27 KiB
Language Reference
Object Definition
Icinga 2 features an object-based configuration format. You can define new
objects using the object
keyword:
object Host "host1.example.org" {
display_name = "host1"
address = "192.168.0.1"
address6 = "::1"
}
In general you need to write each statement on a new line. Expressions started
with {
, (
and [
extend until the matching closing character and can be broken
up into multiple lines.
Alternatively you can write multiple statements on a single line by separating them with a semicolon:
object Host "host1.example.org" {
display_name = "host1"
address = "192.168.0.1"; address6 = "::1"
}
Each object is uniquely identified by its type (Host
) and name
(host1.example.org
). Some types have composite names, e.g. the
Service
type which uses the host_name
attribute and the name
you specified to generate its object name.
Exclamation marks (!) are not permitted in object names.
Objects can contain a comma-separated list of property declarations. Instead of commas semicolons may also be used. The following data types are available for property values:
All objects have at least the following attributes:
Attribute | Description |
---|---|
name | The name of the object. This attribute can be modified in the object definition to override the name specified with the object directive. |
type | The type of the object. |
Expressions
The following expressions can be used on the right-hand side of assignments.
Numeric Literals
A floating-point number.
Example:
27.3
Duration Literals
Similar to floating-point numbers except for the fact that they support suffixes to help with specifying time durations.
Example:
2.5m
Supported suffixes include ms (milliseconds), s (seconds), m (minutes), h (hours) and d (days).
Duration literals are converted to seconds by the config parser and are treated like numeric literals.
String Literals
A string.
Example:
"Hello World!"
Certain characters need to be escaped. The following escape sequences are supported:
Character | Escape sequence |
---|---|
" | \" |
\ | \\ |
$ |
|
<TAB> | \t |
<CARRIAGE-RETURN> | \r |
<LINE-FEED> | \n |
<BEL> | \b |
<FORM-FEED> | \f |
In addition to these pre-defined escape sequences you can specify arbitrary ASCII characters using the backslash character (\) followed by an ASCII character in octal encoding.
Multi-line String Literals
Strings spanning multiple lines can be specified by enclosing them in {{{ and }}}.
Example:
{{{This
is
a multi-line
string.}}}
Unlike in ordinary strings special characters do not have to be escaped in multi-line string literals.
Boolean Literals
The keywords true
and false
are used to denote truth values.
Null Value
The null
keyword can be used to specify an empty value.
Dictionary
An unordered list of key-value pairs. Keys must be unique and are compared in a case-sensitive manner.
Individual key-value pairs must either be comma-separated or on separate lines. The comma after the last key-value pair is optional.
Example:
{
address = "192.168.0.1"
port = 443
}
Identifiers may not contain certain characters (e.g. space) or start with certain characters (e.g. digits). If you want to use a dictionary key that is not a valid identifier you can enclose the key in double quotes.
Array
An ordered list of values.
Individual array elements must be comma-separated. The comma after the last element is optional.
Example:
[ "hello", 42 ]
An array may simultaneously contain values of different types, such as strings and numbers.
Operators
The following operators are supported in expressions. The operators are by descending precedence.
