2022-03-07 03:26:39 +01:00
|
|
|
/**@file
|
|
|
|
Memory Detection for Virtual Machines.
|
|
|
|
|
|
|
|
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
|
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
|
|
|
|
Module Name:
|
|
|
|
|
|
|
|
MemDetect.c
|
|
|
|
|
|
|
|
**/
|
|
|
|
|
|
|
|
//
|
|
|
|
// The package level header files this module uses
|
|
|
|
//
|
|
|
|
#include <IndustryStandard/E820.h>
|
|
|
|
#include <IndustryStandard/I440FxPiix4.h>
|
|
|
|
#include <IndustryStandard/Q35MchIch9.h>
|
|
|
|
#include <IndustryStandard/CloudHv.h>
|
|
|
|
#include <IndustryStandard/Xen/arch-x86/hvm/start_info.h>
|
|
|
|
#include <PiPei.h>
|
|
|
|
#include <Register/Intel/SmramSaveStateMap.h>
|
|
|
|
|
|
|
|
//
|
|
|
|
// The Library classes this module consumes
|
|
|
|
//
|
|
|
|
#include <Library/BaseLib.h>
|
|
|
|
#include <Library/BaseMemoryLib.h>
|
|
|
|
#include <Library/DebugLib.h>
|
Ovmf/PlatformPei: Use host-provided GPA end if available
Read the "hardware-info" item from fw-cfg to extract specifications
of PCI host bridges and analyze the 64-bit apertures of them to
find out the highest 64-bit MMIO address required which determines
the address space required by the guest, and, consequently, the
FirstNonAddress used to calculate size of physical addresses.
Using the static PeiHardwareInfoLib, read the fw-cfg file of
hardware information to extract, one by one, all the host
bridges. Find the last 64-bit MMIO address of each host bridge,
using the HardwareInfoPciHostBridgeLib API, and compare it to an
accumulate value to discover the highest address used, which
corresponds to the highest value that must be included in the
guest's physical address space.
Given that platforms with multiple host bridges may provide the PCI
apertures' addresses, the memory detection logic must take into
account that, if the host provided the MMIO windows that can and must
be used, the guest needs to take those values. Therefore, if the
MMIO windows are found in the host-provided fw-cfg file, skip all the
logic calculating the physical address size and just use the value
provided. Since each PCI host bridge corresponds to an element in
the information provided by the host, each of these must be analyzed
looking for the highest address used.
Cc: Alexander Graf <graf@amazon.de>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Nicolas Ojeda Leon <ncoleon@amazon.com>
2022-01-19 15:48:33 +01:00
|
|
|
#include <Library/HardwareInfoLib.h>
|
2022-03-07 03:26:39 +01:00
|
|
|
#include <Library/HobLib.h>
|
|
|
|
#include <Library/IoLib.h>
|
|
|
|
#include <Library/MemEncryptSevLib.h>
|
|
|
|
#include <Library/PcdLib.h>
|
|
|
|
#include <Library/PciLib.h>
|
|
|
|
#include <Library/PeimEntryPoint.h>
|
|
|
|
#include <Library/ResourcePublicationLib.h>
|
|
|
|
#include <Library/MtrrLib.h>
|
|
|
|
#include <Library/QemuFwCfgLib.h>
|
|
|
|
#include <Library/QemuFwCfgSimpleParserLib.h>
|
2022-02-16 06:42:55 +01:00
|
|
|
#include <Library/TdxLib.h>
|
|
|
|
|
2022-03-07 03:26:39 +01:00
|
|
|
#include <Library/PlatformInitLib.h>
|
|
|
|
|
|
|
|
VOID
|
|
|
|
EFIAPI
|
|
|
|
PlatformQemuUc32BaseInitialization (
|
|
|
|
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT32 LowerMemorySize;
|
|
|
|
|
|
|
|
if (PlatformInfoHob->HostBridgeDevId == 0xffff /* microvm */) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
|
|
|
|
//
|
|
|
|
// On q35, the 32-bit area that we'll mark as UC, through variable MTRRs,
|
|
|
|
// starts at PcdPciExpressBaseAddress. The platform DSC is responsible for
|
|
|
|
// setting PcdPciExpressBaseAddress such that describing the
|
|
|
|
// [PcdPciExpressBaseAddress, 4GB) range require a very small number of
|
|
|
|
// variable MTRRs (preferably 1 or 2).
|
|
|
|
//
|
2022-06-02 10:42:13 +02:00
|
|
|
ASSERT (PcdGet64 (PcdPciExpressBaseAddress) <= MAX_UINT32);
|
|
|
|
PlatformInfoHob->Uc32Base = (UINT32)PcdGet64 (PcdPciExpressBaseAddress);
|
2022-03-07 03:26:39 +01:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (PlatformInfoHob->HostBridgeDevId == CLOUDHV_DEVICE_ID) {
|
|
|
|
PlatformInfoHob->Uc32Size = CLOUDHV_MMIO_HOLE_SIZE;
|
|
|
|
PlatformInfoHob->Uc32Base = CLOUDHV_MMIO_HOLE_ADDRESS;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT (PlatformInfoHob->HostBridgeDevId == INTEL_82441_DEVICE_ID);
|
|
|
|
//
|
|
|
|
// On i440fx, start with the [LowerMemorySize, 4GB) range. Make sure one
|
|
|
|
// variable MTRR suffices by truncating the size to a whole power of two,
|
|
|
|
// while keeping the end affixed to 4GB. This will round the base up.
|
|
|
|
//
|
|
|
|
LowerMemorySize = PlatformGetSystemMemorySizeBelow4gb (PlatformInfoHob);
|
|
|
|
PlatformInfoHob->Uc32Size = GetPowerOfTwo32 ((UINT32)(SIZE_4GB - LowerMemorySize));
|
|
|
|
PlatformInfoHob->Uc32Base = (UINT32)(SIZE_4GB - PlatformInfoHob->Uc32Size);
|
|
|
|
//
|
|
|
|
// Assuming that LowerMemorySize is at least 1 byte, Uc32Size is at most 2GB.
|
|
|
|
// Therefore Uc32Base is at least 2GB.
|
|
|
|
//
|
|
|
|
ASSERT (PlatformInfoHob->Uc32Base >= BASE_2GB);
|
|
|
|
|
|
|
|
if (PlatformInfoHob->Uc32Base != LowerMemorySize) {
|
|
|
|
DEBUG ((
|
|
|
|
DEBUG_VERBOSE,
|
|
|
|
"%a: rounded UC32 base from 0x%x up to 0x%x, for "
|
|
|
|
"an UC32 size of 0x%x\n",
|
|
|
|
__FUNCTION__,
|
|
|
|
LowerMemorySize,
|
|
|
|
PlatformInfoHob->Uc32Base,
|
|
|
|
PlatformInfoHob->Uc32Size
|
|
|
|
));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Iterate over the RAM entries in QEMU's fw_cfg E820 RAM map that start outside
|
|
|
|
of the 32-bit address range.
|
|
|
|
|
|
|
|
Find the highest exclusive >=4GB RAM address, or produce memory resource
|
|
|
|
descriptor HOBs for RAM entries that start at or above 4GB.
|
|
|
|
|
|
|
|
@param[out] MaxAddress If MaxAddress is NULL, then PlatformScanOrAdd64BitE820Ram()
|
|
|
|
produces memory resource descriptor HOBs for RAM
|
|
|
|
entries that start at or above 4GB.
|
|
|
|
|
|
|
|
Otherwise, MaxAddress holds the highest exclusive
|
|
|
|
>=4GB RAM address on output. If QEMU's fw_cfg E820
|
|
|
|
RAM map contains no RAM entry that starts outside of
|
|
|
|
the 32-bit address range, then MaxAddress is exactly
|
|
|
|
4GB on output.
