audk/MdeModulePkg/Universal/Network/IScsiDxe/IScsiMisc.c

786 lines
19 KiB
C
Raw Normal View History

/** @file
Miscellaneous routines for iSCSI driver.
Copyright (c) 2004 - 2008, Intel Corporation.<BR>
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "IScsiImpl.h"
GLOBAL_REMOVE_IF_UNREFERENCED CONST CHAR8 IScsiHexString[] = "0123456789ABCDEFabcdef";
/**
Removes (trims) specified leading and trailing characters from a string.
@param[in, out] Str Pointer to the null-terminated string to be trimmed. On return,
Str will hold the trimmed string.
@param[in] CharC Character will be trimmed from str.
**/
VOID
StrTrim (
IN OUT CHAR16 *Str,
IN CHAR16 CharC
)
{
CHAR16 *Pointer1;
CHAR16 *Pointer2;
if (*Str == 0) {
return;
}
//
// Trim off the leading and trailing characters c
//
for (Pointer1 = Str; (*Pointer1 != 0) && (*Pointer1 == CharC); Pointer1++) {
;
}
Pointer2 = Str;
if (Pointer2 == Pointer1) {
while (*Pointer1 != 0) {
Pointer2++;
Pointer1++;
}
} else {
while (*Pointer1 != 0) {
*Pointer2 = *Pointer1;
Pointer1++;
Pointer2++;
}
*Pointer2 = 0;
}
for (Pointer1 = Str + StrLen(Str) - 1; Pointer1 >= Str && *Pointer1 == CharC; Pointer1--) {
;
}
if (Pointer1 != Str + StrLen(Str) - 1) {
*(Pointer1 + 1) = 0;
}
}
/**
Calculate the prefix length of the IPv4 subnet mask.
@param[in] SubnetMask The IPv4 subnet mask.
@return The prefix length of the subnet mask.
@retval 0 Other errors as indicated.
**/
UINT8
IScsiGetSubnetMaskPrefixLength (
IN EFI_IPv4_ADDRESS *SubnetMask
)
{
UINT8 Len;
UINT32 ReverseMask;
//
// The SubnetMask is in network byte order.
//
ReverseMask = (SubnetMask->Addr[0] << 24) | (SubnetMask->Addr[1] << 16) | (SubnetMask->Addr[2] << 8) | (SubnetMask->Addr[3]);
//
// Reverse it.
//
ReverseMask = ~ReverseMask;
if ((ReverseMask & (ReverseMask + 1)) != 0) {
return 0;
}
Len = 0;
while (ReverseMask != 0) {
ReverseMask = ReverseMask >> 1;
Len++;
}
return (UINT8) (32 - Len);
}
/**
Convert the hexadecimal encoded LUN string into the 64-bit LUN.
@param[in] Str The hexadecimal encoded LUN string.
@param[out] Lun Storage to return the 64-bit LUN.
@retval EFI_SUCCESS The 64-bit LUN is stored in Lun.
@retval EFI_INVALID_PARAMETER The string is malformatted.
**/
EFI_STATUS
IScsiAsciiStrToLun (
IN CHAR8 *Str,
OUT UINT8 *Lun
)
{
UINTN Index, IndexValue, IndexNum, SizeStr;
CHAR8 TemStr[2];
UINT8 TemValue;
UINT16 Value [4];
ZeroMem (Lun, 8);
ZeroMem (TemStr, 2);
ZeroMem ((UINT8 *) Value, sizeof (Value));
SizeStr = AsciiStrLen (Str);
IndexValue = 0;
IndexNum = 0;
for (Index = 0; Index < SizeStr; Index ++) {
TemStr[0] = Str[Index];
TemValue = (UINT8) AsciiStrHexToUint64 (TemStr);
if (TemValue == 0 && TemStr[0] != '0') {
if ((TemStr[0] != '-') || (IndexNum == 0)) {
//
// Invalid Lun Char
//
return EFI_INVALID_PARAMETER;
}
}
if ((TemValue == 0) && (TemStr[0] == '-')) {
//
// Next Lun value
//
if (++IndexValue >= 4) {
//
// Max 4 Lun value
//
return EFI_INVALID_PARAMETER;
}
//
// Restart str index for the next lun value
//
IndexNum = 0;
continue;
}
if (++IndexNum > 4) {
//
// Each Lun Str can't exceed size 4, because it will be as UINT16 value
//
return EFI_INVALID_PARAMETER;
}
//
// Combine UINT16 value
//
Value[IndexValue] = (UINT16) ((Value[IndexValue] << 4) + TemValue);
}
for (Index = 0; Index <= IndexValue; Index ++) {
*((UINT16 *) &Lun[Index * 2]) = HTONS (Value[Index]);
}
return EFI_SUCCESS;
}
/**
Convert the 64-bit LUN into the hexadecimal encoded LUN string.
