audk/OvmfPkg/OvmfPkgIa32X64.dsc

1018 lines
44 KiB
Plaintext
Raw Normal View History

## @file
# EFI/Framework Open Virtual Machine Firmware (OVMF) platform
#
# Copyright (c) 2006 - 2020, Intel Corporation. All rights reserved.<BR>
OvmfPkg: use StatusCode Router and Handler from MdeModulePkg In the Platform Init v1.4a spec, - Volume 1 "4.7 Status Code Service" defines the EFI_PEI_SERVICES.ReportStatusCode() service, - Volume 1 "6.3.5 Status Code PPI (Optional)" defines the EFI_PEI_PROGRESS_CODE_PPI (equivalent to the above), - Volume 2 "14.2 Status Code Runtime Protocol" defines the EFI_STATUS_CODE_PROTOCOL. These allow PEIMs and DXE (and later) modules to report status codes. Currently OvmfPkg uses modules from under "IntelFrameworkModulePkg/Universal/StatusCode/", which produce the above abstractions (PPI and PROTOCOL) directly, and write the status codes, as they are reported, to the serial port or to a memory buffer. This is called "handling" the status codes. In the Platform Init v1.4a spec, - Volume 3 "7.2.2 Report Status Code Handler PPI" defines EFI_PEI_RSC_HANDLER_PPI, - Volume 3 "7.2.1 Report Status Code Handler Protocol" defines EFI_RSC_HANDLER_PROTOCOL. These allow several PEIMs and runtime DXE drivers to register callbacks for status code handling. MdeModulePkg offers a PEIM under "MdeModulePkg/Universal/ReportStatusCodeRouter/Pei" that produces both EFI_PEI_PROGRESS_CODE_PPI and EFI_PEI_RSC_HANDLER_PPI, and a runtime DXE driver under "MdeModulePkg/Universal/ReportStatusCodeRouter/RuntimeDxe" that produces both EFI_STATUS_CODE_PROTOCOL and EFI_RSC_HANDLER_PROTOCOL. MdeModulePkg also offers status code handler modules under MdeModulePkg/Universal/StatusCodeHandler/ that depend on EFI_PEI_RSC_HANDLER_PPI and EFI_RSC_HANDLER_PROTOCOL, respectively. The StatusCodeHandler modules register themselves with ReportStatusCodeRouter through EFI_PEI_RSC_HANDLER_PPI / EFI_RSC_HANDLER_PROTOCOL. When another module reports a status code through EFI_PEI_PROGRESS_CODE_PPI / EFI_STATUS_CODE_PROTOCOL, it reaches the phase-matching ReportStatusCodeRouter module first, which in turn passes the status code to the pre-registered, phase-matching StatusCodeHandler module. The status code handling in the StatusCodeHandler modules is identical to the one currently provided by the IntelFrameworkModulePkg modules. Replace the IntelFrameworkModulePkg modules with the MdeModulePkg ones, so we can decrease our dependency on IntelFrameworkModulePkg. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Cinnamon Shia <cinnamon.shia@hpe.com> Suggested-by: Liming Gao <liming.gao@intel.com> Fixes: https://tianocore.acgmultimedia.com/show_bug.cgi?id=63 [jordan.l.justen@intel.com: point out IntelFareworkModulePkg typos] Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> [lersek@redhat.com: rewrap to 74 cols; fix IntelFareworkModulePkg typos] Reviewed-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
2016-08-02 19:25:10 +02:00
# (C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
##
################################################################################
#
# Defines Section - statements that will be processed to create a Makefile.
#
################################################################################
[Defines]
PLATFORM_NAME = Ovmf
PLATFORM_GUID = 5a9e7754-d81b-49ea-85ad-69eaa7b1539b
PLATFORM_VERSION = 0.1
DSC_SPECIFICATION = 0x00010005
OUTPUT_DIRECTORY = Build/Ovmf3264
SUPPORTED_ARCHITECTURES = IA32|X64
BUILD_TARGETS = NOOPT|DEBUG|RELEASE
SKUID_IDENTIFIER = DEFAULT
FLASH_DEFINITION = OvmfPkg/OvmfPkgIa32X64.fdf
#
# Defines for default states. These can be changed on the command line.
# -D FLAG=VALUE
#
DEFINE SECURE_BOOT_ENABLE = FALSE
DEFINE SMM_REQUIRE = FALSE
DEFINE SOURCE_DEBUG_ENABLE = FALSE
DEFINE TPM_ENABLE = FALSE
DEFINE TPM_CONFIG_ENABLE = FALSE
#
# Network definition
#
DEFINE NETWORK_TLS_ENABLE = FALSE
DEFINE NETWORK_IP6_ENABLE = FALSE
DEFINE NETWORK_HTTP_BOOT_ENABLE = FALSE
DEFINE NETWORK_ALLOW_HTTP_CONNECTIONS = TRUE
!include NetworkPkg/NetworkDefines.dsc.inc
#
# Device drivers
#
DEFINE PVSCSI_ENABLE = TRUE
DEFINE MPT_SCSI_ENABLE = TRUE
DEFINE LSI_SCSI_ENABLE = FALSE
#
# Flash size selection. Setting FD_SIZE_IN_KB on the command line directly to
# one of the supported values, in place of any of the convenience macros, is
# permitted.
#
!ifdef $(FD_SIZE_1MB)
DEFINE FD_SIZE_IN_KB = 1024
!else
!ifdef $(FD_SIZE_2MB)
DEFINE FD_SIZE_IN_KB = 2048
OvmfPkg: introduce 4MB flash image (mainly) for Windows HCK The "Confirm64KilobytesOfUnauthenticatedVariableStorage" test case of the Secure Boot Logo Test ("Microsoft.UefiSecureBootLogo.Tests") suite in the Microsoft Hardware Certification Kit expects to be able to populate the variable store up to roughly 64 KB, with a series of 1 KB sized, unauthenticated variables. OVMF's current live varstore area is too small for this: 56 KB. Introduce the FD_SIZE_4MB build macro (equivalently, FD_SIZE_IN_KB=4096), which - enlarges the full flash image to 4MB -- QEMU supports up to 8MB, see FLASH_MAP_BASE_MIN in "hw/i386/pc_sysfw.c" --, - inside that, grows the varstore area / pflash chip to 528 KB, and within it, the live area from 56 KB to 256 KB. Importantly, a firmware binary built with -D FD_SIZE_4MB will *not* be compatible with a variable store that originates from a variable store template built *without* -D FD_SIZE_4MB. This is the reason for the large increase, as every such change breaks compatibility between a new firmware binary and old varstore files. Enlarging the varstore does not impact the performance of normal operations, as we keep the varstore block size 4KB. The performance of reclaim is affected, but that is expected (since reclaim has to rework the full live area). And, reclaim occurs proportionally less frequently. While at it, the FVMAIN_COMPACT volume (with the compressed FFS file in it) is also enlarged significantly, so that we have plenty of room for future DXEFV (and perhaps PEIFV) increments -- DXEFV has been growing steadily, and that increase shows through compression too. Right now the PEIFV and DXEFV volumes need no resizing. Here's a summary: Description Compression type Size [KB] ------------------------- ----------------- ---------------------- Non-volatile data storage open-coded binary 128 -> 528 ( +400) data Variable store 56 -> 256 ( +200) Event log 4 -> 4 ( +0) Working block 4 -> 4 ( +0) Spare area 64 -> 264 ( +200) FVMAIN_COMPACT uncompressed 1712 -> 3360 (+1648) FV FFS file LZMA compressed PEIFV uncompressed 896 -> 896 ( +0) individual PEI uncompressed modules DXEFV uncompressed 10240 -> 10240 ( +0) individual DXE uncompressed modules SECFV uncompressed 208 -> 208 ( +0) SEC driver reset vector code For now, the 2MB flash image remains the default. Cc: Gary Ching-Pang Lin <glin@suse.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-04-29 03:37:41 +02:00
!else
!ifdef $(FD_SIZE_4MB)
DEFINE FD_SIZE_IN_KB = 4096
!else
DEFINE FD_SIZE_IN_KB = 4096
!endif
!endif
OvmfPkg: introduce 4MB flash image (mainly) for Windows HCK The "Confirm64KilobytesOfUnauthenticatedVariableStorage" test case of the Secure Boot Logo Test ("Microsoft.UefiSecureBootLogo.Tests") suite in the Microsoft Hardware Certification Kit expects to be able to populate the variable store up to roughly 64 KB, with a series of 1 KB sized, unauthenticated variables. OVMF's current live varstore area is too small for this: 56 KB. Introduce the FD_SIZE_4MB build macro (equivalently, FD_SIZE_IN_KB=4096), which - enlarges the full flash image to 4MB -- QEMU supports up to 8MB, see FLASH_MAP_BASE_MIN in "hw/i386/pc_sysfw.c" --, - inside that, grows the varstore area / pflash chip to 528 KB, and within it, the live area from 56 KB to 256 KB. Importantly, a firmware binary built with -D FD_SIZE_4MB will *not* be compatible with a variable store that originates from a variable store template built *without* -D FD_SIZE_4MB. This is the reason for the large increase, as every such change breaks compatibility between a new firmware binary and old varstore files. Enlarging the varstore does not impact the performance of normal operations, as we keep the varstore block size 4KB. The performance of reclaim is affected, but that is expected (since reclaim has to rework the full live area). And, reclaim occurs proportionally less frequently. While at it, the FVMAIN_COMPACT volume (with the compressed FFS file in it) is also enlarged significantly, so that we have plenty of room for future DXEFV (and perhaps PEIFV) increments -- DXEFV has been growing steadily, and that increase shows through compression too. Right now the PEIFV and DXEFV volumes need no resizing. Here's a summary: Description Compression type Size [KB] ------------------------- ----------------- ---------------------- Non-volatile data storage open-coded binary 128 -> 528 ( +400) data Variable store 56 -> 256 ( +200) Event log 4 -> 4 ( +0) Working block 4 -> 4 ( +0) Spare area 64 -> 264 ( +200) FVMAIN_COMPACT uncompressed 1712 -> 3360 (+1648) FV FFS file LZMA compressed PEIFV uncompressed 896 -> 896 ( +0) individual PEI uncompressed modules DXEFV uncompressed 10240 -> 10240 ( +0) individual DXE uncompressed modules SECFV uncompressed 208 -> 208 ( +0) SEC driver reset vector code For now, the 2MB flash image remains the default. Cc: Gary Ching-Pang Lin <glin@suse.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-04-29 03:37:41 +02:00
!endif
[BuildOptions]
GCC:RELEASE_*_*_CC_FLAGS = -DMDEPKG_NDEBUG
INTEL:RELEASE_*_*_CC_FLAGS = /D MDEPKG_NDEBUG
MSFT:RELEASE_*_*_CC_FLAGS = /D MDEPKG_NDEBUG
!if $(TOOL_CHAIN_TAG) != "XCODE5" && $(TOOL_CHAIN_TAG) != "CLANGPDB"
GCC:*_*_*_CC_FLAGS = -mno-mmx -mno-sse
!endif
!if $(SOURCE_DEBUG_ENABLE) == TRUE
MSFT:*_*_X64_GENFW_FLAGS = --keepexceptiontable
GCC:*_*_X64_GENFW_FLAGS = --keepexceptiontable
INTEL:*_*_X64_GENFW_FLAGS = --keepexceptiontable
!endif
#
# Disable deprecated APIs.
#
MSFT:*_*_*_CC_FLAGS = /D DISABLE_NEW_DEPRECATED_INTERFACES
INTEL:*_*_*_CC_FLAGS = /D DISABLE_NEW_DEPRECATED_INTERFACES
GCC:*_*_*_CC_FLAGS = -D DISABLE_NEW_DEPRECATED_INTERFACES
[BuildOptions.common.EDKII.DXE_RUNTIME_DRIVER]
GCC:*_*_*_DLINK_FLAGS = -z common-page-size=0x1000
XCODE:*_*_*_DLINK_FLAGS = -seg1addr 0x1000 -segalign 0x1000
XCODE:*_*_*_MTOC_FLAGS = -align 0x1000
CLANGPDB:*_*_*_DLINK_FLAGS = /ALIGN:4096
# Force PE/COFF sections to be aligned at 4KB boundaries to support page level
# protection of DXE_SMM_DRIVER/SMM_CORE modules
[BuildOptions.common.EDKII.DXE_SMM_DRIVER, BuildOptions.common.EDKII.SMM_CORE]
GCC:*_*_*_DLINK_FLAGS = -z common-page-size=0x1000
XCODE:*_*_*_DLINK_FLAGS = -seg1addr 0x1000 -segalign 0x1000
XCODE:*_*_*_MTOC_FLAGS = -align 0x1000
CLANGPDB:*_*_*_DLINK_FLAGS = /ALIGN:4096
################################################################################
#
# SKU Identification section - list of all SKU IDs supported by this Platform.
#
################################################################################
[SkuIds]
0|DEFAULT
################################################################################
#
# Library Class section - list of all Library Classes needed by this Platform.
#
################################################################################
[LibraryClasses]
PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances Remove local power management register access macros in favor of factored-out ones in OvmfPkg/Include/OvmfPlatforms.h Next, AcpiTimerLib is split out into three instances, for use during various stages: - BaseRom: used during SEC, PEI_CORE, and PEIM; - Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER; - Base: used by default during all other stages. Most of the code remains in AcpiTimerLib.c, to be shared by all instances. The two platform-dependent methods (constructor and InternalAcpiGetTimerTick) are provided separately by source files specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c. Since pre-DXE stages can't rely on storing data in global variables, methods specific to the "BaseRom" instance will call platform detection macros each time they're invoked. The "Base" instance calls platform detection macros only from its constructor, and caches the address required by InternalAcpiTimerTick in a global variable. The "Dxe" instance is very similar to "Base", except no platform detection macros are called at all; instead, the platform type is read via a dynamic PCD set from PlatformPei. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Reviewed-by: Gerd Hoffmann <kraxel@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
TimerLib|OvmfPkg/Library/AcpiTimerLib/BaseAcpiTimerLib.inf
ResetSystemLib|OvmfPkg/Library/ResetSystemLib/BaseResetSystemLib.inf
PrintLib|MdePkg/Library/BasePrintLib/BasePrintLib.inf
BaseMemoryLib|MdePkg/Library/BaseMemoryLibRepStr/BaseMemoryLibRepStr.inf
BaseLib|MdePkg/Library/BaseLib/BaseLib.inf
SafeIntLib|MdePkg/Library/BaseSafeIntLib/BaseSafeIntLib.inf
BmpSupportLib|MdeModulePkg/Library/BaseBmpSupportLib/BaseBmpSupportLib.inf
SynchronizationLib|MdePkg/Library/BaseSynchronizationLib/BaseSynchronizationLib.inf
CpuLib|MdePkg/Library/BaseCpuLib/BaseCpuLib.inf
PerformanceLib|MdePkg/Library/BasePerformanceLibNull/BasePerformanceLibNull.inf
PeCoffLib|MdePkg/Library/BasePeCoffLib/BasePeCoffLib.inf
CacheMaintenanceLib|MdePkg/Library/BaseCacheMaintenanceLib/BaseCacheMaintenanceLib.inf
UefiDecompressLib|MdePkg/Library/BaseUefiDecompressLib/BaseUefiDecompressLib.inf
UefiHiiServicesLib|MdeModulePkg/Library/UefiHiiServicesLib/UefiHiiServicesLib.inf
HiiLib|MdeModulePkg/Library/UefiHiiLib/UefiHiiLib.inf
SortLib|MdeModulePkg/Library/UefiSortLib/UefiSortLib.inf
UefiBootManagerLib|MdeModulePkg/Library/UefiBootManagerLib/UefiBootManagerLib.inf
BootLogoLib|MdeModulePkg/Library/BootLogoLib/BootLogoLib.inf
FileExplorerLib|MdeModulePkg/Library/FileExplorerLib/FileExplorerLib.inf
CapsuleLib|MdeModulePkg/Library/DxeCapsuleLibNull/DxeCapsuleLibNull.inf
DxeServicesLib|MdePkg/Library/DxeServicesLib/DxeServicesLib.inf
DxeServicesTableLib|MdePkg/Library/DxeServicesTableLib/DxeServicesTableLib.inf
PeCoffGetEntryPointLib|MdePkg/Library/BasePeCoffGetEntryPointLib/BasePeCoffGetEntryPointLib.inf
PciCf8Lib|MdePkg/Library/BasePciCf8Lib/BasePciCf8Lib.inf
PciExpressLib|MdePkg/Library/BasePciExpressLib/BasePciExpressLib.inf
PciLib|MdePkg/Library/BasePciLibCf8/BasePciLibCf8.inf
PciSegmentLib|MdePkg/Library/BasePciSegmentLibPci/BasePciSegmentLibPci.inf
PciCapLib|OvmfPkg/Library/BasePciCapLib/BasePciCapLib.inf
PciCapPciSegmentLib|OvmfPkg/Library/BasePciCapPciSegmentLib/BasePciCapPciSegmentLib.inf
PciCapPciIoLib|OvmfPkg/Library/UefiPciCapPciIoLib/UefiPciCapPciIoLib.inf
IoLib|MdePkg/Library/BaseIoLibIntrinsic/BaseIoLibIntrinsicSev.inf
OemHookStatusCodeLib|MdeModulePkg/Library/OemHookStatusCodeLibNull/OemHookStatusCodeLibNull.inf
SerialPortLib|PcAtChipsetPkg/Library/SerialIoLib/SerialIoLib.inf
MtrrLib|UefiCpuPkg/Library/MtrrLib/MtrrLib.inf
UefiLib|MdePkg/Library/UefiLib/UefiLib.inf
UefiBootServicesTableLib|MdePkg/Library/UefiBootServicesTableLib/UefiBootServicesTableLib.inf
UefiRuntimeServicesTableLib|MdePkg/Library/UefiRuntimeServicesTableLib/UefiRuntimeServicesTableLib.inf
UefiDriverEntryPoint|MdePkg/Library/UefiDriverEntryPoint/UefiDriverEntryPoint.inf
UefiApplicationEntryPoint|MdePkg/Library/UefiApplicationEntryPoint/UefiApplicationEntryPoint.inf
DevicePathLib|MdePkg/Library/UefiDevicePathLibDevicePathProtocol/UefiDevicePathLibDevicePathProtocol.inf
NvVarsFileLib|OvmfPkg/Library/NvVarsFileLib/NvVarsFileLib.inf
MdeModulePkg, MdePkg, NetworkPkg, OvmfPkg, PerformancePkg, ShellPkg: Library Migration. Move libraries from ShellPkg into MdeModulePkg and MdePkg. The following libraries are being migrated out of ShellPkg in order to make their functionality more widely available. • PathLib: Incorporate into MdePkg/Library/BaseLib • FileHandleLib: MdePkg/Library/UefiFileHandleLib • BaseSortLib: MdeModulePkg/Library/BaseSortLib • UefiSortLib: MdeModulePkg/Library/UefiSortLib Diffs showing file changes are in the attached file, LibMigration.patch. A description of the changes follows: • Move ShellPkg/Include/Library/FileHandleLib.h to MdePkg/Include/Library/FileHandleLib.h • Move ShellPkg/Include/Library/SortLib.h to MdeModulePkg/Include/Library/SortLib.h • Move ShellPkg/Library/BaseSortLib to MdeModulePkg/Library/BaseSortLib • Move ShellPkg/Library/UefiSortLib to MdeModulePkg/Library/UefiSortLib • Move ShellPkg/Library/BasePathLib/BasePathLib.c to MdePkg/Library/BaseLib/FilePaths.c • Merge ShellPkg/Include/Library/PathLib.h into MdePkg/Include/Library/BaseLib.h • Delete ShellPkg/Library/BasePathLib; Includes BasePathLib.c and BasePathLib.inf • NetworkPkg/NetworkPkg.dsc • PerformancePkg.dsc • OvmfPkg/OvmfPkgX64.dsc • OvmfPkg/OvmfPkgIa32X64.dsc • OvmfPkg/OvmfPkgIa32.dsc o Update SortLib and FileHandleLib library classes to point to the new library locations. o Remove PathLib library class and make sure that BaseLib is described. • MdeModulePkg/MdeModulePkg.dec o Add SortLib library class • MdePkg/MdePkg.dec o Add FileHandleLib library class o Add PcdUefiFileHandleLibPrintBufferSize PCD • MdePkg/Library/BaseLib/BaseLib.inf o Add FilePaths.c to [Sources] • MdePkg/Include/Library/BaseLib.h o Update file description to include "file path functions" • ShellPkg/ShellPkg.dsc o Change PACKAGE_GUID to { C1014BB7-4092-43D4-984F-0738EB424DBF } o Update PACKAGE_VERSION to 1.0 o Update SortLib and FileHandleLib library classes to point to the new library locations. o Remove PathLib library class and make sure that BaseLib is described. o Remove ShellPkg/Library/UefiFileHandleLib/UefiFileHandleLib.inf from [Components] • ShellPkg/ShellPkg.dec o Update PLATFORM_VERSION to 1.0 o Remove declarations of the FileHandleLib, SortLib, and PathLib Library Classes o Update comment for the PcdShellPrintBufferSize PCD. • ShellPkg/Library/UefiShellLevel2CommandsLib/UefiShellLevel2CommandsLib.inf • ShellPkg/Application/Shell/Shell.inf o Remove PathLib from [LibraryClasses] • ShellPkg/Library/UefiShellLevel2CommandsLib/UefiShellLevel2CommandsLib.h • ShellPkg/Application/Shell/Shell.h o Remove #include <Library/PathLib.h> • ShellPkg/Library/UefiShellLevel1CommandsLib/UefiShellLevel1CommandsLib.inf o Add PathLib to [LibraryClasses] • ShellPkg/Library/UefiShellLevel1CommandsLib/If.c o Remove #include <Library/PathLib.h> • ShellPkg/Application/ShellSortTestApp/ShellSortTestApp.inf o Add MdeModulePkg/MdeModulePkg.dec to [Packages] • MdeModulePkg/Library/BaseSortLib/BaseSortLib.inf • MdeModulePkg/Library/UefiSortLib/UefiSortLib.inf o Replace ShellPkg.dec with MdeModulePkg.dec in [Packages] • MdeModulePkg/Library/UefiSortLib/UefiSortLib.c o Remove #include <ShellBase.h> o Define USL_FREE_NON_NULL() to replace SHELL_FREE_NON_NULL() Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Daryl McDaniel <daryl.mcdaniel@intel.com> Reviewed-by: Jaben Carsey <jaben.carsey@intel.com> Reviewed-by: Erik Bjorge <erik.c.bjorge@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16601 6f19259b-4bc3-4df7-8a09-765794883524