Operator | Precedence | Examples (Result) | Description |
---|---|---|---|
() | 1 | (3 + 3) * 5 | Groups sub-expressions |
() | 1 | Math.random() | Calls a function |
[] | 1 | a[3] | Array subscript |
. | 1 | a.b | Element access |
! | 2 | !"Hello" (false), !false (true) | Logical negation of the operand |
~ | 2 | ~true (false) | Bitwise negation of the operand |
-
| 2 | +3 | Unary plus
-
| 2 | -3 | Unary minus
-
| 3 | 5m * 10 (3000) | Multiplies two numbers
/ | 3 | 5m / 5 (60) | Divides two numbers % | 3 | 17 % 12 (5) | Remainder after division
-
| 4 | 1 + 3 (4), "hello " + "world" ("hello world") | Adds two numbers; concatenates strings
-
| 4 | 3 - 1 (2) | Subtracts two numbers
<< | 5 | 4 << 8 (1024) | Left shift
| 5 | 1024 >> 4 (64) | Right shift
< | 6 | 3 < 5 (true) | Less than
| 6 | 3 > 5 (false) | Greater than
<= | 6 | 3 <= 3 (true) | Less than or equal
= | 6 | 3 >= 3 (true) | Greater than or equal in | 7 | "foo" in [ "foo", "bar" ] (true) | Element contained in array !in | 7 | "foo" !in [ "bar", "baz" ] (true) | Element not contained in array == | 8 | "hello" == "hello" (true), 3 == 5 (false) | Equal to != | 8 | "hello" != "world" (true), 3 != 3 (false) | Not equal to & | 9 | 7 & 3 (3) | Binary AND ^ | 10 | 17 ^ 12 (29) | Bitwise XOR | | 11 | 2 | 3 (3) | Binary OR && | 13 | true && false (false), 3 && 7 (7), 0 && 7 (0) | Logical AND || | 14 | true || false (true), 0 || 7 (7)| Logical OR = | 12 | a = 3 | Assignment => | 15 | x => x * x (function with arg x) | Lambda, for loop
Function Calls
Functions can be called using the ()
operator:
const MyGroups = [ "test1", "test" ]
{
check_interval = len(MyGroups) * 1m
}
A list of available functions is available in the Library Reference chapter.
Assignments
In addition to the =
operator shown above a number of other operators
to manipulate attributes are supported. Here's a list of all
available operators:
Operator =
Sets an attribute to the specified value.
Example:
{
a = 5
a = 7
}
In this example a
has the value 7
after both instructions are executed.
Operator +=
The += operator is a shortcut. The following expression:
{
a = [ "hello" ]
a += [ "world" ]
}
is equivalent to:
{
a = [ "hello" ]
a = a + [ "world" ]
}
Operator -=
The -= operator is a shortcut. The following expression:
{
a = 10
a -= 5
}
is equivalent to:
{
a = 10
a = a - 5
}
Operator *=
The *= operator is a shortcut. The following expression:
{
a = 60
a *= 5
}
is equivalent to:
{
a = 60
a = a * 5
}
Operator /=
The /= operator is a shortcut. The following expression:
{
a = 300
a /= 5
}
is equivalent to:
{
a = 300
a = a / 5
}
Indexer
The indexer syntax provides a convenient way to set dictionary elements.
Example:
{
hello.key = "world"
}
Example (alternative syntax):
{
hello["key"] = "world"
}
This is equivalent to writing:
{
hello += {
key = "world"
}
}
If the hello
attribute does not already have a value it is automatically initialized to an empty dictionary.
Template Imports
Objects can import attributes from other objects.
Example:
template Host "default-host" {
vars.colour = "red"
}
template Host "test-host" {
import "default-host"
vars.colour = "blue"
}
object Host "localhost" {
import "test-host"
address = "127.0.0.1"
address6 = "::1"
}
The default-host
and test-host
objects are marked as templates
using the template
keyword. Unlike ordinary objects templates are not
instantiated at run-time. Parent objects do not necessarily have to be
templates, however in general they are.
The vars
dictionary for the localhost
object contains all three
custom attributes and the custom attribute colour
has the value "blue"
.
Parent objects are resolved in the order they're specified using the
import
keyword.
Constants
Global constants can be set using the const
keyword:
const VarName = "some value"
Once defined a constant can be accessed from any file. Constants cannot be changed once they are set.