@param[in] Lun The 64-bit LUN.
@param[out] Str The storage to return the hexadecimal encoded LUN string.
**/
VOID
IScsiLunToUnicodeStr (
IN UINT8 *Lun,
OUT CHAR16 *Str
)
{
UINTN Index;
CHAR16 *TempStr;
TempStr = Str;
for (Index = 0; Index < 4; Index++) {
if ((Lun[2 * Index] | Lun[2 * Index + 1]) == 0) {
StrCpy (TempStr, L"0-");
} else {
TempStr[0] = (CHAR16) IScsiHexString[Lun[2 * Index] >> 4];
TempStr[1] = (CHAR16) IScsiHexString[Lun[2 * Index] & 0x0F];
TempStr[2] = (CHAR16) IScsiHexString[Lun[2 * Index + 1] >> 4];
TempStr[3] = (CHAR16) IScsiHexString[Lun[2 * Index + 1] & 0x0F];
TempStr[4] = L'-';
TempStr[5] = 0;
StrTrim (TempStr, L'0');
}
TempStr += StrLen (TempStr);
}
Str[StrLen (Str) - 1] = 0;
for (Index = StrLen (Str) - 1; Index > 1; Index = Index - 2) {
if ((Str[Index] == L'0') && (Str[Index - 1] == L'-')) {
Str[Index - 1] = 0;
} else {
break;
}
}
}
/**
Convert the ASCII string into a UNICODE string.
@param[in] Source The ASCII string.
@param[out] Destination The storage to return the UNICODE string.
@return CHAR16 * Pointer to the UNICODE string.
**/
CHAR16 *
IScsiAsciiStrToUnicodeStr (
IN CHAR8 *Source,
OUT CHAR16 *Destination
)
{
ASSERT (Destination != NULL);
ASSERT (Source != NULL);
while (*Source != '\0') {
*(Destination++) = (CHAR16) *(Source++);
}
*Destination = '\0';
return Destination;
}
/**
Convert the UNICODE string into an ASCII string.
@param[in] Source The UNICODE string.
@param[out] Destination The storage to return the ASCII string.
@return CHAR8 * Pointer to the ASCII string.
**/
CHAR8 *
IScsiUnicodeStrToAsciiStr (
IN CHAR16 *Source,
OUT CHAR8 *Destination
)
{
ASSERT (Destination != NULL);
ASSERT (Source != NULL);
while (*Source != '\0') {
//
// If any Unicode characters in Source contain
// non-zero value in the upper 8 bits, then ASSERT().
//
ASSERT (*Source < 0x100);
*(Destination++) = (CHAR8) *(Source++);
}
*Destination = '\0';
return Destination;
}
/**
Convert the decimal dotted IPv4 address into the binary IPv4 address.
@param[in] Str The UNICODE string.
@param[out] Ip The storage to return the ASCII string.
@retval EFI_SUCCESS The binary IP address is returned in Ip.
@retval EFI_INVALID_PARAMETER The IP string is malformatted.
**/
EFI_STATUS
IScsiAsciiStrToIp (
IN CHAR8 *Str,
OUT EFI_IPv4_ADDRESS *Ip
)
{
UINTN Index;
UINTN Number;
Index = 0;
while (*Str != 0) {
if (Index > 3) {
return EFI_INVALID_PARAMETER;
}
Number = 0;
while (NET_IS_DIGIT (*Str)) {
Number = Number * 10 + (*Str - '0');
Str++;
}
if (Number > 0xFF) {
return EFI_INVALID_PARAMETER;
}
Ip->Addr[Index] = (UINT8) Number;
if ((*Str != '\0') && (*Str != '.')) {
//
// The current character should be either the NULL terminator or
// the dot delimiter.
