2011-10-26 17:18:51 +02:00
|
|
|
<?php
|
|
|
|
|
2023-06-08 13:19:01 +02:00
|
|
|
// Pandora FMS - https://pandorafms.com
|
2011-10-26 17:18:51 +02:00
|
|
|
// ==================================================
|
2023-06-08 11:53:13 +02:00
|
|
|
// Copyright (c) 2005-2023 Pandora FMS
|
2023-06-08 13:19:01 +02:00
|
|
|
// Please see https://pandorafms.com/community/ for full contribution list
|
2011-10-26 17:18:51 +02:00
|
|
|
// This program is free software; you can redistribute it and/or
|
|
|
|
// modify it under the terms of the GNU Lesser General Public License
|
|
|
|
// as published by the Free Software Foundation; version 2
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU General Public License for more details.
|
|
|
|
|
|
|
|
/**
|
2019-01-30 16:18:44 +01:00
|
|
|
* @package Include
|
2011-10-26 17:18:51 +02:00
|
|
|
* @subpackage Forecast
|
|
|
|
*/
|
|
|
|
|
2019-01-30 16:18:44 +01:00
|
|
|
|
2011-10-26 17:18:51 +02:00
|
|
|
/**
|
2018-09-12 10:34:14 +02:00
|
|
|
* Create a prediction based on module data with least square method (linear regression)
|
2011-10-26 17:18:51 +02:00
|
|
|
*
|
|
|
|
* @param int Module id.
|
|
|
|
* @param int Period of the module data.
|
2018-09-12 10:34:14 +02:00
|
|
|
* @param int Period of the prediction or false to use it in prediction_date function (see below).
|
2011-10-26 17:18:51 +02:00
|
|
|
* @param int Maximun value using this function for prediction_date.
|
|
|
|
* @param int Minimun value using this function for prediction_date.
|
2011-12-15 16:27:32 +01:00
|
|
|
* @param bool Result data for CSV file exportation.
|
2018-09-12 10:34:14 +02:00
|
|
|
*
|
2011-10-26 17:18:51 +02:00
|
|
|
* @return array Void array or prediction of the module data.
|
|
|
|
*/
|
2019-01-30 16:18:44 +01:00
|
|
|
function forecast_projection_graph(
|
|
|
|
$module_id,
|
|
|
|
$period=SECONDS_2MONTHS,
|
2022-01-21 17:39:11 +01:00
|
|
|
$prediction_period=false,
|
2019-01-30 16:18:44 +01:00
|
|
|
$max_value=false,
|
|
|
|
$min_value=false,
|
2020-06-29 17:21:23 +02:00
|
|
|
$csv=false,
|
|
|
|
$server_name=''
|
2019-01-30 16:18:44 +01:00
|
|
|
) {
|
|
|
|
global $config;
|
|
|
|
|
|
|
|
$max_exec_time = ini_get('max_execution_time');
|
|
|
|
|
|
|
|
if ($max_exec_time !== false) {
|
|
|
|
$max_exec_time = (int) $max_exec_time;
|
|
|
|
}
|
|
|
|
|
|
|
|
$begin_time = time();
|
|
|
|
|
|
|
|
$params = [
|
|
|
|
'agent_module_id' => $module_id,
|
|
|
|
'period' => $period,
|
|
|
|
'return_data' => 1,
|
|
|
|
'projection' => true,
|
|
|
|
];
|
|
|
|
|
2020-10-05 17:03:30 +02:00
|
|
|
if (is_metaconsole()) {
|
|
|
|
$id_meta = metaconsole_get_id_server($server_name);
|
|
|
|
$server = metaconsole_get_connection_by_id($id_meta);
|
|
|
|
metaconsole_connect($server);
|
|
|
|
}
|
|
|
|
|
|
|
|
$module_data = grafico_modulo_sparse($params);
|
|
|
|
|
|
|
|
if (is_metaconsole()) {
|
|
|
|
metaconsole_restore_db();
|
|
|
|
}
|
2019-01-30 16:18:44 +01:00
|
|
|
|
|
|
|
if (empty($module_data)) {
|
|
|
|
