pandorafms/pandora_console/include/functions_forecast.php

276 lines
8.2 KiB
PHP
Raw Normal View History

<?php
2023-06-08 13:19:01 +02:00
// Pandora FMS - https://pandorafms.com
// ==================================================
2023-06-08 11:53:13 +02:00
// Copyright (c) 2005-2023 Pandora FMS
2023-06-08 13:19:01 +02:00
// Please see https://pandorafms.com/community/ for full contribution list
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation; version 2
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
/**
* @package Include
* @subpackage Forecast
*/
/**
2018-09-12 10:34:14 +02:00
* Create a prediction based on module data with least square method (linear regression)
*
* @param int Module id.
* @param int Period of the module data.
2018-09-12 10:34:14 +02:00
* @param int Period of the prediction or false to use it in prediction_date function (see below).
* @param int Maximun value using this function for prediction_date.
* @param int Minimun value using this function for prediction_date.
* @param bool Result data for CSV file exportation.
2018-09-12 10:34:14 +02:00
*
* @return array Void array or prediction of the module data.
*/
function forecast_projection_graph(
$module_id,
$period=SECONDS_2MONTHS,
2022-01-21 17:39:11 +01:00
$prediction_period=false,
$max_value=false,
$min_value=false,
2020-06-29 17:21:23 +02:00
$csv=false,
$server_name=''
) {
global $config;
$max_exec_time = ini_get('max_execution_time');
if ($max_exec_time !== false) {
$max_exec_time = (int) $max_exec_time;
}
$begin_time = time();
$params = [
'agent_module_id' => $module_id,
'period' => $period,
'return_data' => 1,
'projection' => true,
];
2020-10-05 17:03:30 +02:00
if (is_metaconsole()) {
$id_meta = metaconsole_get_id_server($server_name);
$server = metaconsole_get_connection_by_id($id_meta);
metaconsole_connect($server);
}
$module_data = grafico_modulo_sparse($params);
if (is_metaconsole()) {
metaconsole_restore_db();
}
if (empty($module_data)) {
return [];
}
// Prevents bad behaviour over image error
else if (!is_array($module_data) and preg_match('/^<img(.)*$/', $module_data)) {
return;
}
// Data initialization
$sum_obs = 0;
$sum_xi = 0;
$sum_yi = 0;
$sum_xi_yi = 0;
$sum_xi2 = 0;
$sum_yi2 = 0;
$sum_diff_dates = 0;
$last_timestamp = get_system_time();
$agent_interval = SECONDS_5MINUTES;
$cont = 1;
$data = [];
// $table->data = array();
// Creates data for calculation
if (is_array($module_data) || is_object($module_data)) {
foreach ($module_data['sum1']['data'] as $key => $row) {
if ($row[0] == '') {
continue;
}
$row[0] = ($row[0] / 1000);
$data[0] = '';
$data[1] = $cont;
2024-01-29 17:31:19 +01:00
$data[2] = date($config['date_format'], (int) $row[0]);
$data[3] = $row[0];
$data[4] = $row[1];
$data[5] = ($row[0] * $row[1]);
$data[6] = ($row[0] * $row[0]);
$data[7] = ($row[1] * $row[1]);
if ($cont == 1) {
$data[8] = 0;
} else {
$data[8] = ($row[0] - $last_timestamp);
}
$sum_obs = ($sum_obs + $cont);
$sum_xi = ($sum_xi + $row[0]);
$sum_yi = ($sum_yi + $row[1]);
$sum_xi_yi = ($sum_xi_yi + $data[5]);
$sum_xi2 = ($sum_xi2 + $data[6]);
$sum_yi2 = ($sum_yi2 + $data[7]);
$sum_diff_dates = ($sum_diff_dates + $data[8]);
$last_timestamp = $row[0];
$cont++;
}
}
$cont--;
// Calculation over data above:
// 1. Calculation of linear correlation coefficient...
