audk/StandaloneMmPkg/Core/Dispatcher.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

732 lines
24 KiB
C
Raw Normal View History

StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
/** @file
MM Driver Dispatcher.
Step #1 - When a FV protocol is added to the system every driver in the FV
is added to the mDiscoveredList. The Before, and After Depex are
pre-processed as drivers are added to the mDiscoveredList. If an Apriori
file exists in the FV those drivers are added to the
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
mScheduledQueue. The mFwVolList is used to make sure a
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
FV is only processed once.
Step #2 - Dispatch. Remove driver from the mScheduledQueue and load and
start it. After mScheduledQueue is drained check the
mDiscoveredList to see if any item has a Depex that is ready to
be placed on the mScheduledQueue.
Step #3 - Adding to the mScheduledQueue requires that you process Before
and After dependencies. This is done recursively as the call to add
to the mScheduledQueue checks for Before Depexes and recursively
adds all Before Depexes. It then adds the item that was passed in
and then processess the After dependencies by recursively calling
the routine.
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
Dispatcher Rules:
The rules for the dispatcher are similar to the DXE dispatcher.
The rules for DXE dispatcher are in chapter 10 of the DXE CIS. Figure 10-3
is the state diagram for the DXE dispatcher
Depex - Dependency Expresion.
Copyright (c) 2014, Hewlett-Packard Development Company, L.P.
Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2016 - 2021, Arm Limited. All rights reserved.<BR>
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
SPDX-License-Identifier: BSD-2-Clause-Patent
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
**/
#include "StandaloneMmCore.h"
//
// MM Dispatcher Data structures
//
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
#define KNOWN_FWVOL_SIGNATURE SIGNATURE_32('k','n','o','w')
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
typedef struct {
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
UINTN Signature;
LIST_ENTRY Link; // mFwVolList
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
} KNOWN_FWVOL;
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
//
// Function Prototypes
//
/**
Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
must add any driver with a before dependency on InsertedDriverEntry first.
You do this by recursively calling this routine. After all the Before Depexes
are processed you can add InsertedDriverEntry to the mScheduledQueue.
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
Then you can add any driver with an After dependency on InsertedDriverEntry
by recursively calling this routine.
@param InsertedDriverEntry The driver to insert on the ScheduledLink Queue
**/
VOID
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
IN EFI_MM_DRIVER_ENTRY *InsertedDriverEntry
);
//
// The Driver List contains one copy of every driver that has been discovered.
// Items are never removed from the driver list. List of EFI_MM_DRIVER_ENTRY
//
LIST_ENTRY mDiscoveredList = INITIALIZE_LIST_HEAD_VARIABLE (mDiscoveredList);
//
// Queue of drivers that are ready to dispatch. This queue is a subset of the
// mDiscoveredList.list of EFI_MM_DRIVER_ENTRY.
//
LIST_ENTRY mScheduledQueue = INITIALIZE_LIST_HEAD_VARIABLE (mScheduledQueue);
//
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
// List of firmware volume headers whose containing firmware volumes have been
// parsed and added to the mFwDriverList.
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
//
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
LIST_ENTRY mFwVolList = INITIALIZE_LIST_HEAD_VARIABLE (mFwVolList);
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
//
// Flag for the MM Dispacher. TRUE if dispatcher is executing.
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
//
BOOLEAN gDispatcherRunning = FALSE;
//
// Flag for the MM Dispacher. TRUE if there is one or more MM drivers ready to be dispatched
//
BOOLEAN gRequestDispatch = FALSE;
/**
Loads an EFI image into SMRAM.