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS The fw_cfg E820 RAM map was found and processed.
|
|
|
|
|
|
|
|
@retval EFI_PROTOCOL_ERROR The RAM map was found, but its size wasn't a
|
|
|
|
whole multiple of sizeof(EFI_E820_ENTRY64). No
|
|
|
|
RAM entry was processed.
|
|
|
|
|
|
|
|
@return Error codes from QemuFwCfgFindFile(). No RAM
|
|
|
|
entry was processed.
|
|
|
|
**/
|
|
|
|
STATIC
|
|
|
|
EFI_STATUS
|
|
|
|
PlatformScanOrAdd64BitE820Ram (
|
|
|
|
IN BOOLEAN AddHighHob,
|
|
|
|
OUT UINT64 *LowMemory OPTIONAL,
|
|
|
|
OUT UINT64 *MaxAddress OPTIONAL
|
|
|
|
)
|
|
|
|
{
|
|
|
|
EFI_STATUS Status;
|
|
|
|
FIRMWARE_CONFIG_ITEM FwCfgItem;
|
|
|
|
UINTN FwCfgSize;
|
|
|
|
EFI_E820_ENTRY64 E820Entry;
|
|
|
|
UINTN Processed;
|
|
|
|
|
|
|
|
Status = QemuFwCfgFindFile ("etc/e820", &FwCfgItem, &FwCfgSize);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
|
|
return Status;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (FwCfgSize % sizeof E820Entry != 0) {
|
|
|
|
return EFI_PROTOCOL_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (LowMemory != NULL) {
|
|
|
|
*LowMemory = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (MaxAddress != NULL) {
|
|
|
|
*MaxAddress = BASE_4GB;
|
|
|
|
}
|
|
|
|
|
|
|
|
QemuFwCfgSelectItem (FwCfgItem);
|
|
|
|
for (Processed = 0; Processed < FwCfgSize; Processed += sizeof E820Entry) {
|
|
|
|
QemuFwCfgReadBytes (sizeof E820Entry, &E820Entry);
|
|
|
|
DEBUG ((
|
|
|
|
DEBUG_VERBOSE,
|
|
|
|
"%a: Base=0x%Lx Length=0x%Lx Type=%u\n",
|
|
|
|
__FUNCTION__,
|
|
|
|
E820Entry.BaseAddr,
|
|
|
|
E820Entry.Length,
|
|
|
|
E820Entry.Type
|
|
|
|
));
|
|
|
|
if (E820Entry.Type == EfiAcpiAddressRangeMemory) {
|
|
|
|
if (AddHighHob && (E820Entry.BaseAddr >= BASE_4GB)) {
|
|
|
|
UINT64 Base;
|
|
|
|
UINT64 End;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Round up the start address, and round down the end address.
|
|
|
|
//
|
|
|
|
Base = ALIGN_VALUE (E820Entry.BaseAddr, (UINT64)EFI_PAGE_SIZE);
|
|
|
|
End = (E820Entry.BaseAddr + E820Entry.Length) &
|
|
|
|
~(UINT64)EFI_PAGE_MASK;
|
|
|
|
if (Base < End) {
|
|
|
|
PlatformAddMemoryRangeHob (Base, End);
|
|
|
|
DEBUG ((
|
|
|
|
DEBUG_VERBOSE,
|
|
|
|
"%a: PlatformAddMemoryRangeHob [0x%Lx, 0x%Lx)\n",
|
|
|
|
__FUNCTION__,
|
|
|
|
Base,
|
|
|
|
End
|
|
|
|
));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (MaxAddress || LowMemory) {
|
|
|
|
UINT64 Candidate;
|
|
|
|
|
|
|
|
Candidate = E820Entry.BaseAddr + E820Entry.Length;
|
|
|
|
if (MaxAddress && (Candidate > *MaxAddress)) {
|
|
|
|
*MaxAddress = Candidate;
|
|
|
|
DEBUG ((
|
|
|
|
DEBUG_VERBOSE,
|
|
|
|
"%a: MaxAddress=0x%Lx\n",
|
|
|
|
__FUNCTION__,
|
|
|
|
*MaxAddress
|
|
|
|
));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (LowMemory && (Candidate > *LowMemory) && (Candidate < BASE_4GB)) {
|
|
|
|
*LowMemory = Candidate;
|
|
|
|
DEBUG ((
|
|
|
|
DEBUG_VERBOSE,
|
|
|
|
"%a: LowMemory=0x%Lx\n",
|
|
|
|
__FUNCTION__,
|
|
|
|
*LowMemory
|
|
|
|
));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Returns PVH memmap
|
|
|
|
|
|
|
|
@param Entries Pointer to PVH memmap
|
|
|
|
@param Count Number of entries
|
|
|
|
|
|
|
|
@return EFI_STATUS
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
GetPvhMemmapEntries (
|
|
|
|
struct hvm_memmap_table_entry **Entries,
|
|
|
|
UINT32 *Count
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT32 *PVHResetVectorData;
|
|
|
|
struct hvm_start_info *pvh_start_info;
|
|
|
|
|
|
|
|
PVHResetVectorData = (VOID *)(UINTN)PcdGet32 (PcdXenPvhStartOfDayStructPtr);
|
|
|
|
if (PVHResetVectorData == 0) {
|
|
|
|
return EFI_NOT_FOUND;
|
|
|
|
}
|
|
|
|
|
|
|
|
pvh_start_info = (struct hvm_start_info *)(UINTN)PVHResetVectorData[0];
|
|
|
|
|
|
|
|
*Entries = (struct hvm_memmap_table_entry *)(UINTN)pvh_start_info->memmap_paddr;
|
|
|
|
*Count = pvh_start_info->memmap_entries;
|
|
|
|
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
STATIC
|
|
|
|
UINT64
|
|
|
|
GetHighestSystemMemoryAddressFromPvhMemmap (
|
|
|
|
BOOLEAN Below4gb
|
|
|
|
)
|
|
|
|
{
|
|
|
|
struct hvm_memmap_table_entry *Memmap;
|
|
|
|
UINT32 MemmapEntriesCount;
|
|
|
|
struct hvm_memmap_table_entry *Entry;
|
|
|
|
EFI_STATUS Status;
|
|
|
|
UINT32 Loop;
|
|
|
|
UINT64 HighestAddress;
|
|
|
|
UINT64 EntryEnd;
|
|
|
|
|
|
|
|
HighestAddress = 0;
|
|
|
|
|
|
|
|
Status = GetPvhMemmapEntries (&Memmap, &MemmapEntriesCount);