//
return EFI_INVALID_PARAMETER;
}
if (*Str == '.') {
//
// Skip the delimiter.
//
Str++;
}
Index++;
}
if (Index != 4) {
return EFI_INVALID_PARAMETER;
}
return EFI_SUCCESS;
}
/**
Convert the mac address into a hexadecimal encoded "-" seperated string.
@param[in] Mac The mac address.
@param[in] Len Length in bytes of the mac address.
@param[out] Str The storage to return the mac string.
**/
VOID
IScsiMacAddrToStr (
IN EFI_MAC_ADDRESS *Mac,
IN UINT32 Len,
OUT CHAR16 *Str
)
{
UINT32 Index;
for (Index = 0; Index < Len; Index++) {
Str[3 * Index] = (CHAR16) IScsiHexString[(Mac->Addr[Index] >> 4) & 0x0F];
Str[3 * Index + 1] = (CHAR16) IScsiHexString[Mac->Addr[Index] & 0x0F];
Str[3 * Index + 2] = L'-';
}
Str[3 * Index - 1] = L'\0';
}
/**
Convert the binary encoded buffer into a hexadecimal encoded string.
@param[in] BinBuffer The buffer containing the binary data.
@param[in] BinLength Length of the binary buffer.
@param[in, out] HexStr Pointer to the string.
@param[in, out] HexLength The length of the string.
@retval EFI_SUCCESS The binary data is converted to the hexadecimal string
and the length of the string is updated.
@retval EFI_BUFFER_TOO_SMALL The string is too small.
@retval EFI_INVALID_PARAMETER The IP string is malformatted.
**/
EFI_STATUS
IScsiBinToHex (
IN UINT8 *BinBuffer,
IN UINT32 BinLength,
IN OUT CHAR8 *HexStr,
IN OUT UINT32 *HexLength
)
{
UINTN Index;
if ((HexStr == NULL) || (BinBuffer == NULL) || (BinLength == 0)) {
return EFI_INVALID_PARAMETER;
}
if (((*HexLength) - 3) < BinLength * 2) {
*HexLength = BinLength * 2 + 3;
return EFI_BUFFER_TOO_SMALL;
}
*HexLength = BinLength * 2 + 3;
//
// Prefix for Hex String
//
HexStr[0] = '0';
HexStr[1] = 'x';
for (Index = 0; Index < BinLength; Index++) {
HexStr[Index * 2 + 2] = IScsiHexString[BinBuffer[Index] >> 4];
HexStr[Index * 2 + 3] = IScsiHexString[BinBuffer[Index] & 0x0F];
}
HexStr[Index * 2 + 2] = '\0';
return EFI_SUCCESS;
}
/**
Convert the hexadecimal string into a binary encoded buffer.
@param[in, out] BinBuffer The binary buffer.
@param[in, out] BinLength Length of the binary buffer.
@param[in] HexStr The hexadecimal string.
@retval EFI_SUCCESS The hexadecimal string is converted into a binary
encoded buffer.
@retval EFI_BUFFER_TOO_SMALL The binary buffer is too small to hold the converted data.
**/
EFI_STATUS
IScsiHexToBin (
IN OUT UINT8 *BinBuffer,
IN OUT UINT32 *BinLength,
IN CHAR8 *HexStr
)
{
UINTN Index;
UINTN Length;
UINT8 Digit;
CHAR8 TemStr[2];
ZeroMem (TemStr, sizeof (TemStr));
//
// Find out how many hex characters the string has.
//
if ((HexStr[0] == '0') && ((HexStr[1] == 'x') || (HexStr[1] == 'X'))) {
HexStr += 2;
}
Length = AsciiStrLen (HexStr);
for (Index = 0; Index < Length; Index ++) {
TemStr[0] = HexStr[Index];
Digit = (UINT8) AsciiStrHexToUint64 (TemStr);
if (Digit == 0 && TemStr[0] != '0') {
//
// Invalid Lun Char
//
break;
}
if ((Index & 1) == 0) {
BinBuffer [Index/2] = Digit;
} else {
BinBuffer [Index/2] = (UINT8) ((BinBuffer [Index/2] << 4) + Digit);
}
}
*BinLength = (UINT32) ((Index + 1)/2);
return EFI_SUCCESS;
}
/**
Generate random numbers.