@param DriverEntry EFI_MM_DRIVER_ENTRY instance
@return EFI_STATUS
**/
EFI_STATUS
EFIAPI
MmLoadImage (
IN OUT EFI_MM_DRIVER_ENTRY *DriverEntry
)
{
UINTN PageCount;
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS DstBuffer;
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
DEBUG ((DEBUG_INFO, "MmLoadImage - %g\n", &DriverEntry->FileName));
Status = EFI_SUCCESS;
//
// Initialize ImageContext
//
ImageContext.Handle = DriverEntry->Pe32Data;
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
ImageContext.ImageRead = PeCoffLoaderImageReadFromMemory;
//
// Get information about the image being loaded
//
Status = PeCoffLoaderGetImageInfo (&ImageContext);
if (EFI_ERROR (Status)) {
return Status;
}
PageCount = (UINTN)EFI_SIZE_TO_PAGES ((UINTN)ImageContext.ImageSize + ImageContext.SectionAlignment);
DstBuffer = (UINTN)(-1);
Status = MmAllocatePages (
AllocateMaxAddress,
EfiRuntimeServicesCode,
PageCount,
&DstBuffer
);
if (EFI_ERROR (Status)) {
return Status;
}
ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)DstBuffer;
//
// Align buffer on section boundary
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
//
ImageContext.ImageAddress += ImageContext.SectionAlignment - 1;
ImageContext.ImageAddress &= ~((EFI_PHYSICAL_ADDRESS)(ImageContext.SectionAlignment - 1));
//
// Load the image to our new buffer
//
Status = PeCoffLoaderLoadImage (&ImageContext);
if (EFI_ERROR (Status)) {
MmFreePages (DstBuffer, PageCount);
return Status;
}
//
// Relocate the image in our new buffer
//
Status = PeCoffLoaderRelocateImage (&ImageContext);
if (EFI_ERROR (Status)) {
MmFreePages (DstBuffer, PageCount);
return Status;
}
//
// Flush the instruction cache so the image data are written before we execute it
//
InvalidateInstructionCacheRange ((VOID *)(UINTN)ImageContext.ImageAddress, (UINTN)ImageContext.ImageSize);
//
// Save Image EntryPoint in DriverEntry
//
DriverEntry->ImageEntryPoint = ImageContext.EntryPoint;
DriverEntry->ImageBuffer = DstBuffer;
DriverEntry->NumberOfPage = PageCount;
if (mEfiSystemTable != NULL) {
Status = mEfiSystemTable->BootServices->AllocatePool (
EfiBootServicesData,
sizeof (EFI_LOADED_IMAGE_PROTOCOL),
(VOID **)&DriverEntry->LoadedImage
);
if (EFI_ERROR (Status)) {
MmFreePages (DstBuffer, PageCount);
return Status;
}
ZeroMem (DriverEntry->LoadedImage, sizeof (EFI_LOADED_IMAGE_PROTOCOL));
//
// Fill in the remaining fields of the Loaded Image Protocol instance.
// Note: ImageBase is an SMRAM address that can not be accessed outside of SMRAM if SMRAM window is closed.
//
DriverEntry->LoadedImage->Revision = EFI_LOADED_IMAGE_PROTOCOL_REVISION;
DriverEntry->LoadedImage->ParentHandle = NULL;
DriverEntry->LoadedImage->SystemTable = mEfiSystemTable;
DriverEntry->LoadedImage->DeviceHandle = NULL;
DriverEntry->LoadedImage->FilePath = NULL;
DriverEntry->LoadedImage->ImageBase = (VOID *)(UINTN)DriverEntry->ImageBuffer;
DriverEntry->LoadedImage->ImageSize = ImageContext.ImageSize;
DriverEntry->LoadedImage->ImageCodeType = EfiRuntimeServicesCode;
DriverEntry->LoadedImage->ImageDataType = EfiRuntimeServicesData;
//
// Create a new image handle in the UEFI handle database for the MM Driver
//
DriverEntry->ImageHandle = NULL;
Status = mEfiSystemTable->BootServices->InstallMultipleProtocolInterfaces (
&DriverEntry->ImageHandle,
&gEfiLoadedImageProtocolGuid,
DriverEntry->LoadedImage,
NULL
);
}
//
// Print the load address and the PDB file name if it is available
//
DEBUG_CODE_BEGIN ();
UINTN Index;
UINTN StartIndex;
CHAR8 EfiFileName[256];
DEBUG ((
DEBUG_INFO | DEBUG_LOAD,
"Loading MM driver at 0x%11p EntryPoint=0x%11p ",
(VOID *)(UINTN)ImageContext.ImageAddress,
FUNCTION_ENTRY_POINT (ImageContext.EntryPoint)
));
//
// Print Module Name by Pdb file path.
// Windows and Unix style file path are all trimmed correctly.