|
|
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
|
|
|
|
for (Loop = 0; Loop < MemmapEntriesCount; Loop++) {
|
|
|
|
Entry = Memmap + Loop;
|
|
|
|
EntryEnd = Entry->addr + Entry->size;
|
|
|
|
|
|
|
|
if ((Entry->type == XEN_HVM_MEMMAP_TYPE_RAM) &&
|
|
|
|
(EntryEnd > HighestAddress))
|
|
|
|
{
|
|
|
|
if (Below4gb && (EntryEnd <= BASE_4GB)) {
|
|
|
|
HighestAddress = EntryEnd;
|
|
|
|
} else if (!Below4gb && (EntryEnd >= BASE_4GB)) {
|
|
|
|
HighestAddress = EntryEnd;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return HighestAddress;
|
|
|
|
}
|
|
|
|
|
|
|
|
UINT32
|
|
|
|
EFIAPI
|
|
|
|
PlatformGetSystemMemorySizeBelow4gb (
|
|
|
|
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
|
|
)
|
|
|
|
{
|
|
|
|
EFI_STATUS Status;
|
|
|
|
UINT64 LowerMemorySize = 0;
|
|
|
|
UINT8 Cmos0x34;
|
|
|
|
UINT8 Cmos0x35;
|
|
|
|
|
|
|
|
if (PlatformInfoHob->HostBridgeDevId == CLOUDHV_DEVICE_ID) {
|
|
|
|
// Get the information from PVH memmap
|
|
|
|
return (UINT32)GetHighestSystemMemoryAddressFromPvhMemmap (TRUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
Status = PlatformScanOrAdd64BitE820Ram (FALSE, &LowerMemorySize, NULL);
|
|
|
|
if ((Status == EFI_SUCCESS) && (LowerMemorySize > 0)) {
|
|
|
|
return (UINT32)LowerMemorySize;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// CMOS 0x34/0x35 specifies the system memory above 16 MB.
|
|
|
|
// * CMOS(0x35) is the high byte
|
|
|
|
// * CMOS(0x34) is the low byte
|
|
|
|
// * The size is specified in 64kb chunks
|
|
|
|
// * Since this is memory above 16MB, the 16MB must be added
|
|
|
|
// into the calculation to get the total memory size.
|
|
|
|
//
|
|
|
|
|
|
|
|
Cmos0x34 = (UINT8)PlatformCmosRead8 (0x34);
|
|
|
|
Cmos0x35 = (UINT8)PlatformCmosRead8 (0x35);
|
|
|
|
|
|
|
|
return (UINT32)(((UINTN)((Cmos0x35 << 8) + Cmos0x34) << 16) + SIZE_16MB);
|
|
|
|
}
|
|
|
|
|
|
|
|
STATIC
|
|
|
|
UINT64
|
|
|
|
PlatformGetSystemMemorySizeAbove4gb (
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT32 Size;
|
|
|
|
UINTN CmosIndex;
|
|
|
|
|
|
|
|
//
|
|
|
|
// CMOS 0x5b-0x5d specifies the system memory above 4GB MB.
|
|
|
|
// * CMOS(0x5d) is the most significant size byte
|
|
|
|
// * CMOS(0x5c) is the middle size byte
|
|
|
|
// * CMOS(0x5b) is the least significant size byte
|
|
|
|
// * The size is specified in 64kb chunks
|
|
|
|
//
|
|
|
|
|
|
|
|
Size = 0;
|
|
|
|
for (CmosIndex = 0x5d; CmosIndex >= 0x5b; CmosIndex--) {
|
|
|
|
Size = (UINT32)(Size << 8) + (UINT32)PlatformCmosRead8 (CmosIndex);
|
|
|
|
}
|
|
|
|
|
|
|
|
return LShiftU64 (Size, 16);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Return the highest address that DXE could possibly use, plus one.
|
|
|
|
**/
|
|
|
|
STATIC
|
|
|
|
UINT64
|
|
|
|
PlatformGetFirstNonAddress (
|
|
|
|
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT64 FirstNonAddress;
|
|
|
|
UINT32 FwCfgPciMmio64Mb;
|
|
|
|
EFI_STATUS Status;
|
|
|
|
FIRMWARE_CONFIG_ITEM FwCfgItem;
|
|
|
|
UINTN FwCfgSize;
|
|
|
|
UINT64 HotPlugMemoryEnd;
|
|
|
|
|
|
|
|
//
|
|
|
|
// set FirstNonAddress to suppress incorrect compiler/analyzer warnings
|
|
|
|
//
|
|
|
|
FirstNonAddress = 0;
|
|
|
|
|
|
|
|
//
|
|
|
|
// If QEMU presents an E820 map, then get the highest exclusive >=4GB RAM
|
|
|
|
// address from it. This can express an address >= 4GB+1TB.
|
|
|
|
//
|
|
|
|
// Otherwise, get the flat size of the memory above 4GB from the CMOS (which
|
|
|
|
// can only express a size smaller than 1TB), and add it to 4GB.
|
|
|
|
//
|
|
|
|
Status = PlatformScanOrAdd64BitE820Ram (FALSE, NULL, &FirstNonAddress);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
|
|
FirstNonAddress = BASE_4GB + PlatformGetSystemMemorySizeAbove4gb ();
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// If DXE is 32-bit, then we're done; PciBusDxe will degrade 64-bit MMIO
|
|
|
|
// resources to 32-bit anyway. See DegradeResource() in
|
|
|
|
// "PciResourceSupport.c".
|
|
|
|
//
|
|
|
|
#ifdef MDE_CPU_IA32
|
|
|
|
if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
|
|
|
|
return FirstNonAddress;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// See if the user specified the number of megabytes for the 64-bit PCI host
|
|
|
|
// aperture. Accept an aperture size up to 16TB.
|
|
|
|
//
|
|
|
|
// As signaled by the "X-" prefix, this knob is experimental, and might go
|
|
|
|
// away at any time.