// 1.1 Average for X: Sum(Xi)/Obs
// 1.2 Average for Y: Sum(Yi)/Obs
// 2. Covariance between vars
// 3.1 Standard deviation for X: sqrt((Sum(Xi²)/Obs) - (avg X)²)
// 3.2 Standard deviation for Y: sqrt((Sum(Yi²)/Obs) - (avg Y)²)
// Linear correlation coefficient:
// Agent interval could be zero, 300 is the predefined
if ($sum_obs == 0) {
$agent_interval = SECONDS_5MINUTES;
} else {
$agent_interval = ($sum_diff_dates / $sum_obs);
}
// Could be a inverse correlation coefficient
// if $linear_coef < 0.0
// if $linear_coef >= -1.0 and $linear_coef <= -0.8999
// Function variables have an inverse linear relathionship!
// else
// Function variables don't have an inverse linear relathionship!
// Could be a direct correlation coefficient
// else
// if ($linear_coef >= 0.8999 and $linear_coef <= 1.0) {
// Function variables have a direct linear relathionship!
// else
// Function variables don't have a direct linear relathionship!
// 2. Calculation of linear regresion...
$b_num = (($cont * $sum_xi_yi) - ($sum_xi * $sum_yi));
$b_den = (($cont * $sum_xi2) - ($sum_xi * $sum_xi));
if ($b_den == 0) {
return;
}
$b = ($b_num / $b_den);
$a_num = (($sum_yi) - ($b * $sum_xi));
if ($cont != 0) {
$a = ($a_num / $cont);
} else {
$a = 0;
}
// Data inicialization
$output_data = [];
if ($prediction_period != false) {
$limit_timestamp = ($last_timestamp + $prediction_period);
}
$current_ts = $last_timestamp;
$in_range = true;
$time_format_2 = '';
$temp_range = $period;
if ($period < $prediction_period) {
$temp_range = $prediction_period;
}
if ($temp_range <= SECONDS_6HOURS) {
$time_format = 'H:i:s';
} else if ($temp_range < SECONDS_1DAY) {
$time_format = 'H:i';
} else if ($temp_range < SECONDS_15DAYS) {
$time_format = 'M d';
$time_format_2 = 'H\h';
} else if ($temp_range <= SECONDS_1MONTH) {
$time_format = 'M d';
$time_format_2 = 'H\h';
} else {
$time_format = 'M d';
}
// Aplying linear regression to module data in order to do the prediction
$idx = 0;
// Create data in graph format like
while ($in_range) {
$now = time();
// Check that exec time is not greater than half max exec server time
if ($max_exec_time != false) {
if (($begin_time + ($max_exec_time / 2)) < $now) {
return false;
}
}
$timestamp_f = ($current_ts * 1000);
if ($csv) {
$output_data[$idx]['date'] = $current_ts;
$output_data[$idx]['data'] = ($a + ($b * $current_ts));
} else {
$output_data[$idx][0] = $timestamp_f;
$output_data[$idx][1] = ($a + ($b * $current_ts));
}
// Using this function for prediction_date
if ($prediction_period == false) {
// These statements stop the prediction when interval is greater than 2 years
if (($current_ts - $last_timestamp) >= 94608000
|| $max_value == $min_value
) {
return false;
}
// Found it
if (($max_value >= $output_data[$idx][1])
&& ($min_value <= $output_data[$idx][0])
) {
return ($current_ts + ($sum_diff_dates * $agent_interval));
}
} else if ($current_ts > $limit_timestamp) {
$in_range = false;
}
$current_ts = ($current_ts + $agent_interval);
$idx++;
}
return $output_data;
}
/**
* Return a date when the date interval is reached
*
* @param int Module id.
* @param int Given data period to make the prediction
* @param int Max value in the interval.
2018-09-12 10:34:14 +02:00
* @param int Min value in the interval.
*
* @return mixed timestamp with the prediction date or false
*/
function forecast_prediction_date(
$module_id,
$period=SECONDS_2MONTHS,
$max_value=0,
2020-06-29 17:21:23 +02:00
$min_value=0,
$server_name=''
) {
// Checks interval
if ($min_value > $max_value) {
return false;
}
2020-06-29 17:21:23 +02:00
return forecast_projection_graph($module_id, $period, false, $max_value, $min_value, false, $server_name);
}