//
if (ImageContext.PdbPointer != NULL) {
StartIndex = 0;
for (Index = 0; ImageContext.PdbPointer[Index] != 0; Index++) {
if ((ImageContext.PdbPointer[Index] == '\\') || (ImageContext.PdbPointer[Index] == '/')) {
StartIndex = Index + 1;
}
}
//
// Copy the PDB file name to our temporary string, and replace .pdb with .efi
// The PDB file name is limited in the range of 0~255.
// If the length is bigger than 255, trim the redundant characters to avoid overflow in array boundary.
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
//
for (Index = 0; Index < sizeof (EfiFileName) - 4; Index++) {
EfiFileName[Index] = ImageContext.PdbPointer[Index + StartIndex];
if (EfiFileName[Index] == 0) {
EfiFileName[Index] = '.';
}
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
if (EfiFileName[Index] == '.') {
EfiFileName[Index + 1] = 'e';
EfiFileName[Index + 2] = 'f';
EfiFileName[Index + 3] = 'i';
EfiFileName[Index + 4] = 0;
break;
}
}
if (Index == sizeof (EfiFileName) - 4) {
EfiFileName[Index] = 0;
}
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
DEBUG ((DEBUG_INFO | DEBUG_LOAD, "%a", EfiFileName));
}
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
DEBUG ((DEBUG_INFO | DEBUG_LOAD, "\n"));
DEBUG_CODE_END ();
return Status;
}
/**
Preprocess dependency expression and update DriverEntry to reflect the
state of Before and After dependencies. If DriverEntry->Before
or DriverEntry->After is set it will never be cleared.
@param DriverEntry DriverEntry element to update .
@retval EFI_SUCCESS It always works.
**/
EFI_STATUS
MmPreProcessDepex (
IN EFI_MM_DRIVER_ENTRY *DriverEntry
)
{
UINT8 *Iterator;
Iterator = DriverEntry->Depex;
DriverEntry->Dependent = TRUE;
if (*Iterator == EFI_DEP_BEFORE) {
DriverEntry->Before = TRUE;
} else if (*Iterator == EFI_DEP_AFTER) {
DriverEntry->After = TRUE;
}
if (DriverEntry->Before || DriverEntry->After) {
CopyMem (&DriverEntry->BeforeAfterGuid, Iterator + 1, sizeof (EFI_GUID));
}
return EFI_SUCCESS;
}
/**
Read Depex and pre-process the Depex for Before and After. If Section Extraction
protocol returns an error via ReadSection defer the reading of the Depex.
@param DriverEntry Driver to work on.
@retval EFI_SUCCESS Depex read and preprossesed
@retval EFI_PROTOCOL_ERROR The section extraction protocol returned an error
and Depex reading needs to be retried.
@retval Error DEPEX not found.
**/
EFI_STATUS
MmGetDepexSectionAndPreProccess (
IN EFI_MM_DRIVER_ENTRY *DriverEntry
)
{
EFI_STATUS Status;
//
// Data already read
//
if (DriverEntry->Depex == NULL) {
Status = EFI_NOT_FOUND;
} else {
Status = EFI_SUCCESS;
}
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
if (EFI_ERROR (Status)) {
if (Status == EFI_PROTOCOL_ERROR) {
//
// The section extraction protocol failed so set protocol error flag
//
DriverEntry->DepexProtocolError = TRUE;
} else {
//
// If no Depex assume depend on all architectural protocols
//
DriverEntry->Depex = NULL;
DriverEntry->Dependent = TRUE;
DriverEntry->DepexProtocolError = FALSE;
}
} else {
//
// Set Before and After state information based on Depex
// Driver will be put in Dependent state
//
MmPreProcessDepex (DriverEntry);
DriverEntry->DepexProtocolError = FALSE;
}
return Status;
}
/**
This is the main Dispatcher for MM and it exits when there are no more
drivers to run. Drain the mScheduledQueue and load and start a PE
image for each driver. Search the mDiscoveredList to see if any driver can
be placed on the mScheduledQueue. If no drivers are placed on the
mScheduledQueue exit the function.
@retval EFI_SUCCESS All of the MM Drivers that could be dispatched
have been run and the MM Entry Point has been
registered.