|
|
|
|
//
|
|
|
|
Status = QemuFwCfgParseUint32 (
|
|
|
|
"opt/ovmf/X-PciMmio64Mb",
|
|
|
|
FALSE,
|
|
|
|
&FwCfgPciMmio64Mb
|
|
|
|
);
|
|
|
|
switch (Status) {
|
|
|
|
case EFI_UNSUPPORTED:
|
|
|
|
case EFI_NOT_FOUND:
|
|
|
|
break;
|
|
|
|
case EFI_SUCCESS:
|
|
|
|
if (FwCfgPciMmio64Mb <= 0x1000000) {
|
|
|
|
PlatformInfoHob->PcdPciMmio64Size = LShiftU64 (FwCfgPciMmio64Mb, 20);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// fall through
|
|
|
|
//
|
|
|
|
default:
|
|
|
|
DEBUG ((
|
|
|
|
DEBUG_WARN,
|
|
|
|
"%a: ignoring malformed 64-bit PCI host aperture size from fw_cfg\n",
|
|
|
|
__FUNCTION__
|
|
|
|
));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (PlatformInfoHob->PcdPciMmio64Size == 0) {
|
|
|
|
if (PlatformInfoHob->BootMode != BOOT_ON_S3_RESUME) {
|
|
|
|
DEBUG ((
|
|
|
|
DEBUG_INFO,
|
|
|
|
"%a: disabling 64-bit PCI host aperture\n",
|
|
|
|
__FUNCTION__
|
|
|
|
));
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// There's nothing more to do; the amount of memory above 4GB fully
|
|
|
|
// determines the highest address plus one. The memory hotplug area (see
|
|
|
|
// below) plays no role for the firmware in this case.
|
|
|
|
//
|
|
|
|
return FirstNonAddress;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// The "etc/reserved-memory-end" fw_cfg file, when present, contains an
|
|
|
|
// absolute, exclusive end address for the memory hotplug area. This area
|
|
|
|
// starts right at the end of the memory above 4GB. The 64-bit PCI host
|
|
|
|
// aperture must be placed above it.
|
|
|
|
//
|
|
|
|
Status = QemuFwCfgFindFile (
|
|
|
|
"etc/reserved-memory-end",
|
|
|
|
&FwCfgItem,
|
|
|
|
&FwCfgSize
|
|
|
|
);
|
|
|
|
if (!EFI_ERROR (Status) && (FwCfgSize == sizeof HotPlugMemoryEnd)) {
|
|
|
|
QemuFwCfgSelectItem (FwCfgItem);
|
|
|
|
QemuFwCfgReadBytes (FwCfgSize, &HotPlugMemoryEnd);
|
|
|
|
DEBUG ((
|
|
|
|
DEBUG_VERBOSE,
|
|
|
|
"%a: HotPlugMemoryEnd=0x%Lx\n",
|
|
|
|
__FUNCTION__,
|
|
|
|
HotPlugMemoryEnd
|
|
|
|
));
|
|
|
|
|
|
|
|
ASSERT (HotPlugMemoryEnd >= FirstNonAddress);
|
|
|
|
FirstNonAddress = HotPlugMemoryEnd;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// SeaBIOS aligns both boundaries of the 64-bit PCI host aperture to 1GB, so
|
|
|
|
// that the host can map it with 1GB hugepages. Follow suit.
|
|
|
|
//
|
|
|
|
PlatformInfoHob->PcdPciMmio64Base = ALIGN_VALUE (FirstNonAddress, (UINT64)SIZE_1GB);
|
|
|
|
PlatformInfoHob->PcdPciMmio64Size = ALIGN_VALUE (PlatformInfoHob->PcdPciMmio64Size, (UINT64)SIZE_1GB);
|
|
|
|
|
|
|
|
//
|
|
|
|
// The 64-bit PCI host aperture should also be "naturally" aligned. The
|
|
|
|
// alignment is determined by rounding the size of the aperture down to the
|
|
|
|
// next smaller or equal power of two. That is, align the aperture by the
|
|
|
|
// largest BAR size that can fit into it.
|
|
|
|
//
|
|
|
|
PlatformInfoHob->PcdPciMmio64Base = ALIGN_VALUE (PlatformInfoHob->PcdPciMmio64Base, GetPowerOfTwo64 (PlatformInfoHob->PcdPciMmio64Size));
|
|
|
|
|
|
|
|
//
|
|
|
|
// The useful address space ends with the 64-bit PCI host aperture.
|
|
|
|
//
|
|
|
|
FirstNonAddress = PlatformInfoHob->PcdPciMmio64Base + PlatformInfoHob->PcdPciMmio64Size;
|
|
|
|
return FirstNonAddress;
|
|
|
|
}
|
|
|
|
|
2022-06-02 10:42:15 +02:00
|
|
|
/*
|
|
|
|
* Use CPUID to figure physical address width. Does *not* work
|
|
|
|
* reliable on qemu. For historical reasons qemu returns phys-bits=40
|
|
|
|
* even in case the host machine supports less than that.
|
|
|
|
*
|
|
|
|
* qemu has a cpu property (host-phys-bits={on,off}) to change that
|
|
|
|
* and make sure guest phys-bits are not larger than host phys-bits.,
|
|
|
|
* but it is off by default. Exception: microvm machine type
|
|
|
|
* hard-wires that property to on.
|
|
|
|
*/
|
|
|
|
VOID
|
|
|
|
EFIAPI
|
|
|
|
PlatformAddressWidthFromCpuid (
|
|
|
|
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT32 RegEax;
|
|
|
|
|
|
|
|
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
|
|
|
|
if (RegEax >= 0x80000008) {
|
|
|
|
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
|
|
|
|
PlatformInfoHob->PhysMemAddressWidth = (UINT8)RegEax;
|
|
|
|
} else {
|
|
|
|
PlatformInfoHob->PhysMemAddressWidth = 36;
|
|
|
|
}
|
|
|
|
|
|
|
|
PlatformInfoHob->FirstNonAddress = LShiftU64 (1, PlatformInfoHob->PhysMemAddressWidth);
|
|
|
|
|
|
|
|
DEBUG ((
|
|
|
|
DEBUG_INFO,
|
|
|
|
"%a: cpuid: phys-bits is %d\n",
|
|
|
|
__FUNCTION__,
|
|
|
|
PlatformInfoHob->PhysMemAddressWidth
|
|
|
|
));
|
|
|
|
}
|
|
|
|
|
Ovmf/PlatformPei: Use host-provided GPA end if available
Read the "hardware-info" item from fw-cfg to extract specifications
of PCI host bridges and analyze the 64-bit apertures of them to
find out the highest 64-bit MMIO address required which determines
the address space required by the guest, and, consequently, the
FirstNonAddress used to calculate size of physical addresses.
Using the static PeiHardwareInfoLib, read the fw-cfg file of
hardware information to extract, one by one, all the host
bridges. Find the last 64-bit MMIO address of each host bridge,
using the HardwareInfoPciHostBridgeLib API, and compare it to an
accumulate value to discover the highest address used, which
corresponds to the highest value that must be included in the
guest's physical address space.
Given that platforms with multiple host bridges may provide the PCI
apertures' addresses, the memory detection logic must take into
account that, if the host provided the MMIO windows that can and must
be used, the guest needs to take those values. Therefore, if the
MMIO windows are found in the host-provided fw-cfg file, skip all the
logic calculating the physical address size and just use the value
provided. Since each PCI host bridge corresponds to an element in
the information provided by the host, each of these must be analyzed
looking for the highest address used.