2015-01-13 02:04:07 +01:00
FileHandleLib|MdePkg/Library/UefiFileHandleLib/UefiFileHandleLib.inf
UefiCpuLib|UefiCpuPkg/Library/BaseUefiCpuLib/BaseUefiCpuLib.inf
SecurityManagementLib|MdeModulePkg/Library/DxeSecurityManagementLib/DxeSecurityManagementLib.inf
UefiUsbLib|MdePkg/Library/UefiUsbLib/UefiUsbLib.inf
SerializeVariablesLib|OvmfPkg/Library/SerializeVariablesLib/SerializeVariablesLib.inf
QemuFwCfgLib|OvmfPkg/Library/QemuFwCfgLib/QemuFwCfgDxeLib.inf
QemuFwCfgSimpleParserLib|OvmfPkg/Library/QemuFwCfgSimpleParserLib/QemuFwCfgSimpleParserLib.inf
VirtioLib|OvmfPkg/Library/VirtioLib/VirtioLib.inf
LoadLinuxLib|OvmfPkg/Library/LoadLinuxLib/LoadLinuxLib.inf
MemEncryptSevLib|OvmfPkg/Library/BaseMemEncryptSevLib/BaseMemEncryptSevLib.inf
OvmfPkg: LockBox: use SMM stack with -D SMM_REQUIRE During DXE, drivers save data in the LockBox. A save operation is layered as follows: - The unprivileged driver wishing to store data in the LockBox links against the "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxDxeLib.inf" library instance. The library allows the unprivileged driver to format requests for the privileged SMM LockBox driver (see below), and to parse responses. We apply this resolution for DXE_DRIVER modules. - The privileged SMM LockBox driver is built from "MdeModulePkg/Universal/LockBox/SmmLockBox/SmmLockBox.inf". This driver has module type DXE_SMM_DRIVER and can access SMRAM. The driver delegates command parsing and response formatting to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxSmmLib.inf". Therefore we include this DXE_SMM_DRIVER in the build, and apply said resolution specifically to it. (Including the driver requires us to resolve a few of other library classes for DXE_SMM_DRIVER modules.) - In PEI, the S3 Resume PEIM (UefiCpuPkg/Universal/Acpi/S3Resume2Pei) retrieves data from the LockBox. It is capable of searching SMRAM itself. We resolve LockBoxLib to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxPeiLib.inf" specifically for this one PEIM. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19048 6f19259b-4bc3-4df7-8a09-765794883524
2015-11-30 19:42:15 +01:00
!if $(SMM_REQUIRE) == FALSE
LockBoxLib|OvmfPkg/Library/LockBoxLib/LockBoxBaseLib.inf
OvmfPkg: LockBox: use SMM stack with -D SMM_REQUIRE During DXE, drivers save data in the LockBox. A save operation is layered as follows: - The unprivileged driver wishing to store data in the LockBox links against the "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxDxeLib.inf" library instance. The library allows the unprivileged driver to format requests for the privileged SMM LockBox driver (see below), and to parse responses. We apply this resolution for DXE_DRIVER modules. - The privileged SMM LockBox driver is built from "MdeModulePkg/Universal/LockBox/SmmLockBox/SmmLockBox.inf". This driver has module type DXE_SMM_DRIVER and can access SMRAM. The driver delegates command parsing and response formatting to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxSmmLib.inf". Therefore we include this DXE_SMM_DRIVER in the build, and apply said resolution specifically to it. (Including the driver requires us to resolve a few of other library classes for DXE_SMM_DRIVER modules.) - In PEI, the S3 Resume PEIM (UefiCpuPkg/Universal/Acpi/S3Resume2Pei) retrieves data from the LockBox. It is capable of searching SMRAM itself. We resolve LockBoxLib to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxPeiLib.inf" specifically for this one PEIM. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19048 6f19259b-4bc3-4df7-8a09-765794883524
2015-11-30 19:42:15 +01:00
!endif
CustomizedDisplayLib|MdeModulePkg/Library/CustomizedDisplayLib/CustomizedDisplayLib.inf
FrameBufferBltLib|MdeModulePkg/Library/FrameBufferBltLib/FrameBufferBltLib.inf
!if $(SOURCE_DEBUG_ENABLE) == TRUE
PeCoffExtraActionLib|SourceLevelDebugPkg/Library/PeCoffExtraActionLibDebug/PeCoffExtraActionLibDebug.inf
DebugCommunicationLib|SourceLevelDebugPkg/Library/DebugCommunicationLibSerialPort/DebugCommunicationLibSerialPort.inf
!else
PeCoffExtraActionLib|MdePkg/Library/BasePeCoffExtraActionLibNull/BasePeCoffExtraActionLibNull.inf
DebugAgentLib|MdeModulePkg/Library/DebugAgentLibNull/DebugAgentLibNull.inf
!endif
OvmfPkg: select LocalApicLib instance with x2apic support Although neither LocalApicLib instance is suitable for runtime DXE drivers (because they access the APIC at the physical address retrieved from either MSR_IA32_APIC_BASE_ADDRESS or PcdCpuLocalApicBaseAddress), they are suitable for SMM drivers -- SMM drivers are not influenced by the runtime OS's virtual address map. PiSmmCpuDxeSmm links against LocalApicLib. 64-bit Linux guests tend to enable x2apic mode even in simple VCPU configurations (e.g., 4 sockets, 1 core/socket, 1 thread/core): [ 0.028173] x2apic enabled If PiSmmCpuDxeSmm was linked with the BaseXApicLib instance (i.e., with no x2apic support), then the next runtime service call that is backed by an SMM driver triggers the following ASSERT in BaseXApicLib (because the latter notices that x2apic has been enabled, which it doesn't support): ASSERT .../UefiCpuPkg/Library/BaseXApicLib/BaseXApicLib.c(263): ApicBaseMsr.Bits.Extd == 0 It is reasonable to give all LocalApicLib client modules in OVMF the same level of x2apic support, hence resolve LocalApicLib globally to BaseXApicX2ApicLib. This will not be conditional on -D SMM_REQUIRE, because BaseXApicX2ApicLib is compatible with BaseXApicLib in any environment where the latter can be used. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19052 6f19259b-4bc3-4df7-8a09-765794883524
2015-11-30 19:42:31 +01:00
LocalApicLib|UefiCpuPkg/Library/BaseXApicX2ApicLib/BaseXApicX2ApicLib.inf
DebugPrintErrorLevelLib|MdePkg/Library/BaseDebugPrintErrorLevelLib/BaseDebugPrintErrorLevelLib.inf
IntrinsicLib|CryptoPkg/Library/IntrinsicLib/IntrinsicLib.inf
!if $(NETWORK_TLS_ENABLE) == TRUE
OpensslLib|CryptoPkg/Library/OpensslLib/OpensslLib.inf
!else
OpensslLib|CryptoPkg/Library/OpensslLib/OpensslLibCrypto.inf
!endif
!if $(SECURE_BOOT_ENABLE) == TRUE
PlatformSecureLib|OvmfPkg/Library/PlatformSecureLib/PlatformSecureLib.inf
AuthVariableLib|SecurityPkg/Library/AuthVariableLib/AuthVariableLib.inf
!else
AuthVariableLib|MdeModulePkg/Library/AuthVariableLibNull/AuthVariableLibNull.inf
!endif
VarCheckLib|MdeModulePkg/Library/VarCheckLib/VarCheckLib.inf
#
# Network libraries
#
!include NetworkPkg/NetworkLibs.dsc.inc
!if $(NETWORK_TLS_ENABLE) == TRUE
TlsLib|CryptoPkg/Library/TlsLib/TlsLib.inf
!endif
ShellLib|ShellPkg/Library/UefiShellLib/UefiShellLib.inf
ShellCEntryLib|ShellPkg/Library/UefiShellCEntryLib/UefiShellCEntryLib.inf
OvmfPkg: S3 Suspend: enable creation/saving of an S3 Boot Script "MdeModulePkg/Universal/Acpi/S3SaveStateDxe/S3SaveStateDxe.inf" produces the EFI_S3_SAVE_STATE_PROTOCOL which allows creation and saving of an S3 Boot Script, to be replayed in PEI during S3 Resume. The script contains opcodes and opcode arguments to configure CPU, PCI and IO resources. S3SaveStateDxe relies on the S3BootScriptLib library. The Null implementation is not useful for actually saving the boot script, we need the PiDxeS3BootScriptLib instance. The PiDxeS3BootScriptLib library instance depends on LockBoxLib, implemented for OVMF in one of the previous patches. PiDxeS3BootScriptLib also depends on SmbusLib. For now we opt for the Null instance of the latter. It means that SMBus commands in the boot script will have no effect when interpreted during S3 Resume. This should be fine for OvmfPkg and QEMU. EFI_S3_SAVE_STATE_PROTOCOL [S3SaveStateDxe] S3BootScriptLib [PiDxeS3BootScriptLib] SmbusLib [BaseSmbusLibNull] LockBoxLib [OvmfPkg/Library/LockBoxLib] When the EFI_DXE_SMM_READY_TO_LOCK_PROTOCOL is installed by any DXE driver (purely as a form of notification), the S3SaveStateDxe driver saves the boot script to EfiACPIMemoryNVS, and links it into the LockBox. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15304 6f19259b-4bc3-4df7-8a09-765794883524
2014-03-04 09:03:50 +01:00
S3BootScriptLib|MdeModulePkg/Library/PiDxeS3BootScriptLib/DxeS3BootScriptLib.inf
SmbusLib|MdePkg/Library/BaseSmbusLibNull/BaseSmbusLibNull.inf
OrderedCollectionLib|MdePkg/Library/BaseOrderedCollectionRedBlackTreeLib/BaseOrderedCollectionRedBlackTreeLib.inf
XenHypercallLib|OvmfPkg/Library/XenHypercallLib/XenHypercallLib.inf
XenPlatformLib|OvmfPkg/Library/XenPlatformLib/XenPlatformLib.inf
OvmfPkg: S3 Suspend: enable creation/saving of an S3 Boot Script "MdeModulePkg/Universal/Acpi/S3SaveStateDxe/S3SaveStateDxe.inf" produces the EFI_S3_SAVE_STATE_PROTOCOL which allows creation and saving of an S3 Boot Script, to be replayed in PEI during S3 Resume. The script contains opcodes and opcode arguments to configure CPU, PCI and IO resources. S3SaveStateDxe relies on the S3BootScriptLib library. The Null implementation is not useful for actually saving the boot script, we need the PiDxeS3BootScriptLib instance. The PiDxeS3BootScriptLib library instance depends on LockBoxLib, implemented for OVMF in one of the previous patches. PiDxeS3BootScriptLib also depends on SmbusLib. For now we opt for the Null instance of the latter. It means that SMBus commands in the boot script will have no effect when interpreted during S3 Resume. This should be fine for OvmfPkg and QEMU. EFI_S3_SAVE_STATE_PROTOCOL [S3SaveStateDxe] S3BootScriptLib [PiDxeS3BootScriptLib] SmbusLib [BaseSmbusLibNull] LockBoxLib [OvmfPkg/Library/LockBoxLib] When the EFI_DXE_SMM_READY_TO_LOCK_PROTOCOL is installed by any DXE driver (purely as a form of notification), the S3SaveStateDxe driver saves the boot script to EfiACPIMemoryNVS, and links it into the LockBox. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15304 6f19259b-4bc3-4df7-8a09-765794883524
2014-03-04 09:03:50 +01:00
!if $(TPM_ENABLE) == TRUE
Tpm12CommandLib|SecurityPkg/Library/Tpm12CommandLib/Tpm12CommandLib.inf
Tpm2CommandLib|SecurityPkg/Library/Tpm2CommandLib/Tpm2CommandLib.inf
Tcg2PhysicalPresenceLib|OvmfPkg/Library/Tcg2PhysicalPresenceLibQemu/DxeTcg2PhysicalPresenceLib.inf
OvmfPkg: include Tcg2Dxe module This module measures and log the boot environment. It also produces the Tcg2 protocol, which allows for example to read the log from OS. The linux kernel doesn't yet read the EFI_TCG2_EVENT_LOG_FORMAT_TCG_2, which is required for crypto-agile log. In fact, only upcoming 4.16 adds support EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2: [ 0.000000] efi: EFI v2.70 by EDK II [ 0.000000] efi: SMBIOS=0x3fa1f000 ACPI=0x3fbb6000 ACPI 2.0=0x3fbb6014 MEMATTR=0x3e7d4318 TPMEventLog=0x3db21018 $ python chipsec_util.py tpm parse_log binary_bios_measurements [CHIPSEC] Version 1.3.5.dev2 [CHIPSEC] API mode: using OS native API (not using CHIPSEC kernel module) [CHIPSEC] Executing command 'tpm' with args ['parse_log', '/tmp/binary_bios_measurements'] PCR: 0 type: EV_S_CRTM_VERSION size: 0x2 digest: 1489f923c4dca729178b3e3233458550d8dddf29 + version: PCR: 0 type: EV_EFI_PLATFORM_FIRMWARE_BLOB size: 0x10 digest: fd39ced7c0d2a61f6830c78c7625f94826b05bcc + base: 0x820000 length: 0xe0000 PCR: 0 type: EV_EFI_PLATFORM_FIRMWARE_BLOB size: 0x10 digest: 39ebc6783b72bc1e73c7d5bcfeb5f54a3f105d4c + base: 0x900000 length: 0xa00000 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x35 digest: 57cd4dc19442475aa82743484f3b1caa88e142b8 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x24 digest: 9b1387306ebb7ff8e795e7be77563666bbf4516e PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x26 digest: 9afa86c507419b8570c62167cb9486d9fc809758 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x24 digest: 5bf8faa078d40ffbd03317c93398b01229a0e1e0 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x26 digest: 734424c9fe8fc71716c42096f4b74c88733b175e PCR: 7 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x3e digest: 252f8ebb85340290b64f4b06a001742be8e5cab6 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x6e digest: 22a4f6ee9af6dba01d3528deb64b74b582fc182b PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x80 digest: b7811d5bf30a7efd4e385c6179fe10d9290bb9e8 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x84 digest: 425e502c24fc924e231e0a62327b6b7d1f704573 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x9a digest: 0b5d2c98ac5de6148a4a1490ff9d5df69039f04e PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0xbd digest: 20bd5f402271d57a88ea314fe35c1705956b1f74 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x88 digest: df5d6605cb8f4366d745a8464cfb26c1efdc305c PCR: 4 type: EV_EFI_ACTION size: 0x28 digest: cd0fdb4531a6ec41be2753ba042637d6e5f7f256 PCR: 0 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 1 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 2 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 3 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 4 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 5 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 $ tpm2_pcrlist sha1 : 0 : 35bd1786b6909daad610d7598b1d620352d33b8a 1 : ec0511e860206e0af13c31da2f9e943fb6ca353d 2 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 3 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 4 : 45a323382bd933f08e7f0e256bc8249e4095b1ec 5 : d16d7e629fd8d08ca256f9ad3a3a1587c9e6cc1b 6 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 7 : 518bd167271fbb64589c61e43d8c0165861431d8 8 : 0000000000000000000000000000000000000000 9 : 0000000000000000000000000000000000000000 10 : 0000000000000000000000000000000000000000 11 : 0000000000000000000000000000000000000000 12 : 0000000000000000000000000000000000000000 13 : 0000000000000000000000000000000000000000 14 : 0000000000000000000000000000000000000000 15 : 0000000000000000000000000000000000000000 16 : 0000000000000000000000000000000000000000 17 : ffffffffffffffffffffffffffffffffffffffff 18 : ffffffffffffffffffffffffffffffffffffffff 19 : ffffffffffffffffffffffffffffffffffffffff 20 : ffffffffffffffffffffffffffffffffffffffff 21 : ffffffffffffffffffffffffffffffffffffffff 22 : ffffffffffffffffffffffffffffffffffffffff 23 : 0000000000000000000000000000000000000000 sha256 : 0 : 9ae903dbae3357ac00d223660bac19ea5c021499a56201104332ab966631ce2c 1 : acc611d90245cf04e77b0ca94901f90e7fa54770f0426f53c3049b532243d1b8 2 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 3 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 4 : 7a94ffe8a7729a566d3d3c577fcb4b6b1e671f31540375f80eae6382ab785e35 5 : a5ceb755d043f32431d63e39f5161464620a3437280494b5850dc1b47cc074e0 6 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 7 : 65caf8dd1e0ea7a6347b635d2b379c93b9a1351edc2afc3ecda700e534eb3068 8 : 0000000000000000000000000000000000000000000000000000000000000000 9 : 0000000000000000000000000000000000000000000000000000000000000000 10 : 0000000000000000000000000000000000000000000000000000000000000000 11 : 0000000000000000000000000000000000000000000000000000000000000000 12 : 0000000000000000000000000000000000000000000000000000000000000000 13 : 0000000000000000000000000000000000000000000000000000000000000000 14 : 0000000000000000000000000000000000000000000000000000000000000000 15 : 0000000000000000000000000000000000000000000000000000000000000000 16 : 0000000000000000000000000000000000000000000000000000000000000000 17 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 18 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 19 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 20 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 21 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 22 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 23 : 0000000000000000000000000000000000000000000000000000000000000000 sha384 : The PhysicalPresenceLib is required, it sets some variables, but the firmware doesn't act on it yet. Laszlo Ersek explained on the list why Tpm2DeviceLib has to be resolved differently for DXE_DRIVER modules in general and for "Tcg2Dxe.inf" specifically: * We have a library class called Tpm2DeviceLib -- this is basically the set of APIs declared in "SecurityPkg/Include/Library/Tpm2DeviceLib.h". Its leading comment says "This library abstract how to access TPM2 hardware device". There are two *sets* of APIs in "Tpm2DeviceLib.h": (a) functions that deal with the TPM2 device: - Tpm2RequestUseTpm(), - Tpm2SubmitCommand() This set of APIs is supposed to be used by clients that *consume* the TPM2 device abstraction. (b) the function Tpm2RegisterTpm2DeviceLib(), which is supposed to be used by *providers* of various TPM2 device abstractions. * Then, we have two implementations (instances) of the Tpm2DeviceLib class: (1) SecurityPkg/Library/Tpm2DeviceLibTcg2/Tpm2DeviceLibTcg2.inf (2) SecurityPkg/Library/Tpm2DeviceLibRouter/Tpm2DeviceLibRouterDxe.inf (1) The first library instance ("Tpm2DeviceLibTcg2.inf") implements the APIs listed under (a), and it does not implement (b) -- see EFI_UNSUPPORTED. In other words, this lib instance is strictly meant for drivers that *consume* the TPM2 device abstraction. And, the (a) group of APIs is implemented by forwarding the requests to the TCG2 protocol. The idea here is that all the drivers that consume the TPM2 abstraction do not have to be statically linked with a large TPM2 device library instance; instead they are only linked (statically) with this "thin" library instance, and all the actual work is delegated to whichever driver that provides the singleton TCG2 protocol. (2) The second library instance ("Tpm2DeviceLibRouterDxe.inf") is meant for the driver