@retval EFI_NOT_READY The MM Driver that registered the MM Entry Point
was just dispatched.
@retval EFI_NOT_FOUND There are no MM Drivers available to be dispatched.
@retval EFI_ALREADY_STARTED The MM Dispatcher is already running
**/
EFI_STATUS
MmDispatcher (
VOID
)
{
EFI_STATUS Status;
LIST_ENTRY *Link;
EFI_MM_DRIVER_ENTRY *DriverEntry;
BOOLEAN ReadyToRun;
DEBUG ((DEBUG_INFO, "MmDispatcher\n"));
if (!gRequestDispatch) {
DEBUG ((DEBUG_INFO, " !gRequestDispatch\n"));
return EFI_NOT_FOUND;
}
if (gDispatcherRunning) {
DEBUG ((DEBUG_INFO, " gDispatcherRunning\n"));
//
// If the dispatcher is running don't let it be restarted.
//
return EFI_ALREADY_STARTED;
}
gDispatcherRunning = TRUE;
do {
//
// Drain the Scheduled Queue
//
DEBUG ((DEBUG_INFO, " Drain the Scheduled Queue\n"));
while (!IsListEmpty (&mScheduledQueue)) {
DriverEntry = CR (
mScheduledQueue.ForwardLink,
EFI_MM_DRIVER_ENTRY,
ScheduledLink,
EFI_MM_DRIVER_ENTRY_SIGNATURE
);
DEBUG ((DEBUG_INFO, " DriverEntry (Scheduled) - %g\n", &DriverEntry->FileName));
//
// Load the MM Driver image into memory. If the Driver was transitioned from
// Untrusted to Scheduled it would have already been loaded so we may need to
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
// skip the LoadImage
//
if (DriverEntry->ImageHandle == NULL) {
Status = MmLoadImage (DriverEntry);
//
// Update the driver state to reflect that it's been loaded
//
if (EFI_ERROR (Status)) {
//
// The MM Driver could not be loaded, and do not attempt to load or start it again.
// Take driver from Scheduled to Initialized.
//
DriverEntry->Initialized = TRUE;
DriverEntry->Scheduled = FALSE;
RemoveEntryList (&DriverEntry->ScheduledLink);
//
// If it's an error don't try the StartImage
//
continue;
}
}
DriverEntry->Scheduled = FALSE;
DriverEntry->Initialized = TRUE;
RemoveEntryList (&DriverEntry->ScheduledLink);
//
// For each MM driver, pass NULL as ImageHandle
//
if (mEfiSystemTable == NULL) {
DEBUG ((DEBUG_INFO, "StartImage - 0x%x (Standalone Mode)\n", DriverEntry->ImageEntryPoint));
Status = ((MM_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint)(DriverEntry->ImageHandle, &gMmCoreMmst);
} else {
DEBUG ((DEBUG_INFO, "StartImage - 0x%x (Tradition Mode)\n", DriverEntry->ImageEntryPoint));
Status = ((EFI_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint)(
DriverEntry->ImageHandle,
mEfiSystemTable
);
}
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_INFO, "StartImage Status - %r\n", Status));
MmFreePages (DriverEntry->ImageBuffer, DriverEntry->NumberOfPage);
}
}
//
// Search DriverList for items to place on Scheduled Queue
//
DEBUG ((DEBUG_INFO, " Search DriverList for items to place on Scheduled Queue\n"));
ReadyToRun = FALSE;
for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
DEBUG ((DEBUG_INFO, " DriverEntry (Discovered) - %g\n", &DriverEntry->FileName));
if (DriverEntry->DepexProtocolError) {
//
// If Section Extraction Protocol did not let the Depex be read before retry the read
//
Status = MmGetDepexSectionAndPreProccess (DriverEntry);
}
if (DriverEntry->Dependent) {
if (MmIsSchedulable (DriverEntry)) {
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
ReadyToRun = TRUE;
}
}
}
} while (ReadyToRun);
//
// If there is no more MM driver to dispatch, stop the dispatch request
//
DEBUG ((DEBUG_INFO, " no more MM driver to dispatch, stop the dispatch request\n"));
gRequestDispatch = FALSE;
for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
DEBUG ((DEBUG_INFO, " DriverEntry (Discovered) - %g\n", &DriverEntry->FileName));
if (!DriverEntry->Initialized) {
//
// We have MM driver pending to dispatch
//
gRequestDispatch = TRUE;
break;
}
}
gDispatcherRunning = FALSE;
return EFI_SUCCESS;
}
/**
Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
must add any driver with a before dependency on InsertedDriverEntry first.