Icinga 2 provides a number of special global constants. Some of them can be overridden using the --define
command line parameter:
Variable | Description |
---|---|
PrefixDir | Read-only. Contains the installation prefix that was specified with cmake -DCMAKE_INSTALL_PREFIX. Defaults to "/usr/local". |
SysconfDir | Read-only. Contains the path of the sysconf directory. Defaults to PrefixDir + "/etc". |
ZonesDir | Read-only. Contains the path of the zones.d directory. Defaults to SysconfDir + "/zones.d". |
LocalStateDir | Read-only. Contains the path of the local state directory. Defaults to PrefixDir + "/var". |
RunDir | Read-only. Contains the path of the run directory. Defaults to LocalStateDir + "/run". |
PkgDataDir | Read-only. Contains the path of the package data directory. Defaults to PrefixDir + "/share/icinga2". |
StatePath | Read-write. Contains the path of the Icinga 2 state file. Defaults to LocalStateDir + "/lib/icinga2/icinga2.state". |
ObjectsPath | Read-write. Contains the path of the Icinga 2 objects file. Defaults to LocalStateDir + "/cache/icinga2/icinga2.debug". |
PidPath | Read-write. Contains the path of the Icinga 2 PID file. Defaults to RunDir + "/icinga2/icinga2.pid". |
Vars | Read-write. Contains a dictionary with global custom attributes. Not set by default. |
NodeName | Read-write. Contains the cluster node name. Set to the local hostname by default. |
ApplicationType | Read-write. Contains the name of the Application type. Defaults to "icinga/IcingaApplication". |
EnableNotifications | Read-write. Whether notifications are globally enabled. Defaults to true. |
EnableEventHandlers | Read-write. Whether event handlers are globally enabled. Defaults to true. |
EnableFlapping | Read-write. Whether flap detection is globally enabled. Defaults to true. |
EnableHostChecks | Read-write. Whether active host checks are globally enabled. Defaults to true. |
EnableServiceChecks | Read-write. Whether active service checks are globally enabled. Defaults to true. |
EnablePerfdata | Read-write. Whether performance data processing is globally enabled. Defaults to true. |
UseVfork | Read-write. Whether to use vfork(). Only available on *NIX. Defaults to true. |
RunAsUser | Read-write. Defines the user the Icinga 2 daemon is running as. Used in the init.conf configuration file. |
RunAsGroup | Read-write. Defines the group the Icinga 2 daemon is running as. Used in the init.conf configuration file. |
Apply
The apply
keyword can be used to create new objects which are associated with
another group of objects.
apply Service "ping" to Host {
import "generic-service"
check_command = "ping4"
assign where host.name == "localhost"
}
In this example the assign where
condition is a boolean expression which is
evaluated for all objects of type Host
and a new service with name "ping"
is created for each matching host. Expression operators
may be used in assign where
conditions.
The to
keyword and the target type may be omitted if there is only one target
type, e.g. for the Service
type.
Depending on the object type used in the apply
expression additional local
variables may be available for use in the where
condition:
Source Type | Target Type | Variables |
---|---|---|
Service | Host | host |
Dependency | Host | host |
Dependency | Service | host, service |
Notification | Host | host |
Notification | Service | host, service |
ScheduledDowntime | Host | host |
ScheduledDowntime | Service | host, service |
Any valid config attribute can be accessed using the host
and service
variables. For example, host.address
would return the value of the host's
"address" attribute - or null if that attribute isn't set.
Group Assign
Group objects can be assigned to specific member objects using the assign where
and ignore where
conditions.
object HostGroup "linux-servers" {
display_name = "Linux Servers"
assign where host.vars.os == "Linux"
}
In this example the assign where
condition is a boolean expression which is evaluated
for all objects of the type Host
. Each matching host is added as member to the host group
with the name "linux-servers". Membership exclusion can be controlled using the ignore where
condition. Expression operators may be used in assign where
and
ignore where
conditions.
Source Type | Variables |
---|---|
HostGroup | host |
ServiceGroup | host, service |
UserGroup | user |
Boolean Values
The assign where
, ignore where
, if
and while
statements, the !
operator as
well as the bool()
function convert their arguments to a boolean value based on the
following rules:
Description | Example Value | Boolean Value |
---|---|---|
Empty value | null | false |
Zero | 0 | false |
Non-zero integer | -23945 | true |
Empty string | "" | false |
Non-empty string | "Hello" | true |
Empty array | [] | false |
Non-empty array | [ "Hello" ] | true |
Empty dictionary | {} | false |
Non-empty dictionary | { key = "value" } | true |
For a list of supported expression operators for assign where
and ignore where
statements, see expression operators.
Comments
The Icinga 2 configuration format supports C/C++-style and shell-style comments.
Example:
/*
This is a comment.
*/
object Host "localhost" {
check_interval = 30 // this is also a comment.
retry_interval = 15 # yet another comment
}
Includes
Other configuration files can be included using the include
directive.