Cc: Alexander Graf <graf@amazon.de>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Nicolas Ojeda Leon <ncoleon@amazon.com>
2022-01-19 15:48:33 +01:00
|
|
|
/**
|
|
|
|
Iterate over the PCI host bridges resources information optionally provided
|
|
|
|
in fw-cfg and find the highest address contained in the PCI MMIO windows. If
|
|
|
|
the information is found, return the exclusive end; one past the last usable
|
|
|
|
address.
|
|
|
|
|
|
|
|
@param[out] PciMmioAddressEnd Pointer to one-after End Address updated with
|
|
|
|
information extracted from host-provided data
|
|
|
|
or zero if no information available or an
|
|
|
|
error happened
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS PCI information was read and the output
|
|
|
|
parameter updated with the last valid
|
|
|
|
address in the 64-bit MMIO range.
|
|
|
|
@retval EFI_INVALID_PARAMETER Pointer parameter is invalid
|
|
|
|
@retval EFI_INCOMPATIBLE_VERSION Hardware information found in fw-cfg
|
|
|
|
has an incompatible format
|
|
|
|
@retval EFI_UNSUPPORTED Fw-cfg is not supported, thus host
|
|
|
|
provided information, if any, cannot be
|
|
|
|
read
|
|
|
|
@retval EFI_NOT_FOUND No PCI host bridge information provided
|
|
|
|
by the host.
|
|
|
|
**/
|
|
|
|
STATIC
|
|
|
|
EFI_STATUS
|
|
|
|
PlatformScanHostProvided64BitPciMmioEnd (
|
|
|
|
OUT UINT64 *PciMmioAddressEnd
|
|
|
|
)
|
|
|
|
{
|
|
|
|
EFI_STATUS Status;
|
|
|
|
HOST_BRIDGE_INFO HostBridge;
|
|
|
|
FIRMWARE_CONFIG_ITEM FwCfgItem;
|
|
|
|
UINTN FwCfgSize;
|
|
|
|
UINTN FwCfgReadIndex;
|
|
|
|
UINTN ReadDataSize;
|
|
|
|
UINT64 Above4GMmioEnd;
|
|
|
|
|
|
|
|
if (PciMmioAddressEnd == NULL) {
|
|
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
}
|
|
|
|
|
|
|
|
*PciMmioAddressEnd = 0;
|
|
|
|
Above4GMmioEnd = 0;
|
|
|
|
|
|
|
|
Status = QemuFwCfgFindFile ("etc/hardware-info", &FwCfgItem, &FwCfgSize);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
|
|
return Status;
|
|
|
|
}
|
|
|
|
|
|
|
|
QemuFwCfgSelectItem (FwCfgItem);
|
|
|
|
|
|
|
|
FwCfgReadIndex = 0;
|
|
|
|
while (FwCfgReadIndex < FwCfgSize) {
|
|
|
|
Status = QemuFwCfgReadNextHardwareInfoByType (
|
|
|
|
HardwareInfoTypeHostBridge,
|
|
|
|
sizeof (HostBridge),
|
|
|
|
FwCfgSize,
|
|
|
|
&HostBridge,
|
|
|
|
&ReadDataSize,
|
|
|
|
&FwCfgReadIndex
|
|
|
|
);
|
|
|
|
|
|
|
|
if (Status != EFI_SUCCESS) {
|
|
|
|
//
|
|
|
|
// No more data available to read in the file, break
|
|
|
|
// loop and finish process
|
|
|
|
//
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
Status = HardwareInfoPciHostBridgeLastMmioAddress (
|
|
|
|
&HostBridge,
|
|
|
|
ReadDataSize,
|
|
|
|
TRUE,
|
|
|
|
&Above4GMmioEnd
|
|
|
|
);
|
|
|
|
|
|
|
|
if (Status != EFI_SUCCESS) {
|
|
|
|
//
|
|
|
|
// Error parsing MMIO apertures and extracting last MMIO
|
|
|
|
// address, reset PciMmioAddressEnd as if no information was
|
|
|
|
// found, to avoid moving forward with incomplete data, and
|
|
|
|
// bail out
|
|
|
|
//
|
|
|
|
DEBUG ((
|
|
|
|
DEBUG_ERROR,
|
|
|
|
"%a: ignoring malformed hardware information from fw_cfg\n",
|
|
|
|
__FUNCTION__
|
|
|
|
));
|
|
|
|
*PciMmioAddressEnd = 0;
|
|
|
|
return Status;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Above4GMmioEnd > *PciMmioAddressEnd) {
|
|
|
|
*PciMmioAddressEnd = Above4GMmioEnd;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (*PciMmioAddressEnd > 0) {
|
|
|
|
//
|
|
|
|
// Host-provided PCI information was found and a MMIO window end
|
|
|
|
// derived from it.
|
|
|
|
// Increase the End address by one to have the output pointing to
|
|
|
|
// one after the address in use (exclusive end).
|
|
|
|
//
|
|
|
|
*PciMmioAddressEnd += 1;
|
|
|
|
|
|
|
|
DEBUG ((
|
|
|
|
DEBUG_INFO,
|
|
|
|
"%a: Pci64End=0x%Lx\n",
|
|
|
|
__FUNCTION__,
|
|
|
|
*PciMmioAddressEnd
|
|
|
|
));
|
|
|
|
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
return EFI_NOT_FOUND;
|
|
|
|
}
|
|
|
|
|
2022-03-07 03:26:39 +01:00
|
|
|
/**
|
|
|
|
Initialize the PhysMemAddressWidth field in PlatformInfoHob based on guest RAM size.
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EFIAPI
|
|
|
|
PlatformAddressWidthInitialization (
|
|
|
|
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
|
|
)
|
|
|
|
{
|
Ovmf/PlatformPei: Use host-provided GPA end if available
Read the "hardware-info" item from fw-cfg to extract specifications
of PCI host bridges and analyze the 64-bit apertures of them to
find out the highest 64-bit MMIO address required which determines
the address space required by the guest, and, consequently, the
FirstNonAddress used to calculate size of physical addresses.
Using the static PeiHardwareInfoLib, read the fw-cfg file of
hardware information to extract, one by one, all the host
bridges. Find the last 64-bit MMIO address of each host bridge,
using the HardwareInfoPciHostBridgeLib API, and compare it to an
accumulate value to discover the highest address used, which
corresponds to the highest value that must be included in the
guest's physical address space.
Given that platforms with multiple host bridges may provide the PCI
apertures' addresses, the memory detection logic must take into
account that, if the host provided the MMIO windows that can and must
be used, the guest needs to take those values. Therefore, if the
MMIO windows are found in the host-provided fw-cfg file, skip all the
logic calculating the physical address size and just use the value
provided. Since each PCI host bridge corresponds to an element in
the information provided by the host, each of these must be analyzed
looking for the highest address used.