You do this by recursively calling this routine. After all the Before Depexes
are processed you can add InsertedDriverEntry to the mScheduledQueue.
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
Then you can add any driver with an After dependency on InsertedDriverEntry
by recursively calling this routine.
@param InsertedDriverEntry The driver to insert on the ScheduledLink Queue
**/
VOID
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
IN EFI_MM_DRIVER_ENTRY *InsertedDriverEntry
)
{
LIST_ENTRY *Link;
EFI_MM_DRIVER_ENTRY *DriverEntry;
//
// Process Before Dependency
//
for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
if (DriverEntry->Before && DriverEntry->Dependent && (DriverEntry != InsertedDriverEntry)) {
DEBUG ((DEBUG_DISPATCH, "Evaluate MM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
DEBUG ((DEBUG_DISPATCH, " BEFORE FFS(%g) = ", &DriverEntry->BeforeAfterGuid));
if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
//
// Recursively process BEFORE
//
DEBUG ((DEBUG_DISPATCH, "TRUE\n END\n RESULT = TRUE\n"));
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
} else {
DEBUG ((DEBUG_DISPATCH, "FALSE\n END\n RESULT = FALSE\n"));
}
}
}
//
// Convert driver from Dependent to Scheduled state
//
InsertedDriverEntry->Dependent = FALSE;
InsertedDriverEntry->Scheduled = TRUE;
InsertTailList (&mScheduledQueue, &InsertedDriverEntry->ScheduledLink);
//
// Process After Dependency
//
for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
if (DriverEntry->After && DriverEntry->Dependent && (DriverEntry != InsertedDriverEntry)) {
DEBUG ((DEBUG_DISPATCH, "Evaluate MM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
DEBUG ((DEBUG_DISPATCH, " AFTER FFS(%g) = ", &DriverEntry->BeforeAfterGuid));
if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
//
// Recursively process AFTER
//
DEBUG ((DEBUG_DISPATCH, "TRUE\n END\n RESULT = TRUE\n"));
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
} else {
DEBUG ((DEBUG_DISPATCH, "FALSE\n END\n RESULT = FALSE\n"));
}
}
}
}
/**
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
Return TRUE if the firmware volume has been processed, FALSE if not.
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
@param FwVolHeader The header of the firmware volume that's being
tested.
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
@retval TRUE The firmware volume denoted by FwVolHeader has
been processed
@retval FALSE The firmware volume denoted by FwVolHeader has
not yet been processed
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
**/
BOOLEAN
FvHasBeenProcessed (
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
)
{
LIST_ENTRY *Link;
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
KNOWN_FWVOL *KnownFwVol;
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
for (Link = mFwVolList.ForwardLink;
Link != &mFwVolList;
Link = Link->ForwardLink)
{
KnownFwVol = CR (Link, KNOWN_FWVOL, Link, KNOWN_FWVOL_SIGNATURE);
if (KnownFwVol->FwVolHeader == FwVolHeader) {
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
return TRUE;
}
}
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
return FALSE;
}
/**
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
Remember that the firmware volume denoted by FwVolHeader has had its drivers
placed on mDiscoveredList. This function adds entries to mFwVolList. Items
are never removed/freed from mFwVolList.
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
@param FwVolHeader The header of the firmware volume that's being
processed.
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
**/
VOID
FvIsBeingProcessed (
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
)
{
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
KNOWN_FWVOL *KnownFwVol;
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
DEBUG ((DEBUG_INFO, "FvIsBeingProcessed - 0x%08x\n", FwVolHeader));
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
KnownFwVol = AllocatePool (sizeof (KNOWN_FWVOL));
ASSERT (KnownFwVol != NULL);
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
KnownFwVol->Signature = KNOWN_FWVOL_SIGNATURE;
KnownFwVol->FwVolHeader = FwVolHeader;
InsertTailList (&mFwVolList, &KnownFwVol->Link);
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
}
/**
Add an entry to the mDiscoveredList. Allocate memory to store the DriverEntry,
and initialise any state variables. Read the Depex from the FV and store it
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
in DriverEntry. Pre-process the Depex to set the Before and After state.