Paths must be relative to the configuration file that contains the
include
directive.
Example:
include "some/other/file.conf"
include "conf.d/*.conf"
Wildcard includes are not recursive.
Icinga also supports include search paths similar to how they work in a C/C++ compiler:
include <itl>
Note the use of angle brackets instead of double quotes. This causes the config compiler to search the include search paths for the specified file. By default $PREFIX/share/icinga2/include is included in the list of search paths. Additional include search paths can be added using command-line options.
Wildcards are not permitted when using angle brackets.
Recursive Includes
The include_recursive
directive can be used to recursively include all
files in a directory which match a certain pattern.
Example:
include_recursive "conf.d", "*.conf"
include_recursive "templates"
The first parameter specifies the directory from which files should be recursively included.
The file names need to match the pattern given in the second parameter. When no pattern is specified the default pattern "*.conf" is used.
Library directive
The library
directive can be used to manually load additional
libraries. Libraries can be used to provide additional object types and
functions.
Example:
library "snmphelper"
Functions
Functions can be defined using the function
keyword.
Example:
function multiply(a, b) {
return a * b
}
When encountering the return
keyword further execution of the function is terminated and
the specified value is supplied to the caller of the function:
log(multiply(3, 5))
In this example the multiply
function we declared earlier is invoked with two arguments (3 and 5).
The function computes the product of those arguments and makes the result available to the
function's caller.
When no value is supplied for the return
statement the function returns null
.
Functions which do not have a return
statement have their return value set to the value of the
last expression which was performed by the function. For example, we could have also written our
multiply
function like this:
function multiply(a, b) {
a * b
}
Anonymous functions can be created by omitting the name in the function definition. The resulting function object can be used like any other value:
var fn = function() { 3 }
fn() /* Returns 3 */
Lambda Expressions
Functions can also be declared using the alternative lambda syntax.
Example:
f = (x) => x * x
Multiple statements can be used by putting the function body into braces:
f = (x) => {
log("Lambda called")
x * x
}
Just like with ordinary functions the return value is the value of the last statement.
For lambdas which take exactly one argument the braces around the arguments can be omitted:
f = x => x * x
Abbreviated Lambda Syntax
Lambdas which take no arguments can also be written using the abbreviated lambda syntax.
Example:
f = {{ 3 }}
This creates a new function which returns the value 3.
Variable Scopes
When setting a variable Icinga checks the following scopes in this order whether the variable already exists there:
- Local Scope
this
Scope- Global Scope
The local scope contains variables which only exist during the invocation of the current function,
object or apply statement. Local variables can be declared using the var
keyword:
function multiply(a, b) {
var temp = a * b
return temp
}
Each time the multiply
function is invoked a new temp
variable is used which is in no way
related to previous invocations of the function.
When setting a variable which has not previously been declared as local using the var
keyword
the this
scope is used.
The this
scope refers to the current object which the function or object/apply statement
operates on.
object Host "localhost" {
check_interval = 5m
}
In this example the this
scope refers to the "localhost" object. The check_interval
attribute
is set for this particular host.
You can explicitly access the this
scope using the this
keyword:
object Host "localhost" {
var check_interval = 5m
/* This explicitly specifies that the attribute should be set
* for the host, if we had omitted `this.` the (poorly named)
* local variable `check_interval` would have been modified instead.
*/
this.check_interval = 1m
}
Similarly the keywords locals
and globals
are available to access the local and global scope.
Functions also have a this
scope. However unlike for object/apply statements the this
scope for
a function is set to whichever object was used to invoke the function. Here's an example:
hm = {
h_word = null
function init(word) {
h_word = word
}
}
/* Let's invoke the init() function */
hm.init("hello")
We're using hm.init
to invoke the function which causes the value of hm
to become the this
scope for this function call.
Closures
By default function
s, object
s and apply
rules do not have access to variables declared
outside of their scope (except for global variables).
In order to access variables which are defined in the outer scope the use
keyword can be used:
function MakeHelloFunction(name) {
return function() use(name) {
log("Hello, " + name)
}
}
In this case a new variable name
is created inside the inner function's scope which has the
value of the name
function argument.
