Icinga addons are able to send commands to Icinga 2 through the external command pipe, for example for rescheduling a forced service check:
# /bin/echo "[`date +%s`] SCHEDULE_FORCED_SVC_CHECK;localhost;ping4;`date +%s`" >> /var/run/icinga2/cmd/icinga2.cmd
# tail -f /var/log/messages
Oct 17 15:01:25 icinga-server icinga2: Executing external command: [1382014885] SCHEDULE_FORCED_SVC_CHECK;localhost;ping4;1382014885
Oct 17 15:01:25 icinga-server icinga2: Rescheduling next check for service 'ping4'
By default the command pipe file is owned by the group icingacmd
with read/write
permissions. Add your webserver's user to the group icingacmd
to
enable sending commands to Icinga 2 through your web interface:
# usermod -G -a icingacmd www-data
Debian packages use nagios
as the default user and group name. Therefore change icingacmd
to
nagios
.
External Command List
A list of currently supported external commands can be found here
Detailed information on the commands and their required parameters can be found on the Icinga 1.x documentation.
Event Handlers
Event handlers are defined as EventCommand
objects in Icinga 2.
Unlike notifications event commands are called on every host/service execution
if defined. Therefore the EventCommand
object should define a command line
evaluating the current service state and other service runtime attributes
available through runtime macros. Runtime macros such as $service.state_type$
and $service.state$
will be processed by Icinga 2 helping on fine-granular
events being triggered.
Common use case scenarios are a failing HTTP check requiring an immediate restart via event command, or if an application is locked and requires a restart upon detection.
Logging
Icinga 2 supports three different types of logging:
- File logging
- Syslog (on *NIX-based operating systems)
- Console logging (
STDOUT
on tty)
You can enable additional loggers using the icinga2-enable-feature
and icinga2-disable-feature
commands to configure loggers:
Feature | Description |
---|---|
debuglog | Debug log (path: /var/log/icinga2/debug.log , severity: debug or higher) |
mainlog | Main log (path: /var/log/icinga2/icinga2.log , severity: information or higher) |
syslog | Syslog (severity: warning or higher) |
By default file the mainlog
feature is enabled. When running Icinga 2
on a terminal log messages with severity information
or higher are
written to the console.
Performance Data
When a host or service check is executed plugins should provide so-called
performance data
. Next to that additional check performance data
can be fetched using Icinga 2 runtime macros such as the check latency
or the current service state (or additional custom attributes).
The performance data can be passed to external applications which aggregate and store them in their backends. These tools usually generate graphs for historical reporting and trending.
Well-known addons processing Icinga performance data are PNP4Nagios, inGraph and Graphite.
Writing Performance Data Files
PNP4Nagios, inGraph and Graphios use performance data collector daemons to fetch the current performance files for their backend updates.
Therefore the Icinga 2 PerfdataWriter
object allows you to define
the output template format for host and services backed with Icinga 2
runtime vars.
host_format_template = "DATATYPE::HOSTPERFDATA\tTIMET::$icinga.timet$\tHOSTNAME::$host.name$\tHOSTPERFDATA::$host.perfdata$\tHOSTCHECKCOMMAND::$host.checkcommand$\tHOSTSTATE::$host.state$\tHOSTSTATETYPE::$host.statetype$"
service_format_template = "DATATYPE::SERVICEPERFDATA\tTIMET::$icinga.timet$\tHOSTNAME::$host.name$\tSERVICEDESC::$service.description$\tSERVICEPERFDATA::$service.perfdata$\tSERVICECHECKCOMMAND::$service.checkcommand$\tHOSTSTATE::$host.state$\tHOSTSTATETYPE::$host.statetype$\tSERVICESTATE::$service.state$\tSERVICESTATETYPE::$service.statetype$"
The default templates are already provided with the Icinga 2 feature configuration which can be enabled using
# icinga2-enable-feature perfdata
By default all performance data files are rotated in a 15 seconds interval into
the /var/spool/icinga2/perfdata/
directory as host-perfdata.<timestamp>
and
service-perfdata.<timestamp>
.
External collectors need to parse the rotated performance data files and then
remove the processed files.
Graphite Carbon Cache Writer
While there are some Graphite collector scripts and daemons like Graphios available for Icinga 1.x it's more reasonable to directly process the check and plugin performance in memory in Icinga 2. Once there are new metrics available, Icinga 2 will directly write them to the defined Graphite Carbon daemon tcp socket.