The Discovered list is never freed and contains booleans that represent the
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
other possible MM driver states.
@param [in] FwVolHeader Pointer to the formware volume header.
@param [in] Pe32Data Pointer to the PE data.
@param [in] Pe32DataSize Size of the PE data.
@param [in] Depex Pointer to the Depex info.
@param [in] DepexSize Size of the Depex info.
@param [in] DriverName Name of driver to add to mDiscoveredList.
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
@retval EFI_SUCCESS If driver was added to the mDiscoveredList.
**/
EFI_STATUS
MmAddToDriverList (
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader,
IN VOID *Pe32Data,
IN UINTN Pe32DataSize,
IN VOID *Depex,
IN UINTN DepexSize,
IN EFI_GUID *DriverName
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
)
{
EFI_MM_DRIVER_ENTRY *DriverEntry;
DEBUG ((DEBUG_INFO, "MmAddToDriverList - %g (0x%08x)\n", DriverName, Pe32Data));
//
// Create the Driver Entry for the list. ZeroPool initializes lots of variables to
// NULL or FALSE.
//
DriverEntry = AllocateZeroPool (sizeof (EFI_MM_DRIVER_ENTRY));
ASSERT (DriverEntry != NULL);
DriverEntry->Signature = EFI_MM_DRIVER_ENTRY_SIGNATURE;
CopyGuid (&DriverEntry->FileName, DriverName);
StandaloneMmPkg/Core: stop abusing EFI_HANDLE for FwVolHeader tracking The FvHasBeenProcessed() and FvIsBeingProcesssed() functions make sure that every firmware volume is processed only once (every driver in every firmware volume should be discovered only once). For this, the functions use a linked list. In MdeModulePkg's DXE Core and SMM Core, the key used for identifying those firmware volumes that have been processed is the EFI_HANDLE on which the DXE or SMM firmware volume protocol is installed. In the StandaloneMmPkg core however, the key is the address of the firmware volume header; that is, it has type (EFI_FIRMWARE_VOLUME_HEADER*). (EFI_FIRMWARE_VOLUME_HEADER*) has nothing to do with EFI_HANDLE. EFI_HANDLE just happens to be specified as (VOID*), and therefore the conversion between (EFI_FIRMWARE_VOLUME_HEADER*) and EFI_HANDLE is silent. (The FvHasBeenProcessed() and FvIsBeingProcesssed() functions were likely copied verbatim from MdeModulePkg's DXE Core and/or the SMM Core, and not flagged by the compiler in StandaloneMmPkg due to UEFI regrettably specifying EFI_HANDLE as (VOID*), thereby enabling the above implicit conversion.) We should not exploit this circumstance. Represent the key type faithfully instead. This is a semantic fix; there is no change in operation. Cc: Achin Gupta <achin.gupta@arm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com>
2019-09-17 16:59:09 +02:00
DriverEntry->FwVolHeader = FwVolHeader;
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
DriverEntry->Pe32Data = Pe32Data;
DriverEntry->Pe32DataSize = Pe32DataSize;
DriverEntry->Depex = Depex;
DriverEntry->DepexSize = DepexSize;
MmGetDepexSectionAndPreProccess (DriverEntry);
InsertTailList (&mDiscoveredList, &DriverEntry->Link);
gRequestDispatch = TRUE;
return EFI_SUCCESS;
}
/**
Traverse the discovered list for any drivers that were discovered but not loaded
because the dependency expressions evaluated to false.
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
**/
VOID
MmDisplayDiscoveredNotDispatched (
VOID
)
{
LIST_ENTRY *Link;
EFI_MM_DRIVER_ENTRY *DriverEntry;
for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
if (DriverEntry->Dependent) {
DEBUG ((DEBUG_LOAD, "MM Driver %g was discovered but not loaded!!\n", &DriverEntry->FileName));
}
}
}