Cc: Alexander Graf <graf@amazon.de>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Nicolas Ojeda Leon <ncoleon@amazon.com>
2022-01-19 15:48:33 +01:00
|
|
|
UINT64 FirstNonAddress;
|
|
|
|
UINT8 PhysMemAddressWidth;
|
|
|
|
EFI_STATUS Status;
|
2022-03-07 03:26:39 +01:00
|
|
|
|
2022-06-02 10:42:15 +02:00
|
|
|
if (PlatformInfoHob->HostBridgeDevId == 0xffff /* microvm */) {
|
|
|
|
PlatformAddressWidthFromCpuid (PlatformInfoHob);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2022-03-07 03:26:39 +01:00
|
|
|
//
|
Ovmf/PlatformPei: Use host-provided GPA end if available
Read the "hardware-info" item from fw-cfg to extract specifications
of PCI host bridges and analyze the 64-bit apertures of them to
find out the highest 64-bit MMIO address required which determines
the address space required by the guest, and, consequently, the
FirstNonAddress used to calculate size of physical addresses.
Using the static PeiHardwareInfoLib, read the fw-cfg file of
hardware information to extract, one by one, all the host
bridges. Find the last 64-bit MMIO address of each host bridge,
using the HardwareInfoPciHostBridgeLib API, and compare it to an
accumulate value to discover the highest address used, which
corresponds to the highest value that must be included in the
guest's physical address space.
Given that platforms with multiple host bridges may provide the PCI
apertures' addresses, the memory detection logic must take into
account that, if the host provided the MMIO windows that can and must
be used, the guest needs to take those values. Therefore, if the
MMIO windows are found in the host-provided fw-cfg file, skip all the
logic calculating the physical address size and just use the value
provided. Since each PCI host bridge corresponds to an element in
the information provided by the host, each of these must be analyzed
looking for the highest address used.
Cc: Alexander Graf <graf@amazon.de>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Nicolas Ojeda Leon <ncoleon@amazon.com>
2022-01-19 15:48:33 +01:00
|
|
|
// First scan host-provided hardware information to assess if the address
|
|
|
|
// space is already known. If so, guest must use those values.
|
2022-03-07 03:26:39 +01:00
|
|
|
//
|
Ovmf/PlatformPei: Use host-provided GPA end if available
Read the "hardware-info" item from fw-cfg to extract specifications
of PCI host bridges and analyze the 64-bit apertures of them to
find out the highest 64-bit MMIO address required which determines
the address space required by the guest, and, consequently, the
FirstNonAddress used to calculate size of physical addresses.
Using the static PeiHardwareInfoLib, read the fw-cfg file of
hardware information to extract, one by one, all the host
bridges. Find the last 64-bit MMIO address of each host bridge,
using the HardwareInfoPciHostBridgeLib API, and compare it to an
accumulate value to discover the highest address used, which
corresponds to the highest value that must be included in the
guest's physical address space.
Given that platforms with multiple host bridges may provide the PCI
apertures' addresses, the memory detection logic must take into
account that, if the host provided the MMIO windows that can and must
be used, the guest needs to take those values. Therefore, if the
MMIO windows are found in the host-provided fw-cfg file, skip all the
logic calculating the physical address size and just use the value
provided. Since each PCI host bridge corresponds to an element in
the information provided by the host, each of these must be analyzed
looking for the highest address used.
Cc: Alexander Graf <graf@amazon.de>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Nicolas Ojeda Leon <ncoleon@amazon.com>
2022-01-19 15:48:33 +01:00
|
|
|
Status = PlatformScanHostProvided64BitPciMmioEnd (&FirstNonAddress);
|
|
|
|
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
|
|
//
|
|
|
|
// If the host did not provide valid hardware information leading to a
|
|
|
|
// hard-defined 64-bit MMIO end, fold back to calculating the minimum range
|
|
|
|
// needed.
|
|
|
|
// As guest-physical memory size grows, the permanent PEI RAM requirements
|
|
|
|
// are dominated by the identity-mapping page tables built by the DXE IPL.
|
|
|
|
// The DXL IPL keys off of the physical address bits advertized in the CPU
|
|
|
|
// HOB. To conserve memory, we calculate the minimum address width here.
|
|
|
|
//
|
|
|
|
FirstNonAddress = PlatformGetFirstNonAddress (PlatformInfoHob);
|
|
|
|
}
|
|
|
|
|
2022-03-07 03:26:39 +01:00
|
|
|
PhysMemAddressWidth = (UINT8)HighBitSet64 (FirstNonAddress);
|
|
|
|
|
|
|
|
//
|
|
|
|
// If FirstNonAddress is not an integral power of two, then we need an
|
|
|
|
// additional bit.
|
|
|
|
//
|
|
|
|
if ((FirstNonAddress & (FirstNonAddress - 1)) != 0) {
|
|
|
|
++PhysMemAddressWidth;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// The minimum address width is 36 (covers up to and excluding 64 GB, which
|
|
|
|
// is the maximum for Ia32 + PAE). The theoretical architecture maximum for
|
|
|
|
// X64 long mode is 52 bits, but the DXE IPL clamps that down to 48 bits. We
|
|
|
|
// can simply assert that here, since 48 bits are good enough for 256 TB.
|
|
|
|
//
|
|
|
|
if (PhysMemAddressWidth <= 36) {
|
|
|
|
PhysMemAddressWidth = 36;
|
|
|
|
}
|
|
|
|
|
2022-02-16 06:42:55 +01:00
|
|
|
#if defined (MDE_CPU_X64)
|
|
|
|
if (TdIsEnabled ()) {
|
|
|
|
if (TdSharedPageMask () == (1ULL << 47)) {
|
|
|
|
PhysMemAddressWidth = 48;
|
|
|
|
} else {
|
|
|
|
PhysMemAddressWidth = 52;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT (PhysMemAddressWidth <= 52);
|
|
|
|
#else
|
2022-03-07 03:26:39 +01:00
|
|
|
ASSERT (PhysMemAddressWidth <= 48);
|
2022-02-16 06:42:55 +01:00
|
|
|
#endif
|
2022-03-07 03:26:39 +01:00
|
|
|
|
|
|
|
PlatformInfoHob->FirstNonAddress = FirstNonAddress;
|
|
|
|
PlatformInfoHob->PhysMemAddressWidth = PhysMemAddressWidth;
|
|
|
|
}
|
|
|
|
|
|
|
|
STATIC
|
|
|
|
VOID
|
|
|
|
QemuInitializeRamBelow1gb (
|
|
|
|
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
|
|
)
|
|
|
|
{
|
|
|
|
if (PlatformInfoHob->SmmSmramRequire && PlatformInfoHob->Q35SmramAtDefaultSmbase) {
|
|
|
|
PlatformAddMemoryRangeHob (0, SMM_DEFAULT_SMBASE);
|
|
|
|
PlatformAddReservedMemoryBaseSizeHob (
|
|
|
|
SMM_DEFAULT_SMBASE,
|
|
|
|
MCH_DEFAULT_SMBASE_SIZE,
|
|
|
|
TRUE /* Cacheable */
|
|
|
|
);
|
|
|
|
STATIC_ASSERT (
|
|
|
|
SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE < BASE_512KB + BASE_128KB,
|
|
|
|
"end of SMRAM at default SMBASE ends at, or exceeds, 640KB"
|
|
|
|
);
|
|
|
|
PlatformAddMemoryRangeHob (
|
|
|
|
SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE,
|
|
|
|
BASE_512KB + BASE_128KB
|
|
|
|
);
|
|
|
|
} else {
|
|
|
|
PlatformAddMemoryRangeHob (0, BASE_512KB + BASE_128KB);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Peform Memory Detection for QEMU / KVM
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EFIAPI
|
|
|
|
PlatformQemuInitializeRam (
|
|
|
|
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT64 LowerMemorySize;
|
|
|
|
UINT64 UpperMemorySize;
|
|
|
|
MTRR_SETTINGS MtrrSettings;
|
|
|
|
EFI_STATUS Status;
|
|
|
|
|
|
|
|
DEBUG ((DEBUG_INFO, "%a called\n", __FUNCTION__));
|
|
|
|
|
|
|
|
//
|
|
|
|
// Determine total memory size available
|
|
|
|
//
|
|
|
|
LowerMemorySize = PlatformGetSystemMemorySizeBelow4gb (PlatformInfoHob);
|
|
|
|
|
|
|
|
if (PlatformInfoHob->BootMode == BOOT_ON_S3_RESUME) {
|
|
|
|
//
|
|
|
|
// Create the following memory HOB as an exception on the S3 boot path.