You can enable the feature using
# icinga2-enable-feature graphite
By default the GraphiteWriter
object expects the Graphite Carbon Cache to listen at
127.0.0.1
on port 2003
.
The current naming schema is
icinga.<hostname>.<metricname>
icinga.<hostname>.<servicename>.<metricname>
Status Data
Icinga 1.x writes object configuration data and status data in a cyclic
interval to its objects.cache
and status.dat
files. Icinga 2 provides
the StatusDataWriter
object which dumps all configuration objects and
status updates in a regular interval.
# icinga2-enable-feature statusdata
Icinga 1.x Classic UI requires this data set as part of its backend.
Note
If you are not using any web interface or addon which uses these files you can safely disable this feature.
Compat Logging
The Icinga 1.x log format is considered being the Compat Log
in Icinga 2 provided with the CompatLogger
object.
These logs are not only used for informational representation in
external web interfaces parsing the logs, but also to generate
SLA reports and trends in Icinga 1.x Classic UI. Futhermore the
Livestatus
feature uses these logs for answering queries to
historical tables.
The CompatLogger
object can be enabled with
# icinga2-enable-feature compatlog
By default, the Icinga 1.x log file called icinga.log
is located
in /var/log/icinga2/compat
. Rotated log files are moved into
var/log/icinga2/compat/archives
.
The format cannot be changed without breaking compatibility to existing log parsers.
# tail -f /var/log/icinga2/compat/icinga.log
[1382115688] LOG ROTATION: HOURLY
[1382115688] LOG VERSION: 2.0
[1382115688] HOST STATE: CURRENT;localhost;UP;HARD;1;
[1382115688] SERVICE STATE: CURRENT;localhost;disk;WARNING;HARD;1;
[1382115688] SERVICE STATE: CURRENT;localhost;http;OK;HARD;1;
[1382115688] SERVICE STATE: CURRENT;localhost;load;OK;HARD;1;
[1382115688] SERVICE STATE: CURRENT;localhost;ping4;OK;HARD;1;
[1382115688] SERVICE STATE: CURRENT;localhost;ping6;OK;HARD;1;
[1382115688] SERVICE STATE: CURRENT;localhost;processes;WARNING;HARD;1;
[1382115688] SERVICE STATE: CURRENT;localhost;ssh;OK;HARD;1;
[1382115688] SERVICE STATE: CURRENT;localhost;users;OK;HARD;1;
[1382115706] EXTERNAL COMMAND: SCHEDULE_FORCED_SVC_CHECK;localhost;disk;1382115705
[1382115706] EXTERNAL COMMAND: SCHEDULE_FORCED_SVC_CHECK;localhost;http;1382115705
[1382115706] EXTERNAL COMMAND: SCHEDULE_FORCED_SVC_CHECK;localhost;load;1382115705
[1382115706] EXTERNAL COMMAND: SCHEDULE_FORCED_SVC_CHECK;localhost;ping4;1382115705
[1382115706] EXTERNAL COMMAND: SCHEDULE_FORCED_SVC_CHECK;localhost;ping6;1382115705
[1382115706] EXTERNAL COMMAND: SCHEDULE_FORCED_SVC_CHECK;localhost;processes;1382115705
[1382115706] EXTERNAL COMMAND: SCHEDULE_FORCED_SVC_CHECK;localhost;ssh;1382115705
[1382115706] EXTERNAL COMMAND: SCHEDULE_FORCED_SVC_CHECK;localhost;users;1382115705
[1382115731] EXTERNAL COMMAND: PROCESS_SERVICE_CHECK_RESULT;localhost;ping6;2;critical test|
[1382115731] SERVICE ALERT: localhost;ping6;CRITICAL;SOFT;2;critical test
Check Result Files
Icinga 1.x writes its check result files into a temporary spool directory where it reads these check result files in a regular interval from. While this is extremly inefficient in performance regards it has been rendered useful for passing passive check results directly into Icinga 1.x skipping the external command pipe.
Several clustered/distributed environments and check-aggregation addons
use that method. In order to support step-by-step migration of these
environments, Icinga 2 ships the CheckResultReader
object.
There is no feature configuration available, but it must be defined on-demand in your Icinga 2 objects configuration.
object CheckResultReader "reader" {
spool_dir = "/data/check-results"
}