powerline/tools/generate_gradients.py

211 lines
5.9 KiB
Python
Raw Normal View History

2013-03-19 05:20:40 +01:00
#!/usr/bin/env python
# vim:fileencoding=utf-8:noet
'''Gradients generator
'''
from __future__ import division
import sys
import json
from powerline.colorscheme import cterm_to_hex
from itertools import groupby
import argparse
from colormath.color_objects import sRGBColor, LabColor
from colormath.color_conversions import convert_color
from colormath.color_diff import delta_e_cie2000
try:
from __builtin__ import unicode
except ImportError:
2013-03-24 16:59:56 +01:00
unicode = str # NOQA
def num2(s):
try:
return (True, [int(v) for v in s.partition(' ')[::2]])
except TypeError:
return (False, [float(v) for v in s.partition(' ')[::2]])
def rgbint_to_lab(rgbint):
rgb = sRGBColor((rgbint >> 16) & 0xFF, (rgbint >> 8) & 0xFF, rgbint & 0xFF,
is_upscaled=True)
return convert_color(rgb, LabColor)
cterm_to_lab = tuple((rgbint_to_lab(v) for v in cterm_to_hex))
def color(s):
if len(s) <= 3:
return cterm_to_lab[int(s)]
else:
return rgbint_to_lab(int(s, 16))
def nums(s):
return [int(i) for i in s.split()]
def linear_gradient(start_value, stop_value, start_offset, stop_offset, offset):
return start_value + ((offset - start_offset) * (stop_value - start_value) / (stop_offset - start_offset))
def lab_gradient(slab, elab, soff, eoff, off):
svals = slab.get_value_tuple()
evals = elab.get_value_tuple()
return LabColor(*[linear_gradient(start_value, end_value, soff, eoff, off)
for start_value, end_value in zip(svals, evals)])
def generate_gradient_function(DATA):
def gradient_function(y):
initial_offset = 0
for offset, start, end in DATA:
if y <= offset:
return lab_gradient(start, end, initial_offset, offset, y)
initial_offset = offset
return gradient_function
def get_upscaled_values(rgb):
return [min(max(0, i), 255) for i in rgb.get_upscaled_value_tuple()]
def get_rgb(lab):
rgb = convert_color(lab, sRGBColor)
rgb = sRGBColor(*get_upscaled_values(rgb), is_upscaled=True)
return rgb.get_rgb_hex()[1:]
def find_color(ulab, colors, ctrans):
cur_distance = float('inf')
cur_color = None
i = 0
for clab in colors:
dist = delta_e_cie2000(ulab, clab)
if dist < cur_distance:
cur_distance = dist
cur_color = (ctrans(i), clab)
i += 1
return cur_color
def print_color(color):
if type(color) is int:
colstr = '5;' + str(color)
else:
rgb = convert_color(color, sRGBColor)
colstr = '2;' + ';'.join((str(i) for i in get_upscaled_values(rgb)))
sys.stdout.write('\033[48;' + colstr + 'm ')
def print_colors(colors, num):
for i in range(num):
color = colors[int(round(i * (len(colors) - 1) / num))]
print_color(color)
sys.stdout.write('\033[0m\n')
def dec_scale_generator(num):
j = 0
r = ''
while num:
r += '\033[{0}m'.format(j % 2)
for i in range(10):
r += str(i)
num -= 1
if not num:
break
j += 1
r += '\033[0m\n'
return r
2014-07-07 18:22:07 +02:00
def compute_steps(gradient, weights):
maxweight = len(gradient) - 1
if weights:
weight_sum = sum(weights)
norm_weights = [100.0 * weight / weight_sum for weight in weights]
steps = [0]
for weight in norm_weights:
steps.append(steps[-1] + weight)
steps.pop(0)
steps.pop(0)
else:
step = m / maxweight
steps = [i * step for i in range(1, maxweight + 1)]
return steps
palettes = {
'16': (cterm_to_lab[:16], lambda c: c),
'256': (cterm_to_lab, lambda c: c),
None: (cterm_to_lab[16:], lambda c: c + 16),
}
2014-07-07 18:22:07 +02:00
def show_scale(rng, num_output):
if not rng and num_output >= 32 and (num_output - 1) // 10 >= 4 and (num_output - 1) % 10 == 0:
sys.stdout.write('0')
2014-07-07 18:22:07 +02:00
sys.stdout.write(''.join(('%*u' % (num_output // 10, i) for i in range(10, 101, 10))))
sys.stdout.write('\n')
else:
2014-07-07 18:22:07 +02:00
if rng:
vmin, vmax = rng[1]
isint = rng[0]
else:
isint = True
vmin = 0
vmax = 100
s = ''
lasts = ' ' + str(vmax)
2014-07-07 18:22:07 +02:00
while len(s) + len(lasts) < num_output:
curpc = len(s) + 1 if s else 0
2014-07-07 18:22:07 +02:00
curval = vmin + curpc * (vmax - vmin) / num_output
if isint:
curval = int(round(curval))
s += str(curval) + ' '
sys.stdout.write(s[:-1] + lasts + '\n')
2014-07-07 18:22:07 +02:00
sys.stdout.write(dec_scale_generator(num_output) + '\n')
if __name__ == '__main__':
p = argparse.ArgumentParser(description=__doc__)
p.add_argument('gradient', nargs='*', metavar='COLOR', type=color, help='List of colors (either indexes from 8-bit palette or 24-bit RGB in hexadecimal notation)')
p.add_argument('-n', '--num_items', metavar='INT', type=int, help='Number of items in resulting list', default=101)
p.add_argument('-N', '--num_output', metavar='INT', type=int, help='Number of characters in sample', default=101)
p.add_argument('-r', '--range', metavar='V1 V2', type=num2, help='Use this range when outputting scale')
p.add_argument('-s', '--show', action='store_true', help='If present output gradient sample')
p.add_argument('-p', '--palette', choices=('16', '256'), help='Use this palette. Defaults to 240-color palette (256 colors without first 16)')
p.add_argument('-w', '--weights', metavar='INT INT ...', type=nums, help='Adjust weights of colors. Number of weights must be equal to number of colors')
p.add_argument('-C', '--omit-terminal', action='store_true', help='If present do not compute values for terminal')
args = p.parse_args()
m = args.num_items
steps = compute_steps(args.gradient, args.weights)
data = [(weight, args.gradient[i - 1], args.gradient[i])
for weight, i in zip(steps, range(1, len(args.gradient)))]
gr_func = generate_gradient_function(data)
gradient = [gr_func(y) for y in range(0, m)]
r = [get_rgb(lab) for lab in gradient]
if not args.omit_terminal:
r2 = [find_color(lab, *palettes[args.palette])[0] for lab in gradient]
r3 = [i[0] for i in groupby(r2)]
print(json.dumps(r))
if not args.omit_terminal:
print(json.dumps(r2))
print(json.dumps(r3))
if args.show:
print_colors(args.gradient, args.num_output)
print_colors(gradient, args.num_output)
if not args.omit_terminal:
print_colors(r2, args.num_output)
print_colors(r3, args.num_output)
show_scale(args.range, args.num_output)