@param[in, out] Rand The buffer to contain random numbers.
@param[in] RandLength The length of the Rand buffer.
**/
VOID
IScsiGenRandom (
IN OUT UINT8 *Rand,
IN UINTN RandLength
)
{
UINT32 Random;
while (RandLength > 0) {
Random = NET_RANDOM (NetRandomInitSeed ());
*Rand++ = (UINT8) (Random);
RandLength--;
}
}
/**
Create the iSCSI driver data..
@param[in] Image The handle of the driver image.
@param[in] Controller The handle of the controller.
@return The iSCSI driver data created.
@retval NULL Other errors as indicated.
**/
ISCSI_DRIVER_DATA *
IScsiCreateDriverData (
IN EFI_HANDLE Image,
IN EFI_HANDLE Controller
)
{
ISCSI_DRIVER_DATA *Private;
EFI_STATUS Status;
Private = AllocateZeroPool (sizeof (ISCSI_DRIVER_DATA));
if (Private == NULL) {
return NULL;
}
Private->Signature = ISCSI_DRIVER_DATA_SIGNATURE;
Private->Image = Image;
Private->Controller = Controller;
//
// Create an event to be signal when the BS to RT transition is triggerd so
// as to abort the iSCSI session.
//
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
IScsiOnExitBootService,
Private,
&gEfiEventExitBootServicesGuid,
&Private->ExitBootServiceEvent
);
if (EFI_ERROR (Status)) {
gBS->FreePool (Private);
return NULL;
}
CopyMem(&Private->IScsiExtScsiPassThru, &gIScsiExtScsiPassThruProtocolTemplate, sizeof(EFI_EXT_SCSI_PASS_THRU_PROTOCOL));
//
// 0 is designated to the TargetId, so use another value for the AdapterId.
//
Private->ExtScsiPassThruMode.AdapterId = 2;
Private->ExtScsiPassThruMode.Attributes = EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL | EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL;
Private->ExtScsiPassThruMode.IoAlign = 4;
Private->IScsiExtScsiPassThru.Mode = &Private->ExtScsiPassThruMode;
//
// Install the Ext SCSI PASS THRU protocol.
//
Status = gBS->InstallProtocolInterface (
&Private->ExtScsiPassThruHandle,
&gEfiExtScsiPassThruProtocolGuid,
EFI_NATIVE_INTERFACE,
&Private->IScsiExtScsiPassThru
);
if (EFI_ERROR (Status)) {
gBS->CloseEvent (Private->ExitBootServiceEvent);
gBS->FreePool (Private);
return NULL;
}
IScsiSessionInit (&Private->Session, FALSE);
return Private;
}
/**
Clean the iSCSI driver data.
@param[in] Private The iSCSI driver data.
**/
VOID
IScsiCleanDriverData (
IN ISCSI_DRIVER_DATA *Private
)
{
if (Private->DevicePath != NULL) {
gBS->UninstallProtocolInterface (
Private->ExtScsiPassThruHandle,
&gEfiDevicePathProtocolGuid,
Private->DevicePath
);
gBS->FreePool (Private->DevicePath);
}
if (Private->ExtScsiPassThruHandle != NULL) {
gBS->UninstallProtocolInterface (
Private->ExtScsiPassThruHandle,
&gEfiExtScsiPassThruProtocolGuid,
&Private->IScsiExtScsiPassThru
);
}
gBS->CloseEvent (Private->ExitBootServiceEvent);
gBS->FreePool (Private);
}
/**
Get the various configuration data of this iSCSI instance.
@param[in] Private The iSCSI driver data.
@retval EFI_SUCCESS The configuration of this instance is got.
@retval EFI_ABORTED The operation was aborted.
@retval Others Other errors as indicated.