|
|
|
|
//
|
|
|
|
// Normally we'd create memory HOBs only on the normal boot path. However,
|
|
|
|
// CpuMpPei specifically needs such a low-memory HOB on the S3 path as
|
|
|
|
// well, for "borrowing" a subset of it temporarily, for the AP startup
|
|
|
|
// vector.
|
|
|
|
//
|
|
|
|
// CpuMpPei saves the original contents of the borrowed area in permanent
|
|
|
|
// PEI RAM, in a backup buffer allocated with the normal PEI services.
|
|
|
|
// CpuMpPei restores the original contents ("returns" the borrowed area) at
|
|
|
|
// End-of-PEI. End-of-PEI in turn is emitted by S3Resume2Pei before
|
|
|
|
// transferring control to the OS's wakeup vector in the FACS.
|
|
|
|
//
|
|
|
|
// We expect any other PEIMs that "borrow" memory similarly to CpuMpPei to
|
|
|
|
// restore the original contents. Furthermore, we expect all such PEIMs
|
|
|
|
// (CpuMpPei included) to claim the borrowed areas by producing memory
|
|
|
|
// allocation HOBs, and to honor preexistent memory allocation HOBs when
|
|
|
|
// looking for an area to borrow.
|
|
|
|
//
|
|
|
|
QemuInitializeRamBelow1gb (PlatformInfoHob);
|
|
|
|
} else {
|
|
|
|
//
|
|
|
|
// Create memory HOBs
|
|
|
|
//
|
|
|
|
QemuInitializeRamBelow1gb (PlatformInfoHob);
|
|
|
|
|
|
|
|
if (PlatformInfoHob->SmmSmramRequire) {
|
|
|
|
UINT32 TsegSize;
|
|
|
|
|
|
|
|
TsegSize = PlatformInfoHob->Q35TsegMbytes * SIZE_1MB;
|
|
|
|
PlatformAddMemoryRangeHob (BASE_1MB, LowerMemorySize - TsegSize);
|
|
|
|
PlatformAddReservedMemoryBaseSizeHob (
|
|
|
|
LowerMemorySize - TsegSize,
|
|
|
|
TsegSize,
|
|
|
|
TRUE
|
|
|
|
);
|
|
|
|
} else {
|
|
|
|
PlatformAddMemoryRangeHob (BASE_1MB, LowerMemorySize);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// If QEMU presents an E820 map, then create memory HOBs for the >=4GB RAM
|
|
|
|
// entries. Otherwise, create a single memory HOB with the flat >=4GB
|
|
|
|
// memory size read from the CMOS.
|
|
|
|
//
|
|
|
|
Status = PlatformScanOrAdd64BitE820Ram (TRUE, NULL, NULL);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
|
|
UpperMemorySize = PlatformGetSystemMemorySizeAbove4gb ();
|
|
|
|
if (UpperMemorySize != 0) {
|
|
|
|
PlatformAddMemoryBaseSizeHob (BASE_4GB, UpperMemorySize);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// We'd like to keep the following ranges uncached:
|
|
|
|
// - [640 KB, 1 MB)
|
|
|
|
// - [LowerMemorySize, 4 GB)
|
|
|
|
//
|
|
|
|
// Everything else should be WB. Unfortunately, programming the inverse (ie.
|
|
|
|
// keeping the default UC, and configuring the complement set of the above as
|
|
|
|
// WB) is not reliable in general, because the end of the upper RAM can have
|
|
|
|
// practically any alignment, and we may not have enough variable MTRRs to
|
|
|
|
// cover it exactly.
|
|
|
|
//
|
|
|
|
if (IsMtrrSupported () && (PlatformInfoHob->HostBridgeDevId != CLOUDHV_DEVICE_ID)) {
|
|
|
|
MtrrGetAllMtrrs (&MtrrSettings);
|
|
|
|
|
|
|
|
//
|
|
|
|
// MTRRs disabled, fixed MTRRs disabled, default type is uncached
|
|
|
|
//
|
|
|
|
ASSERT ((MtrrSettings.MtrrDefType & BIT11) == 0);
|
|
|
|
ASSERT ((MtrrSettings.MtrrDefType & BIT10) == 0);
|
|
|
|
ASSERT ((MtrrSettings.MtrrDefType & 0xFF) == 0);
|
|
|
|
|
|
|
|
//
|
|
|
|
// flip default type to writeback
|
|
|
|
//
|
|
|
|
SetMem (&MtrrSettings.Fixed, sizeof MtrrSettings.Fixed, 0x06);
|
|
|
|
ZeroMem (&MtrrSettings.Variables, sizeof MtrrSettings.Variables);
|
|
|
|
MtrrSettings.MtrrDefType |= BIT11 | BIT10 | 6;
|
|
|
|
MtrrSetAllMtrrs (&MtrrSettings);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Set memory range from 640KB to 1MB to uncacheable
|
|
|
|
//
|
|
|
|
Status = MtrrSetMemoryAttribute (
|
|
|
|
BASE_512KB + BASE_128KB,
|
|
|
|
BASE_1MB - (BASE_512KB + BASE_128KB),
|
|
|
|
CacheUncacheable
|
|
|
|
);
|
|
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Set the memory range from the start of the 32-bit MMIO area (32-bit PCI
|
|
|
|
// MMIO aperture on i440fx, PCIEXBAR on q35) to 4GB as uncacheable.