that offers (produces) the TCG2 protocol. This lib instance implements both (a) and (b) API groups. * Here's how things fit together: (i) The "SecurityPkg/Library/Tpm2DeviceLibDTpm/Tpm2InstanceLibDTpm.inf" library instance (which has no lib class) is linked into "Tcg2Dxe.inf" via NULL class resolution. This simply means that before the "Tcg2Dxe.inf" entry point function is entered, the constructor function of "Tpm2InstanceLibDTpm.inf" will be called. (ii) This Tpm2InstanceLibDTpmConstructor() function calls API (b), and registers its own actual TPM2 command implementation with the "Tpm2DeviceLibRouter" library instance (also linked into the Tcg2Dxe driver). This provides the back-end for the API set (a). TCG2 protocol provider (Tcg2Dxe.inf driver) launches | v NULL class: Tpm2InstanceLibDTpm instance construction | v Tpm2DeviceLib class: Tpm2DeviceLibRouter instance backend registration for API set (a) (iii) The Tcg2Dxe driver exposes the TCG2 protocol. (iv) A TPM2 consumer calls API set (a) via lib instance (1). Such calls land in Tcg2Dxe, via the protocol. (v) Tcg2Dxe serves the protocol request by forwarding it to API set (a) from lib instance (2). (vi) Those functions call the "backend" functions registered by Tpm2DeviceLibDTpm in step (ii). TPM 2 consumer driver | v Tpm2DeviceLib class: Tpm2DeviceLibTcg2 instance | v TCG2 protocol interface | v TCG2 protocol provider: Tcg2Dxe.inf driver | v Tpm2DeviceLib class: Tpm2DeviceLibRouter instance | v NULL class: Tpm2InstanceLibDTpm instance (via earlier registration) | v TPM2 chip (actual hardware) * So that is the "router" pattern in edk2. Namely, - Consumers of an abstraction use a thin library instance. - The thin library instance calls a firmware-global (singleton) service, i.e. a PPI (in the PEI phase) or protocol (in the DXE phase). - The PEIM providing the PPI, or the DXE driver providing the protocol, don't themselves implement the actual service either. Instead they offer a "registration" service too, and they only connect the incoming "consumer" calls to the earlier registered back-end(s). - The "registration service", for back-ends to use, may take various forms. It can be exposed globally to the rest of the firmware, as another member function of the PPI / protocol structure. Then backends can be provided by separate PEIMs / DXE drivers. Or else, the registration service can be exposed as just another library API. In this case, the backends are provided as NULL class library instances, and a platform DSC file links them into the PEIM / DXE driver via NULL class resolutions. The backend lib instances call the registration service in their own respective constructor functions. Cc: Laszlo Ersek <lersek@redhat.com> Cc: Stefan Berger <stefanb@linux.vnet.ibm.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2018-02-22 17:53:16 +01:00
Tcg2PpVendorLib|SecurityPkg/Library/Tcg2PpVendorLibNull/Tcg2PpVendorLibNull.inf
OvmfPkg: use DxeTpmMeasurementLib if and only if TPM2_ENABLE (a) OvmfPkg first had to resolve the TpmMeasurementLib class -- for SECURE_BOOT_ENABLE only -- when the DxeImageVerificationLib instance became dependent on TpmMeasurementLib. For details, refer to commit 0d28d286bf4d ("OvmfPkg: resolve TpmMeasurementLib dependency introduced in r14687", 2013-09-21). (b) At the time, only one instance of TpmMeasurementLib existed, namely DxeTpmMeasurementLib. This lib instance didn't do anything -- like it was desirable for OVMF --, because OVMF didn't include any Tcg / TrEE protocol implementations. (c) In commit 308521b13354 ("MdeModulePkg: Move TpmMeasurementLib LibraryClass from SecurityPkg", 2015-07-01), TpmMeasurementLibNull was introduced. (d) In commit 285542ebbb03 ("OvmfPkg: Link AuthVariableLib for following merged variable driver deploy", 2015-07-01), a TpmMeasurementLib resolution became necessary regardless of SECURE_BOOT_ENABLE. And so TpmMeasurementLib was resolved to TpmMeasurementLibNull in OVMF, but only in the non-SECURE_BOOT_ENABLE case. This step -- possibly, the larger series containing commit 285542ebbb03 -- missed an opportunity for simplification: given (b), the DxeTpmMeasurementLib instance should have been simply replaced with the TpmMeasurementLibNull instance, regardless of SECURE_BOOT_ENABLE. (e) In commit 1abfa4ce4835 ("Add TPM2 support defined in trusted computing group.", 2015-08-13), the TrEE dependency was replaced with a Tcg2 dependency in DxeTpmMeasurementLib. (f) Starting with commit 0c0a50d6b3ff ("OvmfPkg: include Tcg2Dxe module", 2018-03-09), OVMF would include a Tcg2 protocol implementation, thereby satisfying DxeTpmMeasurementLib's dependency. With TPM2_ENABLE, it would actually make sense to consume DxeTpmMeasurementLib -- however, DxeTpmMeasurementLib would never be used without SECURE_BOOT_ENABLE. Therefore, we have the following four scenarios: - TPM2_ENABLE + SECURE_BOOT_ENABLE: works as expected. - Neither enabled: works as expected. - Only TPM2_ENABLE: this build is currently incorrect, because Variable/RuntimeDxe consumes TpmMeasurementLib directly, but TpmMeasureAndLogData() will never reach the TPM because we link TpmMeasurementLibNull into the variable driver. This is a problem from the larger series containing (f). - Only SECURE_BOOT_ENABLE: this build works as expected, but it is wasteful -- given that the protocol database will never contain Tcg2 without TPM2_ENABLE, we should simply use TpmMeasurementLibNull. This is a problem from (d). Resolving TpmMeasurementLib to DxeTpmMeasurementLib as a function of *only* TPM2_ENABLE, we can fix / optimize the last two cases. v2: - Amend the title and description suggested by Laszlo - Move TpmMeasurementLib to the existed TPM2_ENABLE block Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Marc-André Lureau <marcandre.lureau@redhat.com> Cc: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Gary Lin <glin@suse.com> Message-Id: <20190704040731.5303-1-glin@suse.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2019-07-04 06:07:59 +02:00
TpmMeasurementLib|SecurityPkg/Library/DxeTpmMeasurementLib/DxeTpmMeasurementLib.inf
!else
Tcg2PhysicalPresenceLib|OvmfPkg/Library/Tcg2PhysicalPresenceLibNull/DxeTcg2PhysicalPresenceLib.inf
OvmfPkg: use DxeTpmMeasurementLib if and only if TPM2_ENABLE (a) OvmfPkg first had to resolve the TpmMeasurementLib class -- for SECURE_BOOT_ENABLE only -- when the DxeImageVerificationLib instance became dependent on TpmMeasurementLib. For details, refer to commit 0d28d286bf4d ("OvmfPkg: resolve TpmMeasurementLib dependency introduced in r14687", 2013-09-21). (b) At the time, only one instance of TpmMeasurementLib existed, namely DxeTpmMeasurementLib. This lib instance didn't do anything -- like it was desirable for OVMF --, because OVMF didn't include any Tcg / TrEE protocol implementations. (c) In commit 308521b13354 ("MdeModulePkg: Move TpmMeasurementLib LibraryClass from SecurityPkg", 2015-07-01), TpmMeasurementLibNull was introduced. (d) In commit 285542ebbb03 ("OvmfPkg: Link AuthVariableLib for following merged variable driver deploy", 2015-07-01), a TpmMeasurementLib resolution became necessary regardless of SECURE_BOOT_ENABLE. And so TpmMeasurementLib was resolved to TpmMeasurementLibNull in OVMF, but only in the non-SECURE_BOOT_ENABLE case. This step -- possibly, the larger series containing commit 285542ebbb03 -- missed an opportunity for simplification: given (b), the DxeTpmMeasurementLib instance should have been simply replaced with the TpmMeasurementLibNull instance, regardless of SECURE_BOOT_ENABLE. (e) In commit 1abfa4ce4835 ("Add TPM2 support defined in trusted computing group.", 2015-08-13), the TrEE dependency was replaced with a Tcg2 dependency in DxeTpmMeasurementLib. (f) Starting with commit 0c0a50d6b3ff ("OvmfPkg: include Tcg2Dxe module", 2018-03-09), OVMF would include a Tcg2 protocol implementation, thereby satisfying DxeTpmMeasurementLib's dependency. With TPM2_ENABLE, it would actually make sense to consume DxeTpmMeasurementLib -- however, DxeTpmMeasurementLib would never be used without SECURE_BOOT_ENABLE. Therefore, we have the following four scenarios: - TPM2_ENABLE + SECURE_BOOT_ENABLE: works as expected. - Neither enabled: works as expected. - Only TPM2_ENABLE: this build is currently incorrect, because Variable/RuntimeDxe consumes TpmMeasurementLib directly, but TpmMeasureAndLogData() will never reach the TPM because we link TpmMeasurementLibNull into the variable driver. This is a problem from the larger series containing (f). - Only SECURE_BOOT_ENABLE: this build works as expected, but it is wasteful -- given that the protocol database will never contain Tcg2 without TPM2_ENABLE, we should simply use TpmMeasurementLibNull. This is a problem from (d). Resolving TpmMeasurementLib to DxeTpmMeasurementLib as a function of *only* TPM2_ENABLE, we can fix / optimize the last two cases. v2: - Amend the title and description suggested by Laszlo - Move TpmMeasurementLib to the existed TPM2_ENABLE block Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Marc-André Lureau <marcandre.lureau@redhat.com> Cc: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Gary Lin <glin@suse.com> Message-Id: <20190704040731.5303-1-glin@suse.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2019-07-04 06:07:59 +02:00
TpmMeasurementLib|MdeModulePkg/Library/TpmMeasurementLibNull/TpmMeasurementLibNull.inf
!endif
[LibraryClasses.common]
BaseCryptLib|CryptoPkg/Library/BaseCryptLib/BaseCryptLib.inf
[LibraryClasses.common.SEC]
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances Remove local power management register access macros in favor of factored-out ones in OvmfPkg/Include/OvmfPlatforms.h Next, AcpiTimerLib is split out into three instances, for use during various stages: - BaseRom: used during SEC, PEI_CORE, and PEIM; - Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER; - Base: used by default during all other stages. Most of the code remains in AcpiTimerLib.c, to be shared by all instances. The two platform-dependent methods (constructor and InternalAcpiGetTimerTick) are provided separately by source files specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c. Since pre-DXE stages can't rely on storing data in global variables, methods specific to the "BaseRom" instance will call platform detection macros each time they're invoked. The "Base" instance calls platform detection macros only from its constructor, and caches the address required by InternalAcpiTimerTick in a global variable. The "Dxe" instance is very similar to "Base", except no platform detection macros are called at all; instead, the platform type is read via a dynamic PCD set from PlatformPei. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Reviewed-by: Gerd Hoffmann <kraxel@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
TimerLib|OvmfPkg/Library/AcpiTimerLib/BaseRomAcpiTimerLib.inf
QemuFwCfgLib|OvmfPkg/Library/QemuFwCfgLib/QemuFwCfgSecLib.inf
!ifdef $(DEBUG_ON_SERIAL_PORT)
DebugLib|MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf
!else
DebugLib|OvmfPkg/Library/PlatformDebugLibIoPort/PlatformRomDebugLibIoPort.inf
!endif
ReportStatusCodeLib|MdeModulePkg/Library/PeiReportStatusCodeLib/PeiReportStatusCodeLib.inf
ExtractGuidedSectionLib|MdePkg/Library/BaseExtractGuidedSectionLib/BaseExtractGuidedSectionLib.inf
!if $(SOURCE_DEBUG_ENABLE) == TRUE
DebugAgentLib|SourceLevelDebugPkg/Library/DebugAgent/SecPeiDebugAgentLib.inf
!endif
HobLib|MdePkg/Library/PeiHobLib/PeiHobLib.inf
PeiServicesLib|MdePkg/Library/PeiServicesLib/PeiServicesLib.inf
PeiServicesTablePointerLib|MdePkg/Library/PeiServicesTablePointerLibIdt/PeiServicesTablePointerLibIdt.inf
MemoryAllocationLib|MdePkg/Library/PeiMemoryAllocationLib/PeiMemoryAllocationLib.inf
!if $(TOOL_CHAIN_TAG) == "XCODE5"
CpuExceptionHandlerLib|UefiCpuPkg/Library/CpuExceptionHandlerLib/Xcode5SecPeiCpuExceptionHandlerLib.inf
!else
CpuExceptionHandlerLib|UefiCpuPkg/Library/CpuExceptionHandlerLib/SecPeiCpuExceptionHandlerLib.inf
!endif
[LibraryClasses.common.PEI_CORE]
HobLib|MdePkg/Library/PeiHobLib/PeiHobLib.inf
PeiServicesTablePointerLib|MdePkg/Library/PeiServicesTablePointerLibIdt/PeiServicesTablePointerLibIdt.inf
PeiServicesLib|MdePkg/Library/PeiServicesLib/PeiServicesLib.inf
MemoryAllocationLib|MdePkg/Library/PeiMemoryAllocationLib/PeiMemoryAllocationLib.inf
PeiCoreEntryPoint|MdePkg/Library/PeiCoreEntryPoint/PeiCoreEntryPoint.inf
ReportStatusCodeLib|MdeModulePkg/Library/PeiReportStatusCodeLib/PeiReportStatusCodeLib.inf
OemHookStatusCodeLib|MdeModulePkg/Library/OemHookStatusCodeLibNull/OemHookStatusCodeLibNull.inf
PeCoffGetEntryPointLib|MdePkg/Library/BasePeCoffGetEntryPointLib/BasePeCoffGetEntryPointLib.inf
!ifdef $(DEBUG_ON_SERIAL_PORT)
DebugLib|MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf
!else
DebugLib|OvmfPkg/Library/PlatformDebugLibIoPort/PlatformDebugLibIoPort.inf
!endif
PeCoffLib|MdePkg/Library/BasePeCoffLib/BasePeCoffLib.inf
[LibraryClasses.common.PEIM]
HobLib|MdePkg/Library/PeiHobLib/PeiHobLib.inf
PeiServicesTablePointerLib|MdePkg/Library/PeiServicesTablePointerLibIdt/PeiServicesTablePointerLibIdt.inf
PeiServicesLib|MdePkg/Library/PeiServicesLib/PeiServicesLib.inf
MemoryAllocationLib|MdePkg/Library/PeiMemoryAllocationLib/PeiMemoryAllocationLib.inf
PeimEntryPoint|MdePkg/Library/PeimEntryPoint/PeimEntryPoint.inf
ReportStatusCodeLib|MdeModulePkg/Library/PeiReportStatusCodeLib/PeiReportStatusCodeLib.inf
OemHookStatusCodeLib|MdeModulePkg/Library/OemHookStatusCodeLibNull/OemHookStatusCodeLibNull.inf
PeCoffGetEntryPointLib|MdePkg/Library/BasePeCoffGetEntryPointLib/BasePeCoffGetEntryPointLib.inf
!ifdef $(DEBUG_ON_SERIAL_PORT)
DebugLib|MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf
!else
DebugLib|OvmfPkg/Library/PlatformDebugLibIoPort/PlatformDebugLibIoPort.inf
!endif
PeCoffLib|MdePkg/Library/BasePeCoffLib/BasePeCoffLib.inf
ResourcePublicationLib|MdePkg/Library/PeiResourcePublicationLib/PeiResourcePublicationLib.inf
ExtractGuidedSectionLib|MdePkg/Library/PeiExtractGuidedSectionLib/PeiExtractGuidedSectionLib.inf
!if $(SOURCE_DEBUG_ENABLE) == TRUE
DebugAgentLib|SourceLevelDebugPkg/Library/DebugAgent/SecPeiDebugAgentLib.inf
!endif
OvmfPkg: include UefiCpuPkg/CpuMpPei In the next patch we're going to put EFI_PEI_MP_SERVICES_PPI to use. CpuMpPei uses the following PCDs from gUefiCpuPkgTokenSpaceGuid, beyond those already used by CpuDxe: - PcdCpuMicrocodePatchAddress and PcdCpuMicrocodePatchRegionSize: these control whether CpuMpPei performs microcode update. If the region size is zero, then the microcode update is skipped. UefiCpuPkg.dec sets the region size to zero by default, which is appropriate for OVMF. - PcdCpuApLoopMode and PcdCpuApTargetCstate: the former controls how CpuMpPei puts the APs to sleep: 1 -- HLT, 2 -- MWAIT, 3 -- busy wait (with PAUSE). The latter PCD is only relevant if the former PCD is 2 (MWAIT). In order to be consistent with SeaBIOS and with CpuDxe itself, we choose HLT. That's the default set by UefiCpuPkg.dec. Furthermore, although CpuMpPei could consume SecPeiCpuExceptionHandlerLib technically, it is supposed to consume PeiCpuExceptionHandlerLib. See: - http://thread.gmane.org/gmane.comp.bios.edk2.devel/12703 - git commit a81abf161666 ("UefiCpuPkg/ExceptionLib: Import PeiCpuExceptionHandlerLib module"), part of the series linked above. Jeff recommended to resolve CpuExceptionHandlerLib to PeiCpuExceptionHandlerLib for all PEIMs: - http://thread.gmane.org/gmane.comp.bios.edk2.devel/14471/focus=14477 Since at the moment we have no resolution in place that would cover this for PEIMs (from either [LibraryClasses] or [LibraryClasses.common.PEIM]), it's easy to do. Cc: Jeff Fan <jeff.fan@intel.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jeff Fan <jeff.fan@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-07-06 18:09:16 +02:00
CpuExceptionHandlerLib|UefiCpuPkg/Library/CpuExceptionHandlerLib/PeiCpuExceptionHandlerLib.inf
MpInitLib|UefiCpuPkg/Library/MpInitLib/PeiMpInitLib.inf
QemuFwCfgS3Lib|OvmfPkg/Library/QemuFwCfgS3Lib/PeiQemuFwCfgS3LibFwCfg.inf
PcdLib|MdePkg/Library/PeiPcdLib/PeiPcdLib.inf
QemuFwCfgLib|OvmfPkg/Library/QemuFwCfgLib/QemuFwCfgPeiLib.inf
!if $(TPM_ENABLE) == TRUE
BaseCryptLib|CryptoPkg/Library/BaseCryptLib/PeiCryptLib.inf
Tpm12DeviceLib|SecurityPkg/Library/Tpm12DeviceLibDTpm/Tpm12DeviceLibDTpm.inf
Tpm2DeviceLib|SecurityPkg/Library/Tpm2DeviceLibDTpm/Tpm2DeviceLibDTpm.inf
!endif
[LibraryClasses.common.DXE_CORE]
HobLib|MdePkg/Library/DxeCoreHobLib/DxeCoreHobLib.inf
DxeCoreEntryPoint|MdePkg/Library/DxeCoreEntryPoint/DxeCoreEntryPoint.inf
MemoryAllocationLib|MdeModulePkg/Library/DxeCoreMemoryAllocationLib/DxeCoreMemoryAllocationLib.inf
ReportStatusCodeLib|MdeModulePkg/Library/DxeReportStatusCodeLib/DxeReportStatusCodeLib.inf
!ifdef $(DEBUG_ON_SERIAL_PORT)
DebugLib|MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf
!else
DebugLib|OvmfPkg/Library/PlatformDebugLibIoPort/PlatformDebugLibIoPort.inf
!endif
ExtractGuidedSectionLib|MdePkg/Library/DxeExtractGuidedSectionLib/DxeExtractGuidedSectionLib.inf
!if $(SOURCE_DEBUG_ENABLE) == TRUE
DebugAgentLib|SourceLevelDebugPkg/Library/DebugAgent/DxeDebugAgentLib.inf
!endif
CpuExceptionHandlerLib|UefiCpuPkg/Library/CpuExceptionHandlerLib/DxeCpuExceptionHandlerLib.inf
OvmfPkg: make PcdPropertiesTableEnable dynamic Since PcdPropertiesTableEnable is used by the DXE Core (in the InstallPropertiesTable() function, which runs at End-of-Dxe), we must also change the PcdLib class resolution for that module, from the default BasePcdLibNull to DxePcdLib. Traditionally we've considered the DXE Core to be incapable of accessing dynamic PCDs -- the PCD PPI is not available any longer to the DXE Core, and the PCD Protocol is not available to it *yet*. There are exceptions however: if the DXE Core can ensure, by whatever means, that the PCD Protocol *is* available, then DxePcdLib will just work (the latter even lists DXE_CORE as an allowed client module type). Namely, DxePcdLib looks up the PCD Protocol dynamically, on the first library call that actually needs it (for accessing a dynamic PCD); the lookup doesn't occur in a library constructor. And because the DXE Core fetches PcdPropertiesTableEnable at End-of-Dxe, the PCD Protocol is definitely available then. In addition, we change the default value of PcdPropertiesTableEnable from the inherited TRUE to FALSE. It makes no difference at this point (our runtime DXE drivers are not built with the required 4KB section alignment anyway), but it's better to be clear about this. The properties table feature requires OS compatibility, and it breaks Windows 7 minimally. Therefore the default should be FALSE. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Star Zeng <star.zeng@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18470 6f19259b-4bc3-4df7-8a09-765794883524