Alternatively a different value for the inner variable can be specified:
function MakeHelloFunction(name) {
return function() use (greeting = "Hello, " + name) {
log(greeting)
}
}
Conditional Statements
Sometimes it can be desirable to only evaluate statements when certain conditions are met. The if/else construct can be used to accomplish this.
Example:
a = 3
if (a < 5) {
a *= 7
} else if (a > 10) {
a *= 5
} else {
a *= 2
}
An if/else construct can also be used in place of any other value. The value of an if/else statement is the value of the last statement which was evaluated for the branch which was taken:
a = if (true) {
log("Taking the 'true' branch")
7 * 3
} else {
log("Taking the 'false' branch")
9
}
This example prints the log message "Taking the 'true' branch" and the a
variable is set to 21 (7 * 3).
The value of an if/else construct is null if the condition evaluates to false and no else branch is given.
While Loops
The while
statement checks a condition and executes the loop body when the condition evaluates to true
.
This is repeated until the condition is no longer true.
Example:
var num = 5
while (num > 5) {
log("Test")
num -= 1
}
The continue
and break
keywords can be used to control how the loop is executed: The continue
keyword
skips over the remaining expressions for the loop body and begins the next loop evaluation. The break
keyword
breaks out of the loop.
For Loops
The for
statement can be used to iterate over arrays and dictionaries.
Example:
var list = [ "a", "b", "c" ]
for (item in list) {
log("Item: " + item)
}
The loop body is evaluated once for each item in the array. The variable item
is declared as a local
variable just as if the var
keyword had been used.
Iterating over dictionaries can be accomplished in a similar manner:
var dict = { a = 3, b = 7 }
for (key => value in dict) {
log("Key: " + key + ", Value: " + value)
}
The continue
and break
keywords can be used to control how the loop is executed: The continue
keyword
skips over the remaining expressions for the loop body and begins the next loop evaluation. The break
keyword
breaks out of the loop.
Types
All values have a static type. The typeof
function can be used to determine the type of a value:
typeof(3) /* Returns an object which represents the type for numbers */
The following built-in types are available:
Type | Examples | Description |
---|---|---|
Number | 3.7 | A numerical value. |
Boolean | true, false | A boolean value. |
String | "hello" | A string. |
Array | [ "a", "b" ] | An array. |
Dictionary | { a = 3 } | A dictionary. |
Depending on which libraries are loaded additional types may become available. The icinga
library implements a whole bunch of other types, e.g. Host, Service, CheckCommand, etc.
Each type has an associated type object which describes the type's semantics. These type objects are made available using global variables which match the type's name:
/* This logs 'true' */
log(typeof(3) == Number)
The type object's prototype
property can be used to find out which methods a certain type
supports:
/* This returns: ["find","len","lower","replace","split","substr","to_string","upper"] */
keys(String.prototype)
Reserved Keywords
These keywords are reserved and must not be used as constants or custom attributes.
object
template
include
include_recursive
library
null
true
false
const
var
this
use
apply
to
where
import
assign
ignore
function
return
for
if
else
in
You can escape reserved keywords using the @
character. The following example
tries to set vars.include
which references a reserved keyword and generates
an error:
[2014-09-15 17:24:00 +0200] critical/config: Location:
/etc/icinga2/conf.d/hosts/localhost.conf(13): vars.sla = "24x7"
/etc/icinga2/conf.d/hosts/localhost.conf(14):
/etc/icinga2/conf.d/hosts/localhost.conf(15): vars.include = "some cmdb export field"
^^^^^^^
/etc/icinga2/conf.d/hosts/localhost.conf(16): }
/etc/icinga2/conf.d/hosts/localhost.conf(17):
Config error: in /etc/icinga2/conf.d/hosts/localhost.conf: 15:8-15:14: syntax error, unexpected include (T_INCLUDE), expecting T_IDENTIFIER
[2014-09-15 17:24:00 +0200] critical/config: 1 errors, 0 warnings.
You can escape the include
keyword by prefixing it with an additional @
character:
object Host "localhost" {
import "generic-host"
address = "127.0.0.1"
address6 = "::1"
vars.os = "Linux"
vars.sla = "24x7"
vars.@include = "some cmdb export field"
}