return [];
|
|
|
|
}
|
|
|
|
// Prevents bad behaviour over image error
|
|
|
|
else if (!is_array($module_data) and preg_match('/^<img(.)*$/', $module_data)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Data initialization
|
|
|
|
$sum_obs = 0;
|
|
|
|
$sum_xi = 0;
|
|
|
|
$sum_yi = 0;
|
|
|
|
$sum_xi_yi = 0;
|
|
|
|
$sum_xi2 = 0;
|
|
|
|
$sum_yi2 = 0;
|
|
|
|
$sum_diff_dates = 0;
|
|
|
|
$last_timestamp = get_system_time();
|
|
|
|
$agent_interval = SECONDS_5MINUTES;
|
|
|
|
$cont = 1;
|
|
|
|
$data = [];
|
|
|
|
// $table->data = array();
|
|
|
|
// Creates data for calculation
|
|
|
|
if (is_array($module_data) || is_object($module_data)) {
|
|
|
|
foreach ($module_data['sum1']['data'] as $key => $row) {
|
|
|
|
if ($row[0] == '') {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
$row[0] = ($row[0] / 1000);
|
|
|
|
|
|
|
|
$data[0] = '';
|
|
|
|
$data[1] = $cont;
|
|
|
|
$data[2] = date($config['date_format'], $row[0]);
|
|
|
|
$data[3] = $row[0];
|
|
|
|
$data[4] = $row[1];
|
|
|
|
$data[5] = ($row[0] * $row[1]);
|
|
|
|
$data[6] = ($row[0] * $row[0]);
|
|
|
|
$data[7] = ($row[1] * $row[1]);
|
|
|
|
if ($cont == 1) {
|
|
|
|
$data[8] = 0;
|
|
|
|
} else {
|
|
|
|
$data[8] = ($row[0] - $last_timestamp);
|
|
|
|
}
|
|
|
|
|
|
|
|
$sum_obs = ($sum_obs + $cont);
|
|
|
|
$sum_xi = ($sum_xi + $row[0]);
|
|
|
|
$sum_yi = ($sum_yi + $row[1]);
|
|
|
|
$sum_xi_yi = ($sum_xi_yi + $data[5]);
|
|
|
|
$sum_xi2 = ($sum_xi2 + $data[6]);
|
|
|
|
$sum_yi2 = ($sum_yi2 + $data[7]);
|
|
|
|
$sum_diff_dates = ($sum_diff_dates + $data[8]);
|
|
|
|
$last_timestamp = $row[0];
|
|
|
|
$cont++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
$cont--;
|
|
|
|
|
|
|
|
// Calculation over data above:
|
|
|
|
// 1. Calculation of linear correlation coefficient...
|
|
|
|
// 1.1 Average for X: Sum(Xi)/Obs
|
|
|
|
// 1.2 Average for Y: Sum(Yi)/Obs
|
|
|
|
// 2. Covariance between vars
|
|
|
|
// 3.1 Standard deviation for X: sqrt((Sum(Xi²)/Obs) - (avg X)²)
|
|
|
|
// 3.2 Standard deviation for Y: sqrt((Sum(Yi²)/Obs) - (avg Y)²)
|
|
|
|
// Linear correlation coefficient:
|
|
|
|
// Agent interval could be zero, 300 is the predefined
|
|
|
|
if ($sum_obs == 0) {
|
|
|
|
$agent_interval = SECONDS_5MINUTES;
|
|
|
|
} else {
|
|
|
|
$agent_interval = ($sum_diff_dates / $sum_obs);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Could be a inverse correlation coefficient
|
|
|
|
// if $linear_coef < 0.0
|
|
|
|
// if $linear_coef >= -1.0 and $linear_coef <= -0.8999
|
|
|
|
// Function variables have an inverse linear relathionship!
|
|
|
|
// else
|
|
|
|
// Function variables don't have an inverse linear relathionship!
|
|
|
|
// Could be a direct correlation coefficient
|
|
|
|
// else
|
|
|
|
// if ($linear_coef >= 0.8999 and $linear_coef <= 1.0) {
|
|
|
|
// Function variables have a direct linear relathionship!
|
|
|
|
// else
|
|
|
|
// Function variables don't have a direct linear relathionship!
|
|
|
|
// 2. Calculation of linear regresion...