2015-09-15 10:35:08 +02:00
PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf
[LibraryClasses.common.DXE_RUNTIME_DRIVER]
PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances Remove local power management register access macros in favor of factored-out ones in OvmfPkg/Include/OvmfPlatforms.h Next, AcpiTimerLib is split out into three instances, for use during various stages: - BaseRom: used during SEC, PEI_CORE, and PEIM; - Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER; - Base: used by default during all other stages. Most of the code remains in AcpiTimerLib.c, to be shared by all instances. The two platform-dependent methods (constructor and InternalAcpiGetTimerTick) are provided separately by source files specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c. Since pre-DXE stages can't rely on storing data in global variables, methods specific to the "BaseRom" instance will call platform detection macros each time they're invoked. The "Base" instance calls platform detection macros only from its constructor, and caches the address required by InternalAcpiTimerTick in a global variable. The "Dxe" instance is very similar to "Base", except no platform detection macros are called at all; instead, the platform type is read via a dynamic PCD set from PlatformPei. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Reviewed-by: Gerd Hoffmann <kraxel@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
TimerLib|OvmfPkg/Library/AcpiTimerLib/DxeAcpiTimerLib.inf
OvmfPkg/ResetSystemLib: introduce the DxeResetSystemLib instance The BaseResetSystemLib instance is not suitable for OS runtime, because its ResetShutdown() implementation calls PciRead16 (OVMF_HOSTBRIDGE_DID). On q35, this boils down to a memory-mapped config space access -- but we never ask the OS to map MMCONFIG for runtime. There are at least three alternatives to approach this: (1) Investigate "MdePkg/Library/DxeRuntimePciExpressLib", which offers some kind of runtime mapping for MMCONFIG. (2) Consume PciCf8Lib directly, rather than PciLib, in ResetSystemLib. Then we'll read OVMF_HOSTBRIDGE_DID from the config space with IO port accesses on q35 too, not just on i440fx. IO ports don't depend on page tables. (3) In the lib constructor, cache "mAcpiPmBaseAddress" based on "PcdOvmfHostBridgePciDevId" (which is set by PlatformPei). Then the host bridge type will be known at runtime without PCI config space accesses. This patch follows approach (3), in order to mirror AcpiTimerLib. Notes: * This patch is best viewed with "git show --find-copies-harder -C43". * PCDs are not usable in the DXE_CORE, as the PCD PPI is gone, and the PCD protocol is not available yet. (The DXE_CORE does consume ResetSystemLib in practice, when OVMF is built with -D SOURCE_DEBUG_ENABLE.) Cc: Anthony Perard <anthony.perard@citrix.com> Cc: Ard Biesheuvel <ard.biesheuvel@arm.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Julien Grall <julien@xen.org> Cc: Philippe Mathieu-Daudé <philmd@redhat.com> Cc: Rebecca Cran <rebecca@bsdio.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2675 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20200417153751.7110-7-lersek@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@arm.com> Reviewed-by: Rebecca Cran <rebecca@bsdio.com> [lersek@redhat.com: move third Note (with repro info) to BZ comment]
2020-04-17 17:37:51 +02:00
ResetSystemLib|OvmfPkg/Library/ResetSystemLib/DxeResetSystemLib.inf
HobLib|MdePkg/Library/DxeHobLib/DxeHobLib.inf
DxeCoreEntryPoint|MdePkg/Library/DxeCoreEntryPoint/DxeCoreEntryPoint.inf
MemoryAllocationLib|MdePkg/Library/UefiMemoryAllocationLib/UefiMemoryAllocationLib.inf
ReportStatusCodeLib|MdeModulePkg/Library/RuntimeDxeReportStatusCodeLib/RuntimeDxeReportStatusCodeLib.inf
!ifdef $(DEBUG_ON_SERIAL_PORT)
DebugLib|MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf
!else
DebugLib|OvmfPkg/Library/PlatformDebugLibIoPort/PlatformDebugLibIoPort.inf
!endif
UefiRuntimeLib|MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.inf
BaseCryptLib|CryptoPkg/Library/BaseCryptLib/RuntimeCryptLib.inf
PciLib|OvmfPkg/Library/DxePciLibI440FxQ35/DxePciLibI440FxQ35.inf
QemuFwCfgS3Lib|OvmfPkg/Library/QemuFwCfgS3Lib/DxeQemuFwCfgS3LibFwCfg.inf
[LibraryClasses.common.UEFI_DRIVER]
PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf
TimerLib|OvmfPkg/Library/AcpiTimerLib/DxeAcpiTimerLib.inf
OvmfPkg/ResetSystemLib: introduce the DxeResetSystemLib instance The BaseResetSystemLib instance is not suitable for OS runtime, because its ResetShutdown() implementation calls PciRead16 (OVMF_HOSTBRIDGE_DID). On q35, this boils down to a memory-mapped config space access -- but we never ask the OS to map MMCONFIG for runtime. There are at least three alternatives to approach this: (1) Investigate "MdePkg/Library/DxeRuntimePciExpressLib", which offers some kind of runtime mapping for MMCONFIG. (2) Consume PciCf8Lib directly, rather than PciLib, in ResetSystemLib. Then we'll read OVMF_HOSTBRIDGE_DID from the config space with IO port accesses on q35 too, not just on i440fx. IO ports don't depend on page tables. (3) In the lib constructor, cache "mAcpiPmBaseAddress" based on "PcdOvmfHostBridgePciDevId" (which is set by PlatformPei). Then the host bridge type will be known at runtime without PCI config space accesses. This patch follows approach (3), in order to mirror AcpiTimerLib. Notes: * This patch is best viewed with "git show --find-copies-harder -C43". * PCDs are not usable in the DXE_CORE, as the PCD PPI is gone, and the PCD protocol is not available yet. (The DXE_CORE does consume ResetSystemLib in practice, when OVMF is built with -D SOURCE_DEBUG_ENABLE.) Cc: Anthony Perard <anthony.perard@citrix.com> Cc: Ard Biesheuvel <ard.biesheuvel@arm.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Julien Grall <julien@xen.org> Cc: Philippe Mathieu-Daudé <philmd@redhat.com> Cc: Rebecca Cran <rebecca@bsdio.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2675 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20200417153751.7110-7-lersek@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@arm.com> Reviewed-by: Rebecca Cran <rebecca@bsdio.com> [lersek@redhat.com: move third Note (with repro info) to BZ comment]
2020-04-17 17:37:51 +02:00
ResetSystemLib|OvmfPkg/Library/ResetSystemLib/DxeResetSystemLib.inf
HobLib|MdePkg/Library/DxeHobLib/DxeHobLib.inf
DxeCoreEntryPoint|MdePkg/Library/DxeCoreEntryPoint/DxeCoreEntryPoint.inf
MemoryAllocationLib|MdePkg/Library/UefiMemoryAllocationLib/UefiMemoryAllocationLib.inf
ReportStatusCodeLib|MdeModulePkg/Library/DxeReportStatusCodeLib/DxeReportStatusCodeLib.inf
!ifdef $(DEBUG_ON_SERIAL_PORT)
DebugLib|MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf
!else
DebugLib|OvmfPkg/Library/PlatformDebugLibIoPort/PlatformDebugLibIoPort.inf
!endif
UefiScsiLib|MdePkg/Library/UefiScsiLib/UefiScsiLib.inf
PciLib|OvmfPkg/Library/DxePciLibI440FxQ35/DxePciLibI440FxQ35.inf
[LibraryClasses.common.DXE_DRIVER]
PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances Remove local power management register access macros in favor of factored-out ones in OvmfPkg/Include/OvmfPlatforms.h Next, AcpiTimerLib is split out into three instances, for use during various stages: - BaseRom: used during SEC, PEI_CORE, and PEIM; - Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER; - Base: used by default during all other stages. Most of the code remains in AcpiTimerLib.c, to be shared by all instances. The two platform-dependent methods (constructor and InternalAcpiGetTimerTick) are provided separately by source files specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c. Since pre-DXE stages can't rely on storing data in global variables, methods specific to the "BaseRom" instance will call platform detection macros each time they're invoked. The "Base" instance calls platform detection macros only from its constructor, and caches the address required by InternalAcpiTimerTick in a global variable. The "Dxe" instance is very similar to "Base", except no platform detection macros are called at all; instead, the platform type is read via a dynamic PCD set from PlatformPei. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Reviewed-by: Gerd Hoffmann <kraxel@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
TimerLib|OvmfPkg/Library/AcpiTimerLib/DxeAcpiTimerLib.inf
OvmfPkg/ResetSystemLib: introduce the DxeResetSystemLib instance The BaseResetSystemLib instance is not suitable for OS runtime, because its ResetShutdown() implementation calls PciRead16 (OVMF_HOSTBRIDGE_DID). On q35, this boils down to a memory-mapped config space access -- but we never ask the OS to map MMCONFIG for runtime. There are at least three alternatives to approach this: (1) Investigate "MdePkg/Library/DxeRuntimePciExpressLib", which offers some kind of runtime mapping for MMCONFIG. (2) Consume PciCf8Lib directly, rather than PciLib, in ResetSystemLib. Then we'll read OVMF_HOSTBRIDGE_DID from the config space with IO port accesses on q35 too, not just on i440fx. IO ports don't depend on page tables. (3) In the lib constructor, cache "mAcpiPmBaseAddress" based on "PcdOvmfHostBridgePciDevId" (which is set by PlatformPei). Then the host bridge type will be known at runtime without PCI config space accesses. This patch follows approach (3), in order to mirror AcpiTimerLib. Notes: * This patch is best viewed with "git show --find-copies-harder -C43". * PCDs are not usable in the DXE_CORE, as the PCD PPI is gone, and the PCD protocol is not available yet. (The DXE_CORE does consume ResetSystemLib in practice, when OVMF is built with -D SOURCE_DEBUG_ENABLE.) Cc: Anthony Perard <anthony.perard@citrix.com> Cc: Ard Biesheuvel <ard.biesheuvel@arm.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Julien Grall <julien@xen.org> Cc: Philippe Mathieu-Daudé <philmd@redhat.com> Cc: Rebecca Cran <rebecca@bsdio.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2675 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20200417153751.7110-7-lersek@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@arm.com> Reviewed-by: Rebecca Cran <rebecca@bsdio.com> [lersek@redhat.com: move third Note (with repro info) to BZ comment]
2020-04-17 17:37:51 +02:00
ResetSystemLib|OvmfPkg/Library/ResetSystemLib/DxeResetSystemLib.inf
HobLib|MdePkg/Library/DxeHobLib/DxeHobLib.inf
MemoryAllocationLib|MdePkg/Library/UefiMemoryAllocationLib/UefiMemoryAllocationLib.inf
ReportStatusCodeLib|MdeModulePkg/Library/DxeReportStatusCodeLib/DxeReportStatusCodeLib.inf
UefiScsiLib|MdePkg/Library/UefiScsiLib/UefiScsiLib.inf
!ifdef $(DEBUG_ON_SERIAL_PORT)
DebugLib|MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf
!else
DebugLib|OvmfPkg/Library/PlatformDebugLibIoPort/PlatformDebugLibIoPort.inf
!endif
PlatformBootManagerLib|OvmfPkg/Library/PlatformBootManagerLib/PlatformBootManagerLib.inf
PlatformBmPrintScLib|OvmfPkg/Library/PlatformBmPrintScLib/PlatformBmPrintScLib.inf
QemuBootOrderLib|OvmfPkg/Library/QemuBootOrderLib/QemuBootOrderLib.inf
CpuExceptionHandlerLib|UefiCpuPkg/Library/CpuExceptionHandlerLib/DxeCpuExceptionHandlerLib.inf
OvmfPkg: LockBox: use SMM stack with -D SMM_REQUIRE During DXE, drivers save data in the LockBox. A save operation is layered as follows: - The unprivileged driver wishing to store data in the LockBox links against the "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxDxeLib.inf" library instance. The library allows the unprivileged driver to format requests for the privileged SMM LockBox driver (see below), and to parse responses. We apply this resolution for DXE_DRIVER modules. - The privileged SMM LockBox driver is built from "MdeModulePkg/Universal/LockBox/SmmLockBox/SmmLockBox.inf". This driver has module type DXE_SMM_DRIVER and can access SMRAM. The driver delegates command parsing and response formatting to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxSmmLib.inf". Therefore we include this DXE_SMM_DRIVER in the build, and apply said resolution specifically to it. (Including the driver requires us to resolve a few of other library classes for DXE_SMM_DRIVER modules.) - In PEI, the S3 Resume PEIM (UefiCpuPkg/Universal/Acpi/S3Resume2Pei) retrieves data from the LockBox. It is capable of searching SMRAM itself. We resolve LockBoxLib to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxPeiLib.inf" specifically for this one PEIM. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19048 6f19259b-4bc3-4df7-8a09-765794883524
2015-11-30 19:42:15 +01:00
!if $(SMM_REQUIRE) == TRUE
LockBoxLib|MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxDxeLib.inf
!else
LockBoxLib|OvmfPkg/Library/LockBoxLib/LockBoxDxeLib.inf
OvmfPkg: LockBox: use SMM stack with -D SMM_REQUIRE During DXE, drivers save data in the LockBox. A save operation is layered as follows: - The unprivileged driver wishing to store data in the LockBox links against the "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxDxeLib.inf" library instance. The library allows the unprivileged driver to format requests for the privileged SMM LockBox driver (see below), and to parse responses. We apply this resolution for DXE_DRIVER modules. - The privileged SMM LockBox driver is built from "MdeModulePkg/Universal/LockBox/SmmLockBox/SmmLockBox.inf". This driver has module type DXE_SMM_DRIVER and can access SMRAM. The driver delegates command parsing and response formatting to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxSmmLib.inf". Therefore we include this DXE_SMM_DRIVER in the build, and apply said resolution specifically to it. (Including the driver requires us to resolve a few of other library classes for DXE_SMM_DRIVER modules.) - In PEI, the S3 Resume PEIM (UefiCpuPkg/Universal/Acpi/S3Resume2Pei) retrieves data from the LockBox. It is capable of searching SMRAM itself. We resolve LockBoxLib to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxPeiLib.inf" specifically for this one PEIM. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19048 6f19259b-4bc3-4df7-8a09-765794883524
2015-11-30 19:42:15 +01:00
!endif
!if $(SOURCE_DEBUG_ENABLE) == TRUE
DebugAgentLib|SourceLevelDebugPkg/Library/DebugAgent/DxeDebugAgentLib.inf
!endif
PciLib|OvmfPkg/Library/DxePciLibI440FxQ35/DxePciLibI440FxQ35.inf
MpInitLib|UefiCpuPkg/Library/MpInitLib/DxeMpInitLib.inf
QemuFwCfgS3Lib|OvmfPkg/Library/QemuFwCfgS3Lib/DxeQemuFwCfgS3LibFwCfg.inf
QemuLoadImageLib|OvmfPkg/Library/X86QemuLoadImageLib/X86QemuLoadImageLib.inf
!if $(TPM_ENABLE) == TRUE
Tpm12DeviceLib|SecurityPkg/Library/Tpm12DeviceLibTcg/Tpm12DeviceLibTcg.inf
OvmfPkg: include Tcg2Dxe module This module measures and log the boot environment. It also produces the Tcg2 protocol, which allows for example to read the log from OS. The linux kernel doesn't yet read the EFI_TCG2_EVENT_LOG_FORMAT_TCG_2, which is required for crypto-agile log. In fact, only upcoming 4.16 adds support EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2: [ 0.000000] efi: EFI v2.70 by EDK II [ 0.000000] efi: SMBIOS=0x3fa1f000 ACPI=0x3fbb6000 ACPI 2.0=0x3fbb6014 MEMATTR=0x3e7d4318 TPMEventLog=0x3db21018 $ python chipsec_util.py tpm parse_log binary_bios_measurements [CHIPSEC] Version 1.3.5.dev2 [CHIPSEC] API mode: using OS native API (not using CHIPSEC kernel module) [CHIPSEC] Executing command 'tpm' with args ['parse_log', '/tmp/binary_bios_measurements'] PCR: 0 type: EV_S_CRTM_VERSION size: 0x2 digest: 1489f923c4dca729178b3e3233458550d8dddf29 + version: PCR: 0 type: EV_EFI_PLATFORM_FIRMWARE_BLOB size: 0x10 digest: fd39ced7c0d2a61f6830c78c7625f94826b05bcc + base: 0x820000 length: 0xe0000 PCR: 0 type: EV_EFI_PLATFORM_FIRMWARE_BLOB size: 0x10 digest: 39ebc6783b72bc1e73c7d5bcfeb5f54a3f105d4c + base: 0x900000 length: 0xa00000 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x35 digest: 57cd4dc19442475aa82743484f3b1caa88e142b8 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x24 digest: 9b1387306ebb7ff8e795e7be77563666bbf4516e PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x26 digest: 9afa86c507419b8570c62167cb9486d9fc809758 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x24 digest: 5bf8faa078d40ffbd03317c93398b01229a0e1e0 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x26 digest: 734424c9fe8fc71716c42096f4b74c88733b175e PCR: 7 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x3e digest: 252f8ebb85340290b64f4b06a001742be8e5cab6 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x6e digest: 22a4f6ee9af6dba01d3528deb64b74b582fc182b PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x80 digest: b7811d5bf30a7efd4e385c6179fe10d9290bb9e8 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x84 digest: 425e502c24fc924e231e0a62327b6b7d1f704573 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x9a digest: 0b5d2c98ac5de6148a4a1490ff9d5df69039f04e PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0xbd digest: 20bd5f402271d57a88ea314fe35c1705956b1f74 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x88 digest: df5d6605cb8f4366d745a8464cfb26c1efdc305c PCR: 4 type: EV_EFI_ACTION size: 0x28 digest: cd0fdb4531a6ec41be2753ba042637d6e5f7f256 PCR: 0 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 1 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 2 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 3 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 4 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 5 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 $ tpm2_pcrlist sha1 : 0 : 35bd1786b6909daad610d7598b1d620352d33b8a 1 : ec0511e860206e0af13c31da2f9e943fb6ca353d 2 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 3 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 4 : 45a323382bd933f08e7f0e256bc8249e4095b1ec 