**/
EFI_STATUS
IScsiGetConfigData (
IN ISCSI_DRIVER_DATA *Private
)
{
EFI_STATUS Status;
ISCSI_SESSION *Session;
UINTN BufferSize;
EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
EFI_SIMPLE_NETWORK_MODE *Mode;
CHAR16 MacString[65];
//
// get the iSCSI Initiator Name
//
Session = &Private->Session;
Session->InitiatorNameLength = ISCSI_NAME_MAX_SIZE;
Status = gIScsiInitiatorName.Get (
&gIScsiInitiatorName,
&Session->InitiatorNameLength,
Session->InitiatorName
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = gBS->HandleProtocol (
Private->Controller,
&gEfiSimpleNetworkProtocolGuid,
(VOID **)&Snp
);
if (EFI_ERROR (Status)) {
return Status;
}
Mode = Snp->Mode;
//
// Get the mac string, it's the name of various variable
//
IScsiMacAddrToStr (&Mode->PermanentAddress, Mode->HwAddressSize, MacString);
//
// Get the normal configuration.
//
BufferSize = sizeof (Session->ConfigData.NvData);
Status = gRT->GetVariable (
MacString,
&gEfiIScsiInitiatorNameProtocolGuid,
NULL,
&BufferSize,
&Session->ConfigData.NvData
);
if (EFI_ERROR (Status)) {
return Status;
}
if (!Session->ConfigData.NvData.Enabled) {
return EFI_ABORTED;
}
//
// Get the CHAP Auth information.
//
BufferSize = sizeof (Session->AuthData.AuthConfig);
Status = gRT->GetVariable (
MacString,
&mIScsiCHAPAuthInfoGuid,
NULL,
&BufferSize,
&Session->AuthData.AuthConfig
);
if (!EFI_ERROR (Status) && Session->ConfigData.NvData.InitiatorInfoFromDhcp) {
//
// Start dhcp.
//
Status = IScsiDoDhcp (Private->Image, Private->Controller, &Session->ConfigData);
}
return Status;
}
/**
Get the device path of the iSCSI tcp connection and update it.
@param[in] Private The iSCSI driver data.
@return The updated device path.
@retval NULL Other errors as indicated.
**/
EFI_DEVICE_PATH_PROTOCOL *
IScsiGetTcpConnDevicePath (
IN ISCSI_DRIVER_DATA *Private
)
{
ISCSI_SESSION *Session;
ISCSI_CONNECTION *Conn;
TCP4_IO *Tcp4Io;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_STATUS Status;
EFI_DEV_PATH *DPathNode;
Session = &Private->Session;
if (Session->State != SESSION_STATE_LOGGED_IN) {
return NULL;
}
Conn = NET_LIST_USER_STRUCT_S (
Session->Conns.ForwardLink,
ISCSI_CONNECTION,
Link,
ISCSI_CONNECTION_SIGNATURE
);
Tcp4Io = &Conn->Tcp4Io;
Status = gBS->HandleProtocol (
Tcp4Io->Handle,
&gEfiDevicePathProtocolGuid,
(VOID **)&DevicePath
);
if (EFI_ERROR (Status)) {
return NULL;
}
//
// Duplicate it.
//
DevicePath = DuplicateDevicePath (DevicePath);
DPathNode = (EFI_DEV_PATH *) DevicePath;
while (!IsDevicePathEnd (&DPathNode->DevPath)) {
if ((DevicePathType (&DPathNode->DevPath) == MESSAGING_DEVICE_PATH) &&
(DevicePathSubType (&DPathNode->DevPath) == MSG_IPv4_DP)
) {
DPathNode->Ipv4.LocalPort = 0;
DPathNode->Ipv4.StaticIpAddress = (BOOLEAN) (!Session->ConfigData.NvData.InitiatorInfoFromDhcp);
break;
}
DPathNode = (EFI_DEV_PATH *) NextDevicePathNode (&DPathNode->DevPath);
}
return DevicePath;
}
/**
Abort the session when the transition from BS to RT is initiated.
@param[in] Event The event signaled.
@param[in] Context The iSCSI driver data.
**/
VOID
EFIAPI
IScsiOnExitBootService (
IN EFI_EVENT Event,
IN VOID *Context
)
{
ISCSI_DRIVER_DATA *Private;
Private = (ISCSI_DRIVER_DATA *) Context;
gBS->CloseEvent (Private->ExitBootServiceEvent);
IScsiSessionAbort (&Private->Session);
}