|
|
|
|
$b_num = (($cont * $sum_xi_yi) - ($sum_xi * $sum_yi));
|
|
|
|
$b_den = (($cont * $sum_xi2) - ($sum_xi * $sum_xi));
|
|
|
|
if ($b_den == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
$b = ($b_num / $b_den);
|
|
|
|
|
|
|
|
$a_num = (($sum_yi) - ($b * $sum_xi));
|
|
|
|
|
|
|
|
if ($cont != 0) {
|
|
|
|
$a = ($a_num / $cont);
|
|
|
|
} else {
|
|
|
|
$a = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Data inicialization
|
|
|
|
$output_data = [];
|
|
|
|
if ($prediction_period != false) {
|
|
|
|
$limit_timestamp = ($last_timestamp + $prediction_period);
|
|
|
|
}
|
|
|
|
|
|
|
|
$current_ts = $last_timestamp;
|
|
|
|
$in_range = true;
|
|
|
|
$time_format_2 = '';
|
|
|
|
|
|
|
|
$temp_range = $period;
|
|
|
|
if ($period < $prediction_period) {
|
|
|
|
$temp_range = $prediction_period;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ($temp_range <= SECONDS_6HOURS) {
|
|
|
|
$time_format = 'H:i:s';
|
|
|
|
} else if ($temp_range < SECONDS_1DAY) {
|
|
|
|
$time_format = 'H:i';
|
|
|
|
} else if ($temp_range < SECONDS_15DAYS) {
|
|
|
|
$time_format = 'M d';
|
|
|
|
$time_format_2 = 'H\h';
|
|
|
|
} else if ($temp_range <= SECONDS_1MONTH) {
|
|
|
|
$time_format = 'M d';
|
|
|
|
$time_format_2 = 'H\h';
|
|
|
|
} else {
|
|
|
|
$time_format = 'M d';
|
|
|
|
}
|
|
|
|
|
|
|
|
// Aplying linear regression to module data in order to do the prediction
|
|
|
|
$idx = 0;
|
|
|
|
// Create data in graph format like
|
|
|
|
while ($in_range) {
|
|
|
|
$now = time();
|
|
|
|
|
|
|
|
// Check that exec time is not greater than half max exec server time
|
2019-11-08 12:06:06 +01:00
|
|
|
if ($max_exec_time != false) {
|
2019-01-30 16:18:44 +01:00
|
|
|
if (($begin_time + ($max_exec_time / 2)) < $now) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
$timestamp_f = ($current_ts * 1000);
|
|
|
|
|
|
|
|
if ($csv) {
|
|
|
|
$output_data[$idx]['date'] = $current_ts;
|
|
|
|
$output_data[$idx]['data'] = ($a + ($b * $current_ts));
|
|
|
|
} else {
|
|
|
|
$output_data[$idx][0] = $timestamp_f;
|
|
|
|
$output_data[$idx][1] = ($a + ($b * $current_ts));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Using this function for prediction_date
|
|
|
|
if ($prediction_period == false) {
|
|
|
|
// These statements stop the prediction when interval is greater than 2 years
|
2019-11-08 12:06:06 +01:00
|
|
|
if (($current_ts - $last_timestamp) >= 94608000
|
|
|
|
|| $max_value == $min_value
|
|
|
|
) {
|
2019-01-30 16:18:44 +01:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Found it
|
2019-11-08 12:06:06 +01:00
|
|
|
if (($max_value >= $output_data[$idx][1])
|
2019-01-30 16:18:44 +01:00
|
|
|
&& ($min_value <= $output_data[$idx][0])
|
|
|
|
) {
|
2019-11-08 12:06:06 +01:00
|
|
|
return ($current_ts + ($sum_diff_dates * $agent_interval));
|
2019-01-30 16:18:44 +01:00
|
|
|
}
|
|
|
|
} else if ($current_ts > $limit_timestamp) {
|
|
|
|
$in_range = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
$current_ts = ($current_ts + $agent_interval);
|
|
|
|
$idx++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return $output_data;
|
2011-10-26 17:18:51 +02:00
|
|
|
}
|
|
|
|
|
2019-01-30 16:18:44 +01:00
|
|
|
|
2011-10-26 17:18:51 +02:00
|
|
|
/**
|
|
|
|
* Return a date when the date interval is reached
|
|
|
|
*
|
|
|
|
* @param int Module id.
|
2011-10-27 13:27:49 +02:00
|
|
|
* @param int Given data period to make the prediction
|
2011-10-26 17:18:51 +02:00
|
|
|
* @param int Max value in the interval.
|
2018-09-12 10:34:14 +02:00
|
|
|
* @param int Min value in the interval.
|
|
|
|
*
|
2011-10-26 17:18:51 +02:00
|
|
|
* @return mixed timestamp with the prediction date or false
|
|
|
|
*/
|
2019-01-30 16:18:44 +01:00
|
|
|
function forecast_prediction_date(
|
|
|
|
$module_id,
|
|
|
|
$period=SECONDS_2MONTHS,
|
|
|
|
$max_value=0,
|
2020-06-29 17:21:23 +02:00
|
|
|
$min_value=0,
|
|
|
|
$server_name=''
|
2019-01-30 16:18:44 +01:00
|
|
|
) {
|
|
|
|
// Checks interval
|
|
|
|
if ($min_value > $max_value) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2020-06-29 17:21:23 +02:00
|
|
|
return forecast_projection_graph($module_id, $period, false, $max_value, $min_value, false, $server_name);
|
2011-10-26 17:18:51 +02:00
|
|
|
}
|