5 : d16d7e629fd8d08ca256f9ad3a3a1587c9e6cc1b 6 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 7 : 518bd167271fbb64589c61e43d8c0165861431d8 8 : 0000000000000000000000000000000000000000 9 : 0000000000000000000000000000000000000000 10 : 0000000000000000000000000000000000000000 11 : 0000000000000000000000000000000000000000 12 : 0000000000000000000000000000000000000000 13 : 0000000000000000000000000000000000000000 14 : 0000000000000000000000000000000000000000 15 : 0000000000000000000000000000000000000000 16 : 0000000000000000000000000000000000000000 17 : ffffffffffffffffffffffffffffffffffffffff 18 : ffffffffffffffffffffffffffffffffffffffff 19 : ffffffffffffffffffffffffffffffffffffffff 20 : ffffffffffffffffffffffffffffffffffffffff 21 : ffffffffffffffffffffffffffffffffffffffff 22 : ffffffffffffffffffffffffffffffffffffffff 23 : 0000000000000000000000000000000000000000 sha256 : 0 : 9ae903dbae3357ac00d223660bac19ea5c021499a56201104332ab966631ce2c 1 : acc611d90245cf04e77b0ca94901f90e7fa54770f0426f53c3049b532243d1b8 2 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 3 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 4 : 7a94ffe8a7729a566d3d3c577fcb4b6b1e671f31540375f80eae6382ab785e35 5 : a5ceb755d043f32431d63e39f5161464620a3437280494b5850dc1b47cc074e0 6 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 7 : 65caf8dd1e0ea7a6347b635d2b379c93b9a1351edc2afc3ecda700e534eb3068 8 : 0000000000000000000000000000000000000000000000000000000000000000 9 : 0000000000000000000000000000000000000000000000000000000000000000 10 : 0000000000000000000000000000000000000000000000000000000000000000 11 : 0000000000000000000000000000000000000000000000000000000000000000 12 : 0000000000000000000000000000000000000000000000000000000000000000 13 : 0000000000000000000000000000000000000000000000000000000000000000 14 : 0000000000000000000000000000000000000000000000000000000000000000 15 : 0000000000000000000000000000000000000000000000000000000000000000 16 : 0000000000000000000000000000000000000000000000000000000000000000 17 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 18 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 19 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 20 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 21 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 22 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 23 : 0000000000000000000000000000000000000000000000000000000000000000 sha384 : The PhysicalPresenceLib is required, it sets some variables, but the firmware doesn't act on it yet. Laszlo Ersek explained on the list why Tpm2DeviceLib has to be resolved differently for DXE_DRIVER modules in general and for "Tcg2Dxe.inf" specifically: * We have a library class called Tpm2DeviceLib -- this is basically the set of APIs declared in "SecurityPkg/Include/Library/Tpm2DeviceLib.h". Its leading comment says "This library abstract how to access TPM2 hardware device". There are two *sets* of APIs in "Tpm2DeviceLib.h": (a) functions that deal with the TPM2 device: - Tpm2RequestUseTpm(), - Tpm2SubmitCommand() This set of APIs is supposed to be used by clients that *consume* the TPM2 device abstraction. (b) the function Tpm2RegisterTpm2DeviceLib(), which is supposed to be used by *providers* of various TPM2 device abstractions. * Then, we have two implementations (instances) of the Tpm2DeviceLib class: (1) SecurityPkg/Library/Tpm2DeviceLibTcg2/Tpm2DeviceLibTcg2.inf (2) SecurityPkg/Library/Tpm2DeviceLibRouter/Tpm2DeviceLibRouterDxe.inf (1) The first library instance ("Tpm2DeviceLibTcg2.inf") implements the APIs listed under (a), and it does not implement (b) -- see EFI_UNSUPPORTED. In other words, this lib instance is strictly meant for drivers that *consume* the TPM2 device abstraction. And, the (a) group of APIs is implemented by forwarding the requests to the TCG2 protocol. The idea here is that all the drivers that consume the TPM2 abstraction do not have to be statically linked with a large TPM2 device library instance; instead they are only linked (statically) with this "thin" library instance, and all the actual work is delegated to whichever driver that provides the singleton TCG2 protocol. (2) The second library instance ("Tpm2DeviceLibRouterDxe.inf") is meant for the driver that offers (produces) the TCG2 protocol. This lib instance implements both (a) and (b) API groups. * Here's how things fit together: (i) The "SecurityPkg/Library/Tpm2DeviceLibDTpm/Tpm2InstanceLibDTpm.inf" library instance (which has no lib class) is linked into "Tcg2Dxe.inf" via NULL class resolution. This simply means that before the "Tcg2Dxe.inf" entry point function is entered, the constructor function of "Tpm2InstanceLibDTpm.inf" will be called. (ii) This Tpm2InstanceLibDTpmConstructor() function calls API (b), and registers its own actual TPM2 command implementation with the "Tpm2DeviceLibRouter" library instance (also linked into the Tcg2Dxe driver). This provides the back-end for the API set (a). TCG2 protocol provider (Tcg2Dxe.inf driver) launches | v NULL class: Tpm2InstanceLibDTpm instance construction | v Tpm2DeviceLib class: Tpm2DeviceLibRouter instance backend registration for API set (a) (iii) The Tcg2Dxe driver exposes the TCG2 protocol. (iv) A TPM2 consumer calls API set (a) via lib instance (1). Such calls land in Tcg2Dxe, via the protocol. (v) Tcg2Dxe serves the protocol request by forwarding it to API set (a) from lib instance (2). (vi) Those functions call the "backend" functions registered by Tpm2DeviceLibDTpm in step (ii). TPM 2 consumer driver | v Tpm2DeviceLib class: Tpm2DeviceLibTcg2 instance | v TCG2 protocol interface | v TCG2 protocol provider: Tcg2Dxe.inf driver | v Tpm2DeviceLib class: Tpm2DeviceLibRouter instance | v NULL class: Tpm2InstanceLibDTpm instance (via earlier registration) | v TPM2 chip (actual hardware) * So that is the "router" pattern in edk2. Namely, - Consumers of an abstraction use a thin library instance. - The thin library instance calls a firmware-global (singleton) service, i.e. a PPI (in the PEI phase) or protocol (in the DXE phase). - The PEIM providing the PPI, or the DXE driver providing the protocol, don't themselves implement the actual service either. Instead they offer a "registration" service too, and they only connect the incoming "consumer" calls to the earlier registered back-end(s). - The "registration service", for back-ends to use, may take various forms. It can be exposed globally to the rest of the firmware, as another member function of the PPI / protocol structure. Then backends can be provided by separate PEIMs / DXE drivers. Or else, the registration service can be exposed as just another library API. In this case, the backends are provided as NULL class library instances, and a platform DSC file links them into the PEIM / DXE driver via NULL class resolutions. The backend lib instances call the registration service in their own respective constructor functions. Cc: Laszlo Ersek <lersek@redhat.com> Cc: Stefan Berger <stefanb@linux.vnet.ibm.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2018-02-22 17:53:16 +01:00
Tpm2DeviceLib|SecurityPkg/Library/Tpm2DeviceLibTcg2/Tpm2DeviceLibTcg2.inf
!endif
[LibraryClasses.common.UEFI_APPLICATION]
PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf
TimerLib|OvmfPkg/Library/AcpiTimerLib/DxeAcpiTimerLib.inf
OvmfPkg/ResetSystemLib: introduce the DxeResetSystemLib instance The BaseResetSystemLib instance is not suitable for OS runtime, because its ResetShutdown() implementation calls PciRead16 (OVMF_HOSTBRIDGE_DID). On q35, this boils down to a memory-mapped config space access -- but we never ask the OS to map MMCONFIG for runtime. There are at least three alternatives to approach this: (1) Investigate "MdePkg/Library/DxeRuntimePciExpressLib", which offers some kind of runtime mapping for MMCONFIG. (2) Consume PciCf8Lib directly, rather than PciLib, in ResetSystemLib. Then we'll read OVMF_HOSTBRIDGE_DID from the config space with IO port accesses on q35 too, not just on i440fx. IO ports don't depend on page tables. (3) In the lib constructor, cache "mAcpiPmBaseAddress" based on "PcdOvmfHostBridgePciDevId" (which is set by PlatformPei). Then the host bridge type will be known at runtime without PCI config space accesses. This patch follows approach (3), in order to mirror AcpiTimerLib. Notes: * This patch is best viewed with "git show --find-copies-harder -C43". * PCDs are not usable in the DXE_CORE, as the PCD PPI is gone, and the PCD protocol is not available yet. (The DXE_CORE does consume ResetSystemLib in practice, when OVMF is built with -D SOURCE_DEBUG_ENABLE.) Cc: Anthony Perard <anthony.perard@citrix.com> Cc: Ard Biesheuvel <ard.biesheuvel@arm.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Julien Grall <julien@xen.org> Cc: Philippe Mathieu-Daudé <philmd@redhat.com> Cc: Rebecca Cran <rebecca@bsdio.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2675 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20200417153751.7110-7-lersek@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@arm.com> Reviewed-by: Rebecca Cran <rebecca@bsdio.com> [lersek@redhat.com: move third Note (with repro info) to BZ comment]
2020-04-17 17:37:51 +02:00
ResetSystemLib|OvmfPkg/Library/ResetSystemLib/DxeResetSystemLib.inf
HobLib|MdePkg/Library/DxeHobLib/DxeHobLib.inf
MemoryAllocationLib|MdePkg/Library/UefiMemoryAllocationLib/UefiMemoryAllocationLib.inf
ReportStatusCodeLib|MdeModulePkg/Library/DxeReportStatusCodeLib/DxeReportStatusCodeLib.inf
!ifdef $(DEBUG_ON_SERIAL_PORT)
DebugLib|MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf
!else
DebugLib|OvmfPkg/Library/PlatformDebugLibIoPort/PlatformDebugLibIoPort.inf
!endif
PciLib|OvmfPkg/Library/DxePciLibI440FxQ35/DxePciLibI440FxQ35.inf
[LibraryClasses.common.DXE_SMM_DRIVER]
PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf
TimerLib|OvmfPkg/Library/AcpiTimerLib/DxeAcpiTimerLib.inf
OvmfPkg/ResetSystemLib: introduce the DxeResetSystemLib instance The BaseResetSystemLib instance is not suitable for OS runtime, because its ResetShutdown() implementation calls PciRead16 (OVMF_HOSTBRIDGE_DID). On q35, this boils down to a memory-mapped config space access -- but we never ask the OS to map MMCONFIG for runtime. There are at least three alternatives to approach this: (1) Investigate "MdePkg/Library/DxeRuntimePciExpressLib", which offers some kind of runtime mapping for MMCONFIG. (2) Consume PciCf8Lib directly, rather than PciLib, in ResetSystemLib. Then we'll read OVMF_HOSTBRIDGE_DID from the config space with IO port accesses on q35 too, not just on i440fx. IO ports don't depend on page tables. (3) In the lib constructor, cache "mAcpiPmBaseAddress" based on "PcdOvmfHostBridgePciDevId" (which is set by PlatformPei). Then the host bridge type will be known at runtime without PCI config space accesses. This patch follows approach (3), in order to mirror AcpiTimerLib. Notes: * This patch is best viewed with "git show --find-copies-harder -C43". * PCDs are not usable in the DXE_CORE, as the PCD PPI is gone, and the PCD protocol is not available yet. (The DXE_CORE does consume ResetSystemLib in practice, when OVMF is built with -D SOURCE_DEBUG_ENABLE.) Cc: Anthony Perard <anthony.perard@citrix.com> Cc: Ard Biesheuvel <ard.biesheuvel@arm.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Julien Grall <julien@xen.org> Cc: Philippe Mathieu-Daudé <philmd@redhat.com> Cc: Rebecca Cran <rebecca@bsdio.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2675 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20200417153751.7110-7-lersek@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@arm.com> Reviewed-by: Rebecca Cran <rebecca@bsdio.com> [lersek@redhat.com: move third Note (with repro info) to BZ comment]
2020-04-17 17:37:51 +02:00
ResetSystemLib|OvmfPkg/Library/ResetSystemLib/DxeResetSystemLib.inf
OvmfPkg: LockBox: use SMM stack with -D SMM_REQUIRE During DXE, drivers save data in the LockBox. A save operation is layered as follows: - The unprivileged driver wishing to store data in the LockBox links against the "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxDxeLib.inf" library instance. The library allows the unprivileged driver to format requests for the privileged SMM LockBox driver (see below), and to parse responses. We apply this resolution for DXE_DRIVER modules. - The privileged SMM LockBox driver is built from "MdeModulePkg/Universal/LockBox/SmmLockBox/SmmLockBox.inf". This driver has module type DXE_SMM_DRIVER and can access SMRAM. The driver delegates command parsing and response formatting to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxSmmLib.inf". Therefore we include this DXE_SMM_DRIVER in the build, and apply said resolution specifically to it. (Including the driver requires us to resolve a few of other library classes for DXE_SMM_DRIVER modules.) - In PEI, the S3 Resume PEIM (UefiCpuPkg/Universal/Acpi/S3Resume2Pei) retrieves data from the LockBox. It is capable of searching SMRAM itself. We resolve LockBoxLib to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxPeiLib.inf" specifically for this one PEIM. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19048 6f19259b-4bc3-4df7-8a09-765794883524
2015-11-30 19:42:15 +01:00
MemoryAllocationLib|MdePkg/Library/SmmMemoryAllocationLib/SmmMemoryAllocationLib.inf
ReportStatusCodeLib|MdeModulePkg/Library/DxeReportStatusCodeLib/DxeReportStatusCodeLib.inf
OvmfPkg: LockBox: use SMM stack with -D SMM_REQUIRE During DXE, drivers save data in the LockBox. A save operation is layered as follows: - The unprivileged driver wishing to store data in the LockBox links against the "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxDxeLib.inf" library instance. The library allows the unprivileged driver to format requests for the privileged SMM LockBox driver (see below), and to parse responses. We apply this resolution for DXE_DRIVER modules. - The privileged SMM LockBox driver is built from "MdeModulePkg/Universal/LockBox/SmmLockBox/SmmLockBox.inf". This driver has module type DXE_SMM_DRIVER and can access SMRAM. The driver delegates command parsing and response formatting to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxSmmLib.inf". Therefore we include this DXE_SMM_DRIVER in the build, and apply said resolution specifically to it. (Including the driver requires us to resolve a few of other library classes for DXE_SMM_DRIVER modules.) - In PEI, the S3 Resume PEIM (UefiCpuPkg/Universal/Acpi/S3Resume2Pei) retrieves data from the LockBox. It is capable of searching SMRAM itself. We resolve LockBoxLib to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxPeiLib.inf" specifically for this one PEIM. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19048 6f19259b-4bc3-4df7-8a09-765794883524
2015-11-30 19:42:15 +01:00
HobLib|MdePkg/Library/DxeHobLib/DxeHobLib.inf
SmmMemLib|MdePkg/Library/SmmMemLib/SmmMemLib.inf
MmServicesTableLib|MdePkg/Library/MmServicesTableLib/MmServicesTableLib.inf
SmmServicesTableLib|MdePkg/Library/SmmServicesTableLib/SmmServicesTableLib.inf
!ifdef $(DEBUG_ON_SERIAL_PORT)
DebugLib|MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf
!else
DebugLib|OvmfPkg/Library/PlatformDebugLibIoPort/PlatformDebugLibIoPort.inf
!endif
CpuExceptionHandlerLib|UefiCpuPkg/Library/CpuExceptionHandlerLib/SmmCpuExceptionHandlerLib.inf
!if $(SOURCE_DEBUG_ENABLE) == TRUE
DebugAgentLib|SourceLevelDebugPkg/Library/DebugAgent/SmmDebugAgentLib.inf
!endif
BaseCryptLib|CryptoPkg/Library/BaseCryptLib/SmmCryptLib.inf
PciLib|OvmfPkg/Library/DxePciLibI440FxQ35/DxePciLibI440FxQ35.inf
[LibraryClasses.common.SMM_CORE]
PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf
TimerLib|OvmfPkg/Library/AcpiTimerLib/DxeAcpiTimerLib.inf
OvmfPkg/ResetSystemLib: introduce the DxeResetSystemLib instance The BaseResetSystemLib instance is not suitable for OS runtime, because its ResetShutdown() implementation calls PciRead16 (OVMF_HOSTBRIDGE_DID). On q35, this boils down to a memory-mapped config space access -- but we never ask the OS to map MMCONFIG for runtime. There are at least three alternatives to approach this: (1) Investigate "MdePkg/Library/DxeRuntimePciExpressLib", which offers some kind of runtime mapping for MMCONFIG. (2) Consume PciCf8Lib directly, rather than PciLib, in ResetSystemLib. Then we'll read OVMF_HOSTBRIDGE_DID from the config space with IO port accesses on q35 too, not just on i440fx. IO ports don't depend on page tables. (3) In the lib constructor, cache "mAcpiPmBaseAddress" based on "PcdOvmfHostBridgePciDevId" (which is set by PlatformPei). Then the host bridge type will be known at runtime without PCI config space accesses. This patch follows approach (3), in order to mirror AcpiTimerLib. Notes: * This patch is best viewed with "git show --find-copies-harder -C43". * PCDs are not usable in the DXE_CORE, as the PCD PPI is gone, and the PCD protocol is not available yet. (The DXE_CORE does consume ResetSystemLib in practice, when OVMF is built with -D SOURCE_DEBUG_ENABLE.) Cc: Anthony Perard <anthony.perard@citrix.com> Cc: Ard Biesheuvel <ard.biesheuvel@arm.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Julien Grall <julien@xen.org> Cc: Philippe Mathieu-Daudé <philmd@redhat.com> Cc: Rebecca Cran <rebecca@bsdio.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2675 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20200417153751.7110-7-lersek@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@arm.com> Reviewed-by: Rebecca Cran <rebecca@bsdio.com> [lersek@redhat.com: move third Note (with repro info) to BZ comment]
2020-04-17 17:37:51 +02:00
ResetSystemLib|OvmfPkg/Library/ResetSystemLib/DxeResetSystemLib.inf
SmmCorePlatformHookLib|MdeModulePkg/Library/SmmCorePlatformHookLibNull/SmmCorePlatformHookLibNull.inf
MemoryAllocationLib|MdeModulePkg/Library/PiSmmCoreMemoryAllocationLib/PiSmmCoreMemoryAllocationLib.inf
ReportStatusCodeLib|MdeModulePkg/Library/DxeReportStatusCodeLib/DxeReportStatusCodeLib.inf
HobLib|MdePkg/Library/DxeHobLib/DxeHobLib.inf
SmmMemLib|MdePkg/Library/SmmMemLib/SmmMemLib.inf
SmmServicesTableLib|MdeModulePkg/Library/PiSmmCoreSmmServicesTableLib/PiSmmCoreSmmServicesTableLib.inf
!ifdef $(DEBUG_ON_SERIAL_PORT)