|
|
|
|
//
|
|
|
|
Status = MtrrSetMemoryAttribute (
|
|
|
|
PlatformInfoHob->Uc32Base,
|
|
|
|
SIZE_4GB - PlatformInfoHob->Uc32Base,
|
|
|
|
CacheUncacheable
|
|
|
|
);
|
|
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
VOID
|
|
|
|
EFIAPI
|
|
|
|
PlatformQemuInitializeRamForS3 (
|
|
|
|
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
|
|
)
|
|
|
|
{
|
|
|
|
if (PlatformInfoHob->S3Supported && (PlatformInfoHob->BootMode != BOOT_ON_S3_RESUME)) {
|
|
|
|
//
|
|
|
|
// This is the memory range that will be used for PEI on S3 resume
|
|
|
|
//
|
|
|
|
BuildMemoryAllocationHob (
|
|
|
|
PlatformInfoHob->S3AcpiReservedMemoryBase,
|
|
|
|
PlatformInfoHob->S3AcpiReservedMemorySize,
|
|
|
|
EfiACPIMemoryNVS
|
|
|
|
);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Cover the initial RAM area used as stack and temporary PEI heap.
|
|
|
|
//
|
|
|
|
// This is reserved as ACPI NVS so it can be used on S3 resume.
|
|
|
|
//
|
|
|
|
BuildMemoryAllocationHob (
|
|
|
|
PcdGet32 (PcdOvmfSecPeiTempRamBase),
|
|
|
|
PcdGet32 (PcdOvmfSecPeiTempRamSize),
|
|
|
|
EfiACPIMemoryNVS
|
|
|
|
);
|
|
|
|
|
|
|
|
//
|
|
|
|
// SEC stores its table of GUIDed section handlers here.
|
|
|
|
//
|
|
|
|
BuildMemoryAllocationHob (
|
|
|
|
PcdGet64 (PcdGuidedExtractHandlerTableAddress),
|
|
|
|
PcdGet32 (PcdGuidedExtractHandlerTableSize),
|
|
|
|
EfiACPIMemoryNVS
|
|
|
|
);
|
|
|
|
|
|
|
|
#ifdef MDE_CPU_X64
|
|
|
|
//
|
|
|
|
// Reserve the initial page tables built by the reset vector code.
|
|
|
|
//
|
|
|
|
// Since this memory range will be used by the Reset Vector on S3
|
|
|
|
// resume, it must be reserved as ACPI NVS.
|
|
|
|
//
|
|
|
|
BuildMemoryAllocationHob (
|
|
|
|
(EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecPageTablesBase),
|
|
|
|
(UINT64)(UINTN)PcdGet32 (PcdOvmfSecPageTablesSize),
|
|
|
|
EfiACPIMemoryNVS
|
|
|
|
);
|
|
|
|
|
|
|
|
if (PlatformInfoHob->SevEsIsEnabled) {
|
|
|
|
//
|
|
|
|
// If SEV-ES is enabled, reserve the GHCB-related memory area. This
|
|
|
|
// includes the extra page table used to break down the 2MB page
|
|
|
|
// mapping into 4KB page entries where the GHCB resides and the
|
|
|
|
// GHCB area itself.
|
|
|
|
//
|
|
|
|
// Since this memory range will be used by the Reset Vector on S3
|
|
|
|
// resume, it must be reserved as ACPI NVS.
|
|
|
|
//
|
|
|
|
BuildMemoryAllocationHob (
|
|
|
|
(EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbPageTableBase),
|
|
|
|
(UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbPageTableSize),
|
|
|
|
EfiACPIMemoryNVS
|
|
|
|
);
|
|
|
|
BuildMemoryAllocationHob (
|
|
|
|
(EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbBase),
|
|
|
|
(UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbSize),
|
|
|
|
EfiACPIMemoryNVS
|
|
|
|
);
|
|
|
|
BuildMemoryAllocationHob (
|
|
|
|
(EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbBackupBase),
|
|
|
|
(UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbBackupSize),
|
|
|
|
EfiACPIMemoryNVS
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
if (PlatformInfoHob->BootMode != BOOT_ON_S3_RESUME) {
|
|
|
|
if (!PlatformInfoHob->SmmSmramRequire) {
|
|
|
|
//
|
|
|
|
// Reserve the lock box storage area
|
|
|
|
//
|
|
|
|
// Since this memory range will be used on S3 resume, it must be
|
|
|
|
// reserved as ACPI NVS.
|
|
|
|
//
|
|
|
|
// If S3 is unsupported, then various drivers might still write to the
|
|
|
|
// LockBox area. We ought to prevent DXE from serving allocation requests
|
|
|
|
// such that they would overlap the LockBox storage.
|
|
|
|
//
|
|
|
|
ZeroMem (
|
|
|
|
(VOID *)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageBase),
|
|
|
|
(UINTN)PcdGet32 (PcdOvmfLockBoxStorageSize)
|
|
|
|
);
|
|
|
|
BuildMemoryAllocationHob (
|
|
|
|
(EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageBase),
|
|
|
|
(UINT64)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageSize),
|
|
|
|
PlatformInfoHob->S3Supported ? EfiACPIMemoryNVS : EfiBootServicesData
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (PlatformInfoHob->SmmSmramRequire) {
|
|
|
|
UINT32 TsegSize;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Make sure the TSEG area that we reported as a reserved memory resource
|
|
|
|
// cannot be used for reserved memory allocations.
|
|
|
|
//
|
|
|
|
TsegSize = PlatformInfoHob->Q35TsegMbytes * SIZE_1MB;
|
|
|
|
BuildMemoryAllocationHob (
|
|
|
|
PlatformGetSystemMemorySizeBelow4gb (PlatformInfoHob) - TsegSize,
|
|
|
|
TsegSize,
|
|
|
|
EfiReservedMemoryType
|
|
|
|
);
|
|
|
|
//
|
|
|
|
// Similarly, allocate away the (already reserved) SMRAM at the default
|
|
|
|
// SMBASE, if it exists.
|
|
|
|
//
|
|
|
|
if (PlatformInfoHob->Q35SmramAtDefaultSmbase) {
|
|
|
|
BuildMemoryAllocationHob (
|
|
|
|
SMM_DEFAULT_SMBASE,
|
|
|
|
MCH_DEFAULT_SMBASE_SIZE,
|
|
|
|
EfiReservedMemoryType
|
|
|
|
);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef MDE_CPU_X64
|
|
|
|
if (FixedPcdGet32 (PcdOvmfWorkAreaSize) != 0) {
|
|
|
|
//
|
|
|
|
// Reserve the work area.
|
|
|
|
//
|
|
|
|
// Since this memory range will be used by the Reset Vector on S3
|
|
|
|
// resume, it must be reserved as ACPI NVS.
|
|
|
|
//
|
|
|
|
// If S3 is unsupported, then various drivers might still write to the
|
|
|
|
// work area. We ought to prevent DXE from serving allocation requests
|
|
|
|
// such that they would overlap the work area.
|
|
|
|
//
|
|
|
|
BuildMemoryAllocationHob (
|
|
|
|
(EFI_PHYSICAL_ADDRESS)(UINTN)FixedPcdGet32 (PcdOvmfWorkAreaBase),
|
|
|
|
(UINT64)(UINTN)FixedPcdGet32 (PcdOvmfWorkAreaSize),
|
|
|
|
PlatformInfoHob->S3Supported ? EfiACPIMemoryNVS : EfiBootServicesData
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|