DebugLib|MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf
!else
DebugLib|OvmfPkg/Library/PlatformDebugLibIoPort/PlatformDebugLibIoPort.inf
!endif
PciLib|OvmfPkg/Library/DxePciLibI440FxQ35/DxePciLibI440FxQ35.inf
################################################################################
#
# Pcd Section - list of all EDK II PCD Entries defined by this Platform.
#
################################################################################
[PcdsFeatureFlag]
gEfiMdeModulePkgTokenSpaceGuid.PcdHiiOsRuntimeSupport|FALSE
gEfiMdeModulePkgTokenSpaceGuid.PcdDxeIplSupportUefiDecompress|FALSE
gEfiMdeModulePkgTokenSpaceGuid.PcdDxeIplSwitchToLongMode|TRUE
gEfiMdeModulePkgTokenSpaceGuid.PcdConOutGopSupport|TRUE
gEfiMdeModulePkgTokenSpaceGuid.PcdConOutUgaSupport|FALSE
gEfiMdeModulePkgTokenSpaceGuid.PcdInstallAcpiSdtProtocol|TRUE
!ifdef $(CSM_ENABLE)
gUefiOvmfPkgTokenSpaceGuid.PcdCsmEnable|TRUE
!endif
!if $(SMM_REQUIRE) == TRUE
gUefiOvmfPkgTokenSpaceGuid.PcdSmmSmramRequire|TRUE
OvmfPkg: enable CPU hotplug support in PiSmmCpuDxeSmm Set "PcdCpuHotPlugSupport" to TRUE, when OVMF is built with SMM_REQUIRE. Consequences: (1) In PiCpuSmmEntry() [UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c], resources are allocated and populated in advance for all possible (i.e., potentially hot-added) processors, rather than only the processors present at boot. The possible count (called "mMaxNumberOfCpus") is set from "PcdCpuMaxLogicalProcessorNumber"; we set the latter in OvmfPkg/PlatformPei. (Refer to commit 83357313dd67, "OvmfPkg/PlatformPei: rewrite MaxCpuCountInitialization() for CPU hotplug", 2020-01-29). (2) The AddProcessor() and RemoveProcessor() member functions of EFI_SMM_CPU_SERVICE_PROTOCOL, implemented in "UefiCpuPkg/PiSmmCpuDxeSmm/CpuService.c", are no longer short-circuited to EFI_UNSUPPORTED. We'll rely on these functions in the CPU hotplug SMI handler, in a subsequent patch. (3) In PiCpuSmmEntry(), the address of the CPU_HOT_PLUG_DATA structure (in SMRAM) is exposed via the dynamic-only "PcdCpuHotPlugDataAddress". This structure is an information channel between the CPU hotplug SMI handler, and EFI_SMM_CPU_SERVICE_PROTOCOL. Namely, at the first "Index" where the following equality holds: CPU_HOT_PLUG_DATA.ApicId[Index] == INVALID_APIC_ID a hot-plugged CPU can be accepted, with the steps below: (3.1) The hotplug SMI handler has to overwrite INVALID_APIC_ID with the new CPU's APIC ID. (3.2) The new CPU's SMBASE has to be relocated to: CPU_HOT_PLUG_DATA.SmBase[Index] (which was precomputed in step (1) above). (3.3) The hotplug SMI handler is supposed to call EFI_SMM_CPU_SERVICE_PROTOCOL.AddProcessor(). Note: we need not spell out "PcdCpuHotPlugDataAddress" in the [PcdsDynamicDefault] sections of the OVMF DSC files, just so the PCD become dynamically settable. That's because "UefiCpuPkg.dec" declares this PCD with [PcdsDynamic, PcdsDynamicEx] access methods *only*. Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Cc: Philippe Mathieu-Daudé <philmd@redhat.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1512 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20200226221156.29589-6-lersek@redhat.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
2020-02-26 23:11:45 +01:00
gUefiCpuPkgTokenSpaceGuid.PcdCpuHotPlugSupport|TRUE
gEfiMdeModulePkgTokenSpaceGuid.PcdEnableVariableRuntimeCache|FALSE
!endif
[PcdsFixedAtBuild]
gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeMemorySize|1
OvmfPkg: improve SMM comms security with adaptive MemoryTypeInformation * In the Intel whitepaper: --v-- A Tour Beyond BIOS -- Secure SMM Communication https://github.com/tianocore/tianocore.github.io/wiki/EDK-II-Security-White-Papers https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Secure_SMM_Communication.pdf --^-- bullet#3 in section "Assumption and Recommendation", and bullet#4 in "Call for action", recommend enabling the (adaptive) Memory Type Information feature. * In the Intel whitepaper: --v-- A Tour Beyond BIOS -- Memory Map and Practices in UEFI BIOS https://github.com/tianocore/tianocore.github.io/wiki/EDK-II-white-papers https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf --^-- figure#6 describes the Memory Type Information feature in detail; namely as a feedback loop between the Platform PEIM, the DXE IPL PEIM, the DXE Core, and BDS. Implement the missing PlatformPei functionality in OvmfPkg, for fulfilling the Secure SMM Communication recommendation. In the longer term, OVMF should install the WSMT ACPI table, and this patch contributes to that. Notes: - the step in figure#6 where the UEFI variable is copied into the HOB is covered by the DXE IPL PEIM, in the DxeLoadCore() function, - "PcdResetOnMemoryTypeInformationChange" must be reverted to the DEC default TRUE value, because both whitepapers indicate that BDS needs to reset the system if the Memory Type Information changes. Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Philippe Mathieu-Daudé <philmd@redhat.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=386 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20200310222739.26717-6-lersek@redhat.com> Acked-by: Leif Lindholm <leif@nuviainc.com>
2020-03-10 23:27:39 +01:00
!if $(SMM_REQUIRE) == FALSE
gEfiMdeModulePkgTokenSpaceGuid.PcdResetOnMemoryTypeInformationChange|FALSE
OvmfPkg: improve SMM comms security with adaptive MemoryTypeInformation * In the Intel whitepaper: --v-- A Tour Beyond BIOS -- Secure SMM Communication https://github.com/tianocore/tianocore.github.io/wiki/EDK-II-Security-White-Papers https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Secure_SMM_Communication.pdf --^-- bullet#3 in section "Assumption and Recommendation", and bullet#4 in "Call for action", recommend enabling the (adaptive) Memory Type Information feature. * In the Intel whitepaper: --v-- A Tour Beyond BIOS -- Memory Map and Practices in UEFI BIOS https://github.com/tianocore/tianocore.github.io/wiki/EDK-II-white-papers https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf --^-- figure#6 describes the Memory Type Information feature in detail; namely as a feedback loop between the Platform PEIM, the DXE IPL PEIM, the DXE Core, and BDS. Implement the missing PlatformPei functionality in OvmfPkg, for fulfilling the Secure SMM Communication recommendation. In the longer term, OVMF should install the WSMT ACPI table, and this patch contributes to that. Notes: - the step in figure#6 where the UEFI variable is copied into the HOB is covered by the DXE IPL PEIM, in the DxeLoadCore() function, - "PcdResetOnMemoryTypeInformationChange" must be reverted to the DEC default TRUE value, because both whitepapers indicate that BDS needs to reset the system if the Memory Type Information changes. Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Philippe Mathieu-Daudé <philmd@redhat.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=386 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20200310222739.26717-6-lersek@redhat.com> Acked-by: Leif Lindholm <leif@nuviainc.com>
2020-03-10 23:27:39 +01:00
!endif
gEfiMdePkgTokenSpaceGuid.PcdMaximumGuidedExtractHandler|0x10
!if ($(FD_SIZE_IN_KB) == 1024) || ($(FD_SIZE_IN_KB) == 2048)
gEfiMdeModulePkgTokenSpaceGuid.PcdMaxVariableSize|0x2000
gEfiMdeModulePkgTokenSpaceGuid.PcdMaxAuthVariableSize|0x2800
!if $(NETWORK_TLS_ENABLE) == FALSE
# match PcdFlashNvStorageVariableSize purely for convenience
gEfiMdeModulePkgTokenSpaceGuid.PcdVariableStoreSize|0xe000
!endif
OvmfPkg/TlsAuthConfigLib: configure trusted CA certs for HTTPS boot Introduce TlsAuthConfigLib to read the list of trusted CA certificates from fw_cfg and to store it to EFI_TLS_CA_CERTIFICATE_VARIABLE. The fw_cfg file is formatted by the "p11-kit" and "update-ca-trust" utilities on the host side, so that the host settings take effect in guest HTTPS boot as well. QEMU forwards the file intact to the firmware. The contents are sanity-checked by NetworkPkg/HttpDxe code that was added in commit 0fd13678a681. Link TlsAuthConfigLib via NULL resolution into TlsAuthConfigDxe. This sets EFI_TLS_CA_CERTIFICATE_VARIABLE in time for both NetworkPkg/TlsAuthConfigDxe (for possible HII interaction with the user) and for NetworkPkg/HttpDxe (for the effective TLS configuration). The file formatted by "p11-kit" can be large. On a RHEL-7 host, the the Mozilla CA root certificate bundle -- installed with the "ca-certificates" package -- is processed into a 182KB file. Thus, create EFI_TLS_CA_CERTIFICATE_VARIABLE as a volatile & boot-time only variable. Also, in TLS_ENABLE builds, set the cumulative limit for volatile variables (PcdVariableStoreSize) to 512KB, and the individual limit for the same (PcdMaxVolatileVariableSize) to 256KB. Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Gary Ching-Pang Lin <glin@suse.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Gary Lin <glin@suse.com> Tested-by: Gary Lin <glin@suse.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2018-03-28 03:04:06 +02:00
!endif
!if $(FD_SIZE_IN_KB) == 4096
gEfiMdeModulePkgTokenSpaceGuid.PcdMaxVariableSize|0x8400
gEfiMdeModulePkgTokenSpaceGuid.PcdMaxAuthVariableSize|0x8400
!if $(NETWORK_TLS_ENABLE) == FALSE
# match PcdFlashNvStorageVariableSize purely for convenience
gEfiMdeModulePkgTokenSpaceGuid.PcdVariableStoreSize|0x40000
!endif
OvmfPkg/TlsAuthConfigLib: configure trusted CA certs for HTTPS boot Introduce TlsAuthConfigLib to read the list of trusted CA certificates from fw_cfg and to store it to EFI_TLS_CA_CERTIFICATE_VARIABLE. The fw_cfg file is formatted by the "p11-kit" and "update-ca-trust" utilities on the host side, so that the host settings take effect in guest HTTPS boot as well. QEMU forwards the file intact to the firmware. The contents are sanity-checked by NetworkPkg/HttpDxe code that was added in commit 0fd13678a681. Link TlsAuthConfigLib via NULL resolution into TlsAuthConfigDxe. This sets EFI_TLS_CA_CERTIFICATE_VARIABLE in time for both NetworkPkg/TlsAuthConfigDxe (for possible HII interaction with the user) and for NetworkPkg/HttpDxe (for the effective TLS configuration). The file formatted by "p11-kit" can be large. On a RHEL-7 host, the the Mozilla CA root certificate bundle -- installed with the "ca-certificates" package -- is processed into a 182KB file. Thus, create EFI_TLS_CA_CERTIFICATE_VARIABLE as a volatile & boot-time only variable. Also, in TLS_ENABLE builds, set the cumulative limit for volatile variables (PcdVariableStoreSize) to 512KB, and the individual limit for the same (PcdMaxVolatileVariableSize) to 256KB. Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Gary Ching-Pang Lin <glin@suse.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Gary Lin <glin@suse.com> Tested-by: Gary Lin <glin@suse.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2018-03-28 03:04:06 +02:00
!endif
!if $(NETWORK_TLS_ENABLE) == TRUE
OvmfPkg/TlsAuthConfigLib: configure trusted CA certs for HTTPS boot Introduce TlsAuthConfigLib to read the list of trusted CA certificates from fw_cfg and to store it to EFI_TLS_CA_CERTIFICATE_VARIABLE. The fw_cfg file is formatted by the "p11-kit" and "update-ca-trust" utilities on the host side, so that the host settings take effect in guest HTTPS boot as well. QEMU forwards the file intact to the firmware. The contents are sanity-checked by NetworkPkg/HttpDxe code that was added in commit 0fd13678a681. Link TlsAuthConfigLib via NULL resolution into TlsAuthConfigDxe. This sets EFI_TLS_CA_CERTIFICATE_VARIABLE in time for both NetworkPkg/TlsAuthConfigDxe (for possible HII interaction with the user) and for NetworkPkg/HttpDxe (for the effective TLS configuration). The file formatted by "p11-kit" can be large. On a RHEL-7 host, the the Mozilla CA root certificate bundle -- installed with the "ca-certificates" package -- is processed into a 182KB file. Thus, create EFI_TLS_CA_CERTIFICATE_VARIABLE as a volatile & boot-time only variable. Also, in TLS_ENABLE builds, set the cumulative limit for volatile variables (PcdVariableStoreSize) to 512KB, and the individual limit for the same (PcdMaxVolatileVariableSize) to 256KB. Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Gary Ching-Pang Lin <glin@suse.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Gary Lin <glin@suse.com> Tested-by: Gary Lin <glin@suse.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2018-03-28 03:04:06 +02:00
gEfiMdeModulePkgTokenSpaceGuid.PcdVariableStoreSize|0x80000
gEfiMdeModulePkgTokenSpaceGuid.PcdMaxVolatileVariableSize|0x40000
!endif
gEfiMdeModulePkgTokenSpaceGuid.PcdVpdBaseAddress|0x0
gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeUseSerial|FALSE
gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeUseMemory|TRUE
gEfiMdePkgTokenSpaceGuid.PcdReportStatusCodePropertyMask|0x07
# DEBUG_INIT 0x00000001 // Initialization
# DEBUG_WARN 0x00000002 // Warnings
# DEBUG_LOAD 0x00000004 // Load events
# DEBUG_FS 0x00000008 // EFI File system
# DEBUG_POOL 0x00000010 // Alloc & Free (pool)
# DEBUG_PAGE 0x00000020 // Alloc & Free (page)
# DEBUG_INFO 0x00000040 // Informational debug messages
# DEBUG_DISPATCH 0x00000080 // PEI/DXE/SMM Dispatchers
# DEBUG_VARIABLE 0x00000100 // Variable
# DEBUG_BM 0x00000400 // Boot Manager
# DEBUG_BLKIO 0x00001000 // BlkIo Driver
# DEBUG_NET 0x00004000 // SNP Driver
# DEBUG_UNDI 0x00010000 // UNDI Driver
# DEBUG_LOADFILE 0x00020000 // LoadFile
# DEBUG_EVENT 0x00080000 // Event messages
# DEBUG_GCD 0x00100000 // Global Coherency Database changes
# DEBUG_CACHE 0x00200000 // Memory range cachability changes
# DEBUG_VERBOSE 0x00400000 // Detailed debug messages that may
# // significantly impact boot performance
# DEBUG_ERROR 0x80000000 // Error
gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x8000004F
!if $(SOURCE_DEBUG_ENABLE) == TRUE
gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask|0x17
!else
gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask|0x2F
!endif
OvmfPkg: PlatformPei: enable PCIEXBAR (aka MMCONFIG / ECAM) on Q35 The comments in the code should speak for themselves; here we note only two facts: - The PCI config space writes (to the PCIEXBAR register) are performed using the 0xCF8 / 0xCFC IO ports, by virtue of PciLib being resolved to BasePciLibCf8. (This library resolution will permanently remain in place for the PEI phase.) - Since PCIEXBAR counts as a chipset register, it is the responsibility of the firmware to reprogram it at S3 resume. Therefore PciExBarInitialization() is called regardless of the boot path. (Marcel recently posted patches for SeaBIOS that implement this.) This patch suffices to enable PCIEXBAR (and the dependent ACPI table generation in QEMU), for the sake of "PCIeHotplug" in the Linux guest: ACPI: MCFG 0x000000007E17F000 00003C (v01 BOCHS BXPCMCFG 00000001 BXPC 00000001) PCI: MMCONFIG for domain 0000 [bus 00-ff] at [mem 0x80000000-0x8fffffff] (base 0x80000000) PCI: MMCONFIG at [mem 0x80000000-0x8fffffff] reserved in E820 acpi PNP0A08:00: _OSC: OS supports [ExtendedConfig ASPM ClockPM Segments MSI] acpi PNP0A08:00: _OSC: OS now controls [PCIeHotplug PME AER PCIeCapability] In the following patches, we'll equip the core PCI host bridge / root bridge driver and the rest of DXE as well to utilize ECAM on Q35. Cc: Gabriel Somlo <somlo@cmu.edu> Cc: Gerd Hoffmann <kraxel@redhat.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Marcel Apfelbaum <marcel@redhat.com> Cc: Micha Zegan <webczat_200@poczta.onet.pl> Ref: https://github.com/tianocore/edk2/issues/32 Ref: http://thread.gmane.org/gmane.comp.bios.coreboot.seabios/10548 Suggested-by: Marcel Apfelbaum <marcel@redhat.com> Reported-by: Micha Zegan <webczat_200@poczta.onet.pl> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Marcel Apfelbaum <marcel@redhat.com> Tested-by: Gabriel Somlo <somlo@cmu.edu> Tested-by: Micha Zegan <webczat_200@poczta.onet.pl> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-03-03 20:46:22 +01:00
# This PCD is used to set the base address of the PCI express hierarchy. It
# is only consulted when OVMF runs on Q35. In that case it is programmed into
# the PCIEXBAR register.
#
# On Q35 machine types that QEMU intends to support in the long term, QEMU
OvmfPkg: raise the PCIEXBAR base to 2816 MB on Q35 (This is a replacement for commit 75136b29541b, "OvmfPkg/PlatformPei: reorder the 32-bit PCI window vs. the PCIEXBAR on q35", 2019-05-16). Commit 7b8fe63561b4 ("OvmfPkg: PlatformPei: enable PCIEXBAR (aka MMCONFIG / ECAM) on Q35", 2016-03-10) claimed that, On Q35 machine types that QEMU intends to support in the long term, QEMU never lets the RAM below 4 GB exceed 2 GB. Alas, this statement came from a misunderstanding that occurred while we worked out the interface contract. In fact QEMU does allow the 32-bit RAM extend up to 0xB000_0000 (exclusive), in case the RAM size falls in the range (0x8000_0000, 0xB000_0000) (i.e., the RAM size is greater than 2048MB and smaller than 2816MB). In turn, such a RAM size (justifiedly) triggers ASSERT (TopOfLowRam <= PciExBarBase); in MemMapInitialization(), because we placed the 256MB PCIEXBAR at 0x8000_0000 (2GB) exactly, relying on the interface contract. (And, the 32-bit PCI window would follow the PCIEXBAR, covering the [0x9000_0000, 0xFC00_0000) range.) In order to fix this, place the PCIEXBAR at 2816MB (0xB000_0000), and start the 32-bit PCI window at 3 GB (0xC000_0000). This shrinks the 32-bit PCI window to 0xFC00_0000 - 0xC000_0000 = 0x3C00_0000 = 960 MB. Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Gerd Hoffmann <kraxel@redhat.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1859 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Philippe Mathieu-Daude <philmd@redhat.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-05-29 11:59:02 +02:00
# never lets the RAM below 4 GB exceed 2816 MB.
gEfiMdePkgTokenSpaceGuid.PcdPciExpressBaseAddress|0xB0000000
OvmfPkg: PlatformPei: enable PCIEXBAR (aka MMCONFIG / ECAM) on Q35 The comments in the code should speak for themselves; here we note only two facts: - The PCI config space writes (to the PCIEXBAR register) are performed using the 0xCF8 / 0xCFC IO ports, by virtue of PciLib being resolved to BasePciLibCf8. (This library resolution will permanently remain in place for the PEI phase.) - Since PCIEXBAR counts as a chipset register, it is the responsibility of the firmware to reprogram it at S3 resume. Therefore PciExBarInitialization() is called regardless of the boot path. (Marcel recently posted patches for SeaBIOS that implement this.) This patch suffices to enable PCIEXBAR (and the dependent ACPI table generation in QEMU), for the sake of "PCIeHotplug" in the Linux guest: ACPI: MCFG 0x000000007E17F000 00003C (v01 BOCHS BXPCMCFG 00000001 BXPC 00000001) PCI: MMCONFIG for domain 0000 [bus 00-ff] at [mem 0x80000000-0x8fffffff] (base 0x80000000) PCI: MMCONFIG at [mem 0x80000000-0x8fffffff] reserved in E820 acpi PNP0A08:00: _OSC: OS supports [ExtendedConfig ASPM ClockPM Segments MSI] acpi PNP0A08:00: _OSC: OS now controls [PCIeHotplug PME AER PCIeCapability] In the following patches, we'll equip the core PCI host bridge / root bridge driver and the rest of DXE as well to utilize ECAM on Q35. Cc: Gabriel Somlo <somlo@cmu.edu> Cc: Gerd Hoffmann <kraxel@redhat.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Marcel Apfelbaum <marcel@redhat.com> Cc: Micha Zegan <webczat_200@poczta.onet.pl> Ref: https://github.com/tianocore/edk2/issues/32 Ref: http://thread.gmane.org/gmane.comp.bios.coreboot.seabios/10548 Suggested-by: Marcel Apfelbaum <marcel@redhat.com> Reported-by: Micha Zegan <webczat_200@poczta.onet.pl> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Marcel Apfelbaum <marcel@redhat.com> Tested-by: Gabriel Somlo <somlo@cmu.edu> Tested-by: Micha Zegan <webczat_200@poczta.onet.pl> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-03-03 20:46:22 +01:00
!if $(SOURCE_DEBUG_ENABLE) == TRUE
gEfiSourceLevelDebugPkgTokenSpaceGuid.PcdDebugLoadImageMethod|0x2
!endif
[PcdsFixedAtBuild.IA32]
#
# The NumberOfPages values below are ad-hoc. They are updated sporadically at
# best (please refer to git-blame for past updates). The values capture a set
# of BIN hints that made sense at a particular time, for some (now likely
# unknown) workloads / boot paths.
#
gEmbeddedTokenSpaceGuid.PcdMemoryTypeEfiACPIMemoryNVS|0x80
gEmbeddedTokenSpaceGuid.PcdMemoryTypeEfiACPIReclaimMemory|0x10
gEmbeddedTokenSpaceGuid.PcdMemoryTypeEfiReservedMemoryType|0x80
gEmbeddedTokenSpaceGuid.PcdMemoryTypeEfiRuntimeServicesCode|0x100
gEmbeddedTokenSpaceGuid.PcdMemoryTypeEfiRuntimeServicesData|0x100
[PcdsFixedAtBuild.X64]
#
# Network Pcds
#
!include NetworkPkg/NetworkPcds.dsc.inc
!if $(SMM_REQUIRE) == TRUE
gUefiCpuPkgTokenSpaceGuid.PcdCpuSmmStackSize|0x4000
!endif
# IRQs 5, 9, 10, 11 are level-triggered
gUefiOvmfPkgTokenSpaceGuid.Pcd8259LegacyModeEdgeLevel|0x0E20
# Point to the MdeModulePkg/Application/UiApp/UiApp.inf
gEfiMdeModulePkgTokenSpaceGuid.PcdBootManagerMenuFile|{ 0x21, 0xaa, 0x2c, 0x46, 0x14, 0x76, 0x03, 0x45, 0x83, 0x6e, 0x8a, 0xb6, 0xf4, 0x66, 0x23, 0x31 }
################################################################################
#
# Pcd Dynamic Section - list of all EDK II PCD Entries defined by this Platform
#
################################################################################
[PcdsDynamicDefault]
# only set when
# ($(SMM_REQUIRE) == FALSE)
gEfiMdeModulePkgTokenSpaceGuid.PcdEmuVariableNvStoreReserved|0
!if $(SMM_REQUIRE) == FALSE
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableBase64|0
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwWorkingBase|0
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwSpareBase|0
!endif
gEfiMdeModulePkgTokenSpaceGuid.PcdPciDisableBusEnumeration|FALSE
gEfiMdeModulePkgTokenSpaceGuid.PcdVideoHorizontalResolution|800
gEfiMdeModulePkgTokenSpaceGuid.PcdVideoVerticalResolution|600
gEfiMdeModulePkgTokenSpaceGuid.PcdAcpiS3Enable|FALSE
gUefiOvmfPkgTokenSpaceGuid.PcdOvmfHostBridgePciDevId|0
gUefiOvmfPkgTokenSpaceGuid.PcdPciIoBase|0x0
gUefiOvmfPkgTokenSpaceGuid.PcdPciIoSize|0x0
gUefiOvmfPkgTokenSpaceGuid.PcdPciMmio32Base|0x0
gUefiOvmfPkgTokenSpaceGuid.PcdPciMmio32Size|0x0
OvmfPkg: PlatformPei: determine the 64-bit PCI host aperture for X64 DXE The main observation about the 64-bit PCI host aperture is that it is the highest part of the useful address space. It impacts the top of the GCD memory space map, and, consequently, our maximum address width calculation for the CPU HOB too. Thus, modify the GetFirstNonAddress() function to consider the following areas above the high RAM, while calculating the first non-address (i.e., the highest inclusive address, plus one): - the memory hotplug area (optional, the size comes from QEMU), - the 64-bit PCI host aperture (we set a default size). While computing the first non-address, capture the base and the size of the 64-bit PCI host aperture at once in PCDs, since they are natural parts of the calculation. (Similarly to how PcdPciMmio32* are not rewritten on the S3 resume path (see the InitializePlatform() -> MemMapInitialization() condition), nor are PcdPciMmio64*. Only the core PciHostBridgeDxe driver consumes them, through our PciHostBridgeLib instance.) Set 32GB as the default size for the aperture. Issue#59 mentions the NVIDIA Tesla K80 as an assignable device. According to nvidia.com, these cards may have 24GB of memory (probably 16GB + 8GB BARs). As a strictly experimental feature, the user can specify the size of the aperture (in MB) as well, with the QEMU option -fw_cfg name=opt/ovmf/X-PciMmio64Mb,string=65536 The "X-" prefix follows the QEMU tradition (spelled "x-" there), meaning that the property is experimental, unstable, and might go away any time. Gerd has proposed heuristics for sizing the aperture automatically (based on 1GB page support and PCPU address width), but such should be delayed to a later patch (which may very well back out "X-PciMmio64Mb" then). For "everyday" guests, the 32GB default for the aperture size shouldn't impact the PEI memory demand (the size of the page tables that the DXE IPL PEIM builds). Namely, we've never reported narrower than 36-bit addresses; the DXE IPL PEIM has always built page tables for 64GB at least. For the aperture to bump the address width above 36 bits, either the guest must have quite a bit of memory itself (in which case the additional PEI memory demand shouldn't matter), or the user must specify a large aperture manually with "X-PciMmio64Mb" (and then he or she is also responsible for giving enough RAM to the VM, to satisfy the PEI memory demand). Cc: Gerd Hoffmann <kraxel@redhat.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Marcel Apfelbaum <marcel@redhat.com> Cc: Thomas Lamprecht <t.lamprecht@proxmox.com> Ref: https://github.com/tianocore/edk2/issues/59 Ref: http://www.nvidia.com/object/tesla-servers.html Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-03-04 19:30:45 +01:00
gUefiOvmfPkgTokenSpaceGuid.PcdPciMmio64Base|0x0
!ifdef $(CSM_ENABLE)
gUefiOvmfPkgTokenSpaceGuid.PcdPciMmio64Size|0x0
!else
OvmfPkg: PlatformPei: determine the 64-bit PCI host aperture for X64 DXE The main observation about the 64-bit PCI host aperture is that it is the highest part of the useful address space. It impacts the top of the GCD memory space map, and, consequently, our maximum address width calculation for the CPU HOB too. Thus, modify the GetFirstNonAddress() function to consider the following areas above the high RAM, while calculating the first non-address (i.e., the highest inclusive address, plus one): - the memory hotplug area (optional, the size comes from QEMU), - the 64-bit PCI host aperture (we set a default size). While computing the first non-address, capture the base and the size of the 64-bit PCI host aperture at once in PCDs, since they are natural parts of the calculation. (Similarly to how PcdPciMmio32* are not rewritten on the S3 resume path (see the InitializePlatform() -> MemMapInitialization() condition), nor are PcdPciMmio64*. Only the core PciHostBridgeDxe driver consumes them, through our PciHostBridgeLib instance.) Set 32GB as the default size for the aperture. Issue#59 mentions the NVIDIA Tesla K80 as an assignable device. According to nvidia.com, these cards may have 24GB of memory (probably 16GB + 8GB BARs). As a strictly experimental feature, the user can specify the size of the aperture (in MB) as well, with the QEMU option -fw_cfg name=opt/ovmf/X-PciMmio64Mb,string=65536 The "X-" prefix follows the QEMU tradition (spelled "x-" there), meaning that the property is experimental, unstable, and might go away any time. Gerd has proposed heuristics for sizing the aperture automatically (based on 1GB page support and PCPU address width), but such should be delayed to a later patch (which may very well back out "X-PciMmio64Mb" then). For "everyday" guests, the 32GB default for the aperture size shouldn't impact the PEI memory demand (the size of the page tables that the DXE IPL PEIM builds). Namely, we've never reported narrower than 36-bit addresses; the DXE IPL PEIM has always built page tables for 64GB at least. For the aperture to bump the address width above 36 bits, either the guest must have quite a bit of memory itself (in which case the additional PEI memory demand shouldn't matter), or the user must specify a large aperture manually with "X-PciMmio64Mb" (and then he or she is also responsible for giving enough RAM to the VM, to satisfy the PEI memory demand). Cc: Gerd Hoffmann <kraxel@redhat.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Marcel Apfelbaum <marcel@redhat.com> Cc: Thomas Lamprecht <t.lamprecht@proxmox.com> Ref: https://github.com/tianocore/edk2/issues/59 Ref: http://www.nvidia.com/object/tesla-servers.html Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-03-04 19:30:45 +01:00
gUefiOvmfPkgTokenSpaceGuid.PcdPciMmio64Size|0x800000000
!endif
gEfiMdePkgTokenSpaceGuid.PcdPlatformBootTimeOut|0
# Set video resolution for text setup.
gEfiMdeModulePkgTokenSpaceGuid.PcdSetupVideoHorizontalResolution|640
gEfiMdeModulePkgTokenSpaceGuid.PcdSetupVideoVerticalResolution|480
OvmfPkg: PlatformPei: set SMBIOS entry point version dynamically Git commit 54753b60 (SVN r16870), "MdeModulePkg: Update SMBIOS revision to 3.0." changed PcdSmbiosVersion from 0x0208 to 0x0300. This controls the version number of the SMBIOS entry point table (and other things) that "MdeModulePkg/Universal/SmbiosDxe" installs. Alas, this change breaks older Linux guests, like RHEL-6 (up to RHEL-6.7); those are limited to 2.x (both in the guest kernel firmware driver, and in the dmidecode utility). The SMBIOS 3.0 entry point has a different GUID -- defined in UEFI 2.5 -- pointing to it in the UEFI Configuration Table, and guest kernels that lack upstream kernel commit e1ccbbc9d5 don't recognize it. The v2.1.0+ machine types of QEMU generate SMBIOS payload for the firmware to install. The payload includes the entry point table ("anchor" table). OvmfPkg/SmbiosPlatformDxe cannot install the anchor table (because that is the jurisdiction of the generic "MdeModulePkg/Universal/SmbiosDxe" driver); however, we can parse the entry point version from QEMU's anchor table, and instruct "MdeModulePkg/Universal/SmbiosDxe" to adhere to that version. On machine types older than v2.1.0, the feature is not available, but then, should anything in OVMF install SMBIOS tables, version 2.8 is simply safer / more widely supported than 3.0 -- hence the default 2.8 value for the dynamic PCD. We set the PCD in PlatformPei (when not on the S3 resume path), because that's an easy and certain way to set the PCD before a DXE driver reads it. This follows the example of PcdEmuVariableNvStoreReserved (which is read by EmuVariableFvbRuntimeDxe). RHBZ: https://bugzilla.redhat.com/show_bug.cgi?id=1232876 Cc: Gabriel Somlo <somlo@cmu.edu> Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Acked-by: Gabriel Somlo <somlo@cmu.edu> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17676 6f19259b-4bc3-4df7-8a09-765794883524
2015-06-22 19:11:05 +02:00
gEfiMdeModulePkgTokenSpaceGuid.PcdSmbiosVersion|0x0208
gEfiMdeModulePkgTokenSpaceGuid.PcdSmbiosDocRev|0x0
gUefiOvmfPkgTokenSpaceGuid.PcdQemuSmbiosValidated|FALSE
OvmfPkg: PlatformPei: set SMBIOS entry point version dynamically Git commit 54753b60 (SVN r16870), "MdeModulePkg: Update SMBIOS revision to 3.0." changed PcdSmbiosVersion from 0x0208 to 0x0300. This controls the version number of the SMBIOS entry point table (and other things) that "MdeModulePkg/Universal/SmbiosDxe" installs. Alas, this change breaks older Linux guests, like RHEL-6 (up to RHEL-6.7); those are limited to 2.x (both in the guest kernel firmware driver, and in the dmidecode utility). The SMBIOS 3.0 entry point has a different GUID -- defined in UEFI 2.5 -- pointing to it in the UEFI Configuration Table, and guest kernels that lack upstream kernel commit e1ccbbc9d5 don't recognize it. The v2.1.0+ machine types of QEMU generate SMBIOS payload for the firmware to install. The payload includes the entry point table ("anchor" table). OvmfPkg/SmbiosPlatformDxe cannot install the anchor table (because that is the jurisdiction of the generic "MdeModulePkg/Universal/SmbiosDxe" driver); however, we can parse the entry point version from QEMU's anchor table, and instruct "MdeModulePkg/Universal/SmbiosDxe" to adhere to that version. On machine types older than v2.1.0, the feature is not available, but then, should anything in OVMF install SMBIOS tables, version 2.8 is simply safer / more widely supported than 3.0 -- hence the default 2.8 value for the dynamic PCD. We set the PCD in PlatformPei (when not on the S3 resume path), because that's an easy and certain way to set the PCD before a DXE driver reads it. This follows the example of PcdEmuVariableNvStoreReserved (which is read by EmuVariableFvbRuntimeDxe). RHBZ: https://bugzilla.redhat.com/show_bug.cgi?id=1232876 Cc: Gabriel Somlo <somlo@cmu.edu> Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Acked-by: Gabriel Somlo <somlo@cmu.edu> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17676 6f19259b-4bc3-4df7-8a09-765794883524
2015-06-22 19:11:05 +02:00
# Noexec settings for DXE.
gEfiMdeModulePkgTokenSpaceGuid.PcdSetNxForStack|FALSE
# UefiCpuPkg PCDs related to initial AP bringup and general AP management.
gUefiCpuPkgTokenSpaceGuid.PcdCpuMaxLogicalProcessorNumber|64
OvmfPkg/PlatformPei: rewrite MaxCpuCountInitialization() for CPU hotplug MaxCpuCountInitialization() currently handles the following options: (1) QEMU does not report the boot CPU count (FW_CFG_NB_CPUS is 0) In this case, PlatformPei makes MpInitLib enumerate APs up to the default PcdCpuMaxLogicalProcessorNumber value (64) minus 1, or until the default PcdCpuApInitTimeOutInMicroSeconds (50,000) elapses. (Whichever is reached first.) Time-limited AP enumeration had never been reliable on QEMU/KVM, which is why commit 45a70db3c3a5 strated handling case (2) below, in OVMF. (2) QEMU reports the boot CPU count (FW_CFG_NB_CPUS is nonzero) In this case, PlatformPei sets - PcdCpuMaxLogicalProcessorNumber to the reported boot CPU count (FW_CFG_NB_CPUS, which exports "PCMachineState.boot_cpus"), - and PcdCpuApInitTimeOutInMicroSeconds to practically "infinity" (MAX_UINT32, ~71 minutes). That causes MpInitLib to enumerate exactly the present (boot) APs. With CPU hotplug in mind, this method is not good enough. Because, using QEMU terminology, UefiCpuPkg expects PcdCpuMaxLogicalProcessorNumber to provide the "possible CPUs" count ("MachineState.smp.max_cpus"), which includes present and not present CPUs both (with not present CPUs being subject for hot-plugging). FW_CFG_NB_CPUS does not include not present CPUs. Rewrite MaxCpuCountInitialization() for handling the following cases: (1) The behavior of case (1) does not change. (No UefiCpuPkg PCDs are set to values different from the defaults.) (2) QEMU reports the boot CPU count ("PCMachineState.boot_cpus", via FW_CFG_NB_CPUS), but not the possible CPUs count ("MachineState.smp.max_cpus"). In this case, the behavior remains unchanged. The way MpInitLib is instructed to do the same differs however: we now set the new PcdCpuBootLogicalProcessorNumber to the boot CPU count (while continuing to set PcdCpuMaxLogicalProcessorNumber identically). PcdCpuApInitTimeOutInMicroSeconds becomes irrelevant. (3) QEMU reports both the boot CPU count ("PCMachineState.boot_cpus", via FW_CFG_NB_CPUS), and the possible CPUs count ("MachineState.smp.max_cpus"). We tell UefiCpuPkg about the possible CPUs count through PcdCpuMaxLogicalProcessorNumber. We also tell MpInitLib the boot CPU count for precise and quick AP enumeration, via PcdCpuBootLogicalProcessorNumber. PcdCpuApInitTimeOutInMicroSeconds is irrelevant again. This patch is a pre-requisite for enabling CPU hotplug with SMM_REQUIRE. As a side effect, the patch also enables S3 to work with CPU hotplug at once, *without* SMM_REQUIRE. (Without the patch, S3 resume fails, if a CPU is hot-plugged at OS runtime, prior to suspend: the FW_CFG_NB_CPUS increase seen during resume causes PcdCpuMaxLogicalProcessorNumber to increase as well, which is not permitted. With the patch, PcdCpuMaxLogicalProcessorNumber stays the same, namely "MachineState.smp.max_cpus". Therefore, the CPU structures allocated during normal boot can accommodate the CPUs at S3 resume that have been hotplugged prior to S3 suspend.) Cc: Anthony Perard <anthony.perard@citrix.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Julien Grall <julien.grall@arm.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1515 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20191022221554.14963-4-lersek@redhat.com> Acked-by: Anthony PERARD <anthony.perard@citrix.com> Reviewed-by: Philippe Mathieu-Daude <philmd@redhat.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-10-08 09:15:38 +02:00
gUefiCpuPkgTokenSpaceGuid.PcdCpuBootLogicalProcessorNumber|0
OvmfPkg/PlatformPei: Set memory encryption PCD when SEV is enabled Secure Encrypted Virtualization (SEV) guest VMs have the concept of private and shared memory. Private memory is encrypted with the guest-specific key, while shared memory may be encrypted with hypervisor key. Certain types of memory (namely instruction pages and guest page tables) are always treated as private memory by the hardware. For data memory, SEV guest VMs can choose which pages they would like to be private. The choice is done using the standard CPU page tables using the C-bit. When building the initial page table we mark all the memory as private. The patch sets the memory encryption PCD. The PCD is consumed by the following edk2 modules, which manipulate page tables: - PEI phase modules: CapsulePei, DxeIplPeim, S3Resume2Pei. CapsulePei is not used by OVMF. DxeIplPeim consumes the PCD at the end of the PEI phase, when it builds the initial page tables for the DXE core / DXE phase. S3Resume2Pei does not consume the PCD in its entry point function, only when DxeIplPeim branches to the S3 resume path at the end of the PEI phase, and calls S3Resume2Pei's EFI_PEI_S3_RESUME2_PPI.S3RestoreConfig2() member function. Therefore it is safe to set the PCD for these modules in PlatformPei. - DXE phase modules: BootScriptExecutorDxe, CpuDxe, PiSmmCpuDxeSmm. They are all dispatched after the PEI phase, so setting the PCD for them in PlatformPei is safe. (BootScriptExecutorDxe is launched "for real" in the PEI phase during S3 resume, but it caches the PCD into a static variable when its entry point is originally invoked in DXE.) Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-07-06 15:25:48 +02:00
# Set memory encryption mask
gEfiMdeModulePkgTokenSpaceGuid.PcdPteMemoryEncryptionAddressOrMask|0x0
!if $(SMM_REQUIRE) == TRUE
gUefiOvmfPkgTokenSpaceGuid.PcdQ35TsegMbytes|8
gUefiOvmfPkgTokenSpaceGuid.PcdQ35SmramAtDefaultSmbase|FALSE
gUefiCpuPkgTokenSpaceGuid.PcdCpuSmmSyncMode|0x01
gUefiCpuPkgTokenSpaceGuid.PcdCpuSmmApSyncTimeout|100000
!endif
gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy|0x00
!if $(TPM_ENABLE) == TRUE
gEfiSecurityPkgTokenSpaceGuid.PcdTpmInstanceGuid|{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}
!endif
OvmfPkg: control PXEv4 / PXEv6 boot support from the QEMU command line Add a minimal, NULL class library called "PxeBcPcdProducerLib" for setting the "PcdIPv4PXESupport" and "PcdIPv6PXESupport" PCDs of NetworkPkg, from fw_cfg. These PCDs control whether the UefiPxeBcDxe driver supports PXEv4 / PXEv6 boot. If a PXE version is disabled, the corresponding LoadFile protocol instance is not produced by UefiPxeBcDxe, and so EfiBootManagerRefreshAllBootOption() in UefiBootManagerLib does not generate corresponding *new* boot options either. (Existent boot options are not deleted.) Hook the library into the UefiPxeBcDxe driver. (The driver is already included from "NetworkComponents.dsc.inc", but we can list it again in the DSC file, for providing <LibraryClasses> overrides.) In OVMF, the PCDs could be set in PlatformPei too, but ArmVirtQemu does not have fw_cfg access in the PEI phase. Hence a NULL class library that can be linked into UefiPxeBcDxe. When listing the PCDs under [PcdsDynamicDefault], stick with the DEC default values. QEMU switches: -fw_cfg name=opt/org.tianocore/IPv4PXESupport,string=[yn] -fw_cfg name=opt/org.tianocore/IPv6PXESupport,string=[yn] The "opt/org.tianocore" prefix follows the "opt/RFQDN/" recommendation from QEMU's "docs/specs/fw_cfg.txt". Cc: Ard Biesheuvel <ard.biesheuvel@arm.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Per Sundstrom <per_sundstrom@yahoo.com> Cc: Philippe Mathieu-Daudé <philmd@redhat.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2681 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20200424075353.8489-6-lersek@redhat.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@arm.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
2020-04-24 09:53:51 +02:00
[PcdsDynamicDefault.X64]
# IPv4 and IPv6 PXE Boot support.
gEfiNetworkPkgTokenSpaceGuid.PcdIPv4PXESupport|0x01
gEfiNetworkPkgTokenSpaceGuid.PcdIPv6PXESupport|0x01
[PcdsDynamicHii]
!if $(TPM_ENABLE) == TRUE && $(TPM_CONFIG_ENABLE) == TRUE
gEfiSecurityPkgTokenSpaceGuid.PcdTcgPhysicalPresenceInterfaceVer|L"TCG2_VERSION"|gTcg2ConfigFormSetGuid|0x0|"1.3"|NV,BS
gEfiSecurityPkgTokenSpaceGuid.PcdTpm2AcpiTableRev|L"TCG2_VERSION"|gTcg2ConfigFormSetGuid|0x8|3|NV,BS
!endif
################################################################################
#
# Components Section - list of all EDK II Modules needed by this Platform.
#
################################################################################
[Components.IA32]
OvmfPkg/ResetVector/ResetVector.inf
#
# SEC Phase modules
#
OvmfPkg/Sec/SecMain.inf {
<LibraryClasses>
NULL|MdeModulePkg/Library/LzmaCustomDecompressLib/LzmaCustomDecompressLib.inf
}
#
# PEI Phase modules
#
MdeModulePkg/Core/Pei/PeiMain.inf
MdeModulePkg/Universal/PCD/Pei/Pcd.inf {
<LibraryClasses>
PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf
}
MdeModulePkg/Universal/ReportStatusCodeRouter/Pei/ReportStatusCodeRouterPei.inf {
<LibraryClasses>
PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf
}
MdeModulePkg/Universal/StatusCodeHandler/Pei/StatusCodeHandlerPei.inf {
<LibraryClasses>
PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf
}
MdeModulePkg/Core/DxeIplPeim/DxeIpl.inf
OvmfPkg/PlatformPei/PlatformPei.inf
UefiCpuPkg/Universal/Acpi/S3Resume2Pei/S3Resume2Pei.inf {
<LibraryClasses>
OvmfPkg: LockBox: use SMM stack with -D SMM_REQUIRE During DXE, drivers save data in the LockBox. A save operation is layered as follows: - The unprivileged driver wishing to store data in the LockBox links against the "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxDxeLib.inf" library instance. The library allows the unprivileged driver to format requests for the privileged SMM LockBox driver (see below), and to parse responses. We apply this resolution for DXE_DRIVER modules. - The privileged SMM LockBox driver is built from "MdeModulePkg/Universal/LockBox/SmmLockBox/SmmLockBox.inf". This driver has module type DXE_SMM_DRIVER and can access SMRAM. The driver delegates command parsing and response formatting to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxSmmLib.inf". Therefore we include this DXE_SMM_DRIVER in the build, and apply said resolution specifically to it. (Including the driver requires us to resolve a few of other library classes for DXE_SMM_DRIVER modules.) - In PEI, the S3 Resume PEIM (UefiCpuPkg/Universal/Acpi/S3Resume2Pei) retrieves data from the LockBox. It is capable of searching SMRAM itself. We resolve LockBoxLib to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxPeiLib.inf" specifically for this one PEIM. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19048 6f19259b-4bc3-4df7-8a09-765794883524
2015-11-30 19:42:15 +01:00
!if $(SMM_REQUIRE) == TRUE
LockBoxLib|MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxPeiLib.inf
!endif
}
OvmfPkg: add PEIM for providing TSEG-as-SMRAM during PEI "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxPeiLib.inf" is the LockBoxLib instance with SMRAM access for the PEI phase. Said library instance must, and can, access the LockBox data in SMRAM directly if it is invoked before SMBASE relocation / SMI handler installation. In that case, it only needs PEI_SMM_ACCESS_PPI from the platform, and it doesn't depend on EFI_PEI_SMM_COMMUNICATION_PPI. OVMF satisfies the description in SVN r18823 ("MdeModulePkg: SmmLockBoxPeiLib: work without EFI_PEI_SMM_COMMUNICATION_PPI"): in OVMF, only S3Resume2Pei links against SmmLockBoxPeiLib. Therefore, introduce a PEIM that produces the PEI_SMM_ACCESS_PPI interface, enabling SmmLockBoxPeiLib to work; we can omit including "UefiCpuPkg/PiSmmCommunication/PiSmmCommunicationPei.inf". The load / installation order of S3Resume2Pei and SmmAccessPei is indifferent. SmmAccessPei produces the gEfiAcpiVariableGuid HOB during its installation (which happens during PEI), but S3Resume2Pei accesses the HOB only when the DXE IPL calls its S3RestoreConfig2 PPI member, as last act of PEI. MCH_SMRAM_D_LCK and MCH_ESMRAMC_T_EN are masked out the way they are, in SmmAccessPeiEntryPoint() and SmramAccessOpen() respectively, in order to prevent VS20xx from warning about the (otherwise fully intentional) truncation in the UINT8 casts. (Warnings reported by Michael Kinney.) Cc: Michael Kinney <michael.d.kinney@intel.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Michael Kinney <michael.d.kinney@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19040 6f19259b-4bc3-4df7-8a09-765794883524
2015-11-30 19:41:38 +01:00
!if $(SMM_REQUIRE) == TRUE
OvmfPkg: include FaultTolerantWritePei and VariablePei with -D SMM_REQUIRE FaultTolerantWritePei consumes: - PcdFlashNvStorageFtwWorkingBase, - PcdFlashNvStorageFtwSpareBase. VariablePei consumes: - PcdFlashNvStorageVariableBase64. Due to the previous patches in this series, the above PCDs are available in the PEI phase, in the SMM_REQUIRE build. FaultTolerantWritePei produces a GUID-ed HOB with FAULT_TOLERANT_WRITE_LAST_WRITE_DATA as contents. It also installs a Null PPI that carries the same gEdkiiFaultTolerantWriteGuid as the HOB. VariablePei depends on the Null PPI mentioned above with a DEPEX, consumes the HOB (which is safe due to the DEPEX), and produces EFI_PEI_READ_ONLY_VARIABLE2_PPI. This enables read-only access to non-volatile UEFI variables in the PEI phase, in the SMM_REQUIRE build. For now, the DxeLoadCore() function in "MdeModulePkg/Core/DxeIplPeim/DxeLoad.c" will not access the "MemoryTypeInformation" variable, because OVMF's PlatformPei always produces the MemoryTypeInformation HOB. (Note: when the boot mode is BOOT_ON_S3_RESUME, PlatformPei doesn't build the HOB, but that's in sync with DxeLoadCore() also not looking for either the HOB or the UEFI variable.) Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Philippe Mathieu-Daudé <philmd@redhat.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=386 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20200310222739.26717-5-lersek@redhat.com> Acked-by: Leif Lindholm <leif@nuviainc.com>
2020-03-10 23:27:38 +01:00
MdeModulePkg/Universal/FaultTolerantWritePei/FaultTolerantWritePei.inf
MdeModulePkg/Universal/Variable/Pei/VariablePei.inf
OvmfPkg/SmmAccess/SmmAccessPei.inf
OvmfPkg: add PEIM for providing TSEG-as-SMRAM during PEI "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxPeiLib.inf" is the LockBoxLib instance with SMRAM access for the PEI phase. Said library instance must, and can, access the LockBox data in SMRAM directly if it is invoked before SMBASE relocation / SMI handler installation. In that case, it only needs PEI_SMM_ACCESS_PPI from the platform, and it doesn't depend on EFI_PEI_SMM_COMMUNICATION_PPI. OVMF satisfies the description in SVN r18823 ("MdeModulePkg: SmmLockBoxPeiLib: work without EFI_PEI_SMM_COMMUNICATION_PPI"): in OVMF, only S3Resume2Pei links against SmmLockBoxPeiLib. Therefore, introduce a PEIM that produces the PEI_SMM_ACCESS_PPI interface, enabling SmmLockBoxPeiLib to work; we can omit including "UefiCpuPkg/PiSmmCommunication/PiSmmCommunicationPei.inf". The load / installation order of S3Resume2Pei and SmmAccessPei is indifferent. SmmAccessPei produces the gEfiAcpiVariableGuid HOB during its installation (which happens during PEI), but S3Resume2Pei accesses the HOB only when the DXE IPL calls its S3RestoreConfig2 PPI member, as last act of PEI. MCH_SMRAM_D_LCK and MCH_ESMRAMC_T_EN are masked out the way they are, in SmmAccessPeiEntryPoint() and SmramAccessOpen() respectively, in order to prevent VS20xx from warning about the (otherwise fully intentional) truncation in the UINT8 casts. (Warnings reported by Michael Kinney.) Cc: Michael Kinney <michael.d.kinney@intel.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Michael Kinney <michael.d.kinney@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19040 6f19259b-4bc3-4df7-8a09-765794883524
2015-11-30 19:41:38 +01:00
!endif
UefiCpuPkg/CpuMpPei/CpuMpPei.inf
!if $(TPM_ENABLE) == TRUE
OvmfPkg/Tcg/Tcg2Config/Tcg2ConfigPei.inf
SecurityPkg/Tcg/TcgPei/TcgPei.inf
SecurityPkg/Tcg/Tcg2Pei/Tcg2Pei.inf {
<LibraryClasses>
HashLib|SecurityPkg/Library/HashLibBaseCryptoRouter/HashLibBaseCryptoRouterPei.inf
NULL|SecurityPkg/Library/HashInstanceLibSha1/HashInstanceLibSha1.inf
NULL|SecurityPkg/Library/HashInstanceLibSha256/HashInstanceLibSha256.inf
NULL|SecurityPkg/Library/HashInstanceLibSha384/HashInstanceLibSha384.inf
NULL|SecurityPkg/Library/HashInstanceLibSha512/HashInstanceLibSha512.inf
NULL|SecurityPkg/Library/HashInstanceLibSm3/HashInstanceLibSm3.inf
}
!endif
[Components.X64]
#
# DXE Phase modules
#
MdeModulePkg/Core/Dxe/DxeMain.inf {
<LibraryClasses>
NULL|MdeModulePkg/Library/LzmaCustomDecompressLib/LzmaCustomDecompressLib.inf
DevicePathLib|MdePkg/Library/UefiDevicePathLib/UefiDevicePathLib.inf
}
OvmfPkg: use StatusCode Router and Handler from MdeModulePkg In the Platform Init v1.4a spec, - Volume 1 "4.7 Status Code Service" defines the EFI_PEI_SERVICES.ReportStatusCode() service, - Volume 1 "6.3.5 Status Code PPI (Optional)" defines the EFI_PEI_PROGRESS_CODE_PPI (equivalent to the above), - Volume 2 "14.2 Status Code Runtime Protocol" defines the EFI_STATUS_CODE_PROTOCOL. These allow PEIMs and DXE (and later) modules to report status codes. Currently OvmfPkg uses modules from under "IntelFrameworkModulePkg/Universal/StatusCode/", which produce the above abstractions (PPI and PROTOCOL) directly, and write the status codes, as they are reported, to the serial port or to a memory buffer. This is called "handling" the status codes. In the Platform Init v1.4a spec, - Volume 3 "7.2.2 Report Status Code Handler PPI" defines EFI_PEI_RSC_HANDLER_PPI, - Volume 3 "7.2.1 Report Status Code Handler Protocol" defines EFI_RSC_HANDLER_PROTOCOL. These allow several PEIMs and runtime DXE drivers to register callbacks for status code handling. MdeModulePkg offers a PEIM under "MdeModulePkg/Universal/ReportStatusCodeRouter/Pei" that produces both EFI_PEI_PROGRESS_CODE_PPI and EFI_PEI_RSC_HANDLER_PPI, and a runtime DXE driver under "MdeModulePkg/Universal/ReportStatusCodeRouter/RuntimeDxe" that produces both EFI_STATUS_CODE_PROTOCOL and EFI_RSC_HANDLER_PROTOCOL. MdeModulePkg also offers status code handler modules under MdeModulePkg/Universal/StatusCodeHandler/ that depend on EFI_PEI_RSC_HANDLER_PPI and EFI_RSC_HANDLER_PROTOCOL, respectively. The StatusCodeHandler modules register themselves with ReportStatusCodeRouter through EFI_PEI_RSC_HANDLER_PPI / EFI_RSC_HANDLER_PROTOCOL. When another module reports a status code through EFI_PEI_PROGRESS_CODE_PPI / EFI_STATUS_CODE_PROTOCOL, it reaches the phase-matching ReportStatusCodeRouter module first, which in turn passes the status code to the pre-registered, phase-matching StatusCodeHandler module. The status code handling in the StatusCodeHandler modules is identical to the one currently provided by the IntelFrameworkModulePkg modules. Replace the IntelFrameworkModulePkg modules with the MdeModulePkg ones, so we can decrease our dependency on IntelFrameworkModulePkg. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Cinnamon Shia <cinnamon.shia@hpe.com> Suggested-by: Liming Gao <liming.gao@intel.com> Fixes: https://tianocore.acgmultimedia.com/show_bug.cgi?id=63 [jordan.l.justen@intel.com: point out IntelFareworkModulePkg typos] Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> [lersek@redhat.com: rewrap to 74 cols; fix IntelFareworkModulePkg typos] Reviewed-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
2016-08-02 19:25:10 +02:00
MdeModulePkg/Universal/ReportStatusCodeRouter/RuntimeDxe/ReportStatusCodeRouterRuntimeDxe.inf
MdeModulePkg/Universal/StatusCodeHandler/RuntimeDxe/StatusCodeHandlerRuntimeDxe.inf
MdeModulePkg/Universal/PCD/Dxe/Pcd.inf {
<LibraryClasses>
PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf
}
MdeModulePkg/Core/RuntimeDxe/RuntimeDxe.inf
MdeModulePkg/Universal/SecurityStubDxe/SecurityStubDxe.inf {
<LibraryClasses>
!if $(SECURE_BOOT_ENABLE) == TRUE
NULL|SecurityPkg/Library/DxeImageVerificationLib/DxeImageVerificationLib.inf
OvmfPkg: plug DxeTpm2MeasureBootLib into SecurityStubDxe The library registers a security management handler, to measure images that are not measure in PEI phase. For example with the qemu PXE rom: Loading driver at 0x0003E6C2000 EntryPoint=0x0003E6C9076 8086100e.efi And the following binary_bios_measurements log entry seems to be added: PCR: 2 type: EV_EFI_BOOT_SERVICES_DRIVER size: 0x4e digest: 70a22475e9f18806d2ed9193b48d80d26779d9a4 The following order of operations ensures that 3rd party UEFI modules, such as PCI option ROMs and other modules possibly loaded from outside of firmware volumes, are measured into the TPM: (1) Tcg2Dxe is included in DXEFV, therefore it produces the TCG2 protocol sometime in the DXE phase (assuming a TPM2 chip is present, reported via PcdTpmInstanceGuid). (2) The DXE core finds that no more drivers are left to dispatch from DXEFV, and we enter the BDS phase. (3) OVMF's PlatformBootManagerLib connects all PCI root bridges non-recursively, producing PciIo instances and discovering PCI oproms. (4) The dispatching of images that don't originate from FVs is deferred at this point, by "MdeModulePkg/Universal/SecurityStubDxe/Defer3rdPartyImageLoad.c". (5) OVMF's PlatformBootManagerLib signals EndOfDxe. (6) OVMF's PlatformBootManagerLib calls EfiBootManagerDispatchDeferredImages() -- the images deferred in step (4) are now dispatched. (7) Image dispatch invokes the Security / Security2 Arch protocols (produced by SecurityStubDxe). In this patch, we hook DxeTpm2MeasureBootLib into SecurityStubDxe, therefore image dispatch will try to locate the TCG2 protocol, and measure the image into the TPM2 chip with the protocol. Because of step (1), the TCG2 protocol will always be found and used (assuming a TPM2 chip is present). Cc: Laszlo Ersek <lersek@redhat.com> Cc: Stefan Berger <stefanb@linux.vnet.ibm.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2018-02-22 19:10:03 +01:00
!endif
!if $(TPM_ENABLE) == TRUE
NULL|SecurityPkg/Library/DxeTpmMeasureBootLib/DxeTpmMeasureBootLib.inf
OvmfPkg: plug DxeTpm2MeasureBootLib into SecurityStubDxe The library registers a security management handler, to measure images that are not measure in PEI phase. For example with the qemu PXE rom: Loading driver at 0x0003E6C2000 EntryPoint=0x0003E6C9076 8086100e.efi And the following binary_bios_measurements log entry seems to be added: PCR: 2 type: EV_EFI_BOOT_SERVICES_DRIVER size: 0x4e digest: 70a22475e9f18806d2ed9193b48d80d26779d9a4 The following order of operations ensures that 3rd party UEFI modules, such as PCI option ROMs and other modules possibly loaded from outside of firmware volumes, are measured into the TPM: (1) Tcg2Dxe is included in DXEFV, therefore it produces the TCG2 protocol sometime in the DXE phase (assuming a TPM2 chip is present, reported via PcdTpmInstanceGuid). (2) The DXE core finds that no more drivers are left to dispatch from DXEFV, and we enter the BDS phase. (3) OVMF's PlatformBootManagerLib connects all PCI root bridges non-recursively, producing PciIo instances and discovering PCI oproms. (4) The dispatching of images that don't originate from FVs is deferred at this point, by "MdeModulePkg/Universal/SecurityStubDxe/Defer3rdPartyImageLoad.c". (5) OVMF's PlatformBootManagerLib signals EndOfDxe. (6) OVMF's PlatformBootManagerLib calls EfiBootManagerDispatchDeferredImages() -- the images deferred in step (4) are now dispatched. (7) Image dispatch invokes the Security / Security2 Arch protocols (produced by SecurityStubDxe). In this patch, we hook DxeTpm2MeasureBootLib into SecurityStubDxe, therefore image dispatch will try to locate the TCG2 protocol, and measure the image into the TPM2 chip with the protocol. Because of step (1), the TCG2 protocol will always be found and used (assuming a TPM2 chip is present). Cc: Laszlo Ersek <lersek@redhat.com> Cc: Stefan Berger <stefanb@linux.vnet.ibm.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2018-02-22 19:10:03 +01:00
NULL|SecurityPkg/Library/DxeTpm2MeasureBootLib/DxeTpm2MeasureBootLib.inf
!endif
}
MdeModulePkg/Universal/EbcDxe/EbcDxe.inf
OvmfPkg/8259InterruptControllerDxe/8259.inf
UefiCpuPkg/CpuIo2Dxe/CpuIo2Dxe.inf
UefiCpuPkg/CpuDxe/CpuDxe.inf
OvmfPkg/8254TimerDxe/8254Timer.inf
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
OvmfPkg/IncompatiblePciDeviceSupportDxe/IncompatiblePciDeviceSupport.inf
OvmfPkg: add PciHotPlugInitDxe After IncompatiblePciDeviceSupportDxe, this is another small driver / protocol implementation that tweaks the behavior of the PCI bus driver in edk2. The protocol is specified in the Platform Init Spec v1.4a, Volume 5, Chapter 12.6 "PCI Hot Plug PCI Initialization Protocol". This implementation steers the PCI bus driver to reserve the following resources ("padding") for each PCI bus, in addition to the BARs of the devices on that PCI bus: - 2MB of 64-bit non-prefetchable MMIO aperture, - 512B of IO port space. The goal is to reserve room for devices hot-plugged at runtime even if the bridge receiving the device is empty at boot time. The 2MB MMIO size is inspired by SeaBIOS. The 512B IO port size is actually only 1/8th of the PCI spec mandated reservation, but the specified size of 4096 has proved wasteful (given the limited size of our IO port space -- see commit bba734ab4c7c). Especially on Q35, where every PCIe root port and downstream port qualifies as a separate bridge (capable of accepting a single device). Test results for this patch: - regardless of our request for 64-bit MMIO reservation, it is downgraded to 32-bit, - although we request 512B alignment for the IO port space reservation, the next upstream bridge rounds it up to 4096B. Cc: "Johnson, Brian J." <bjohnson@sgi.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Andrew Fish <afish@apple.com> Cc: Feng Tian <feng.tian@intel.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Marcel Apfelbaum <marcel@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Cc: Star Zeng <star.zeng@intel.com> Suggested-by: Andrew Fish <afish@apple.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Acked-by: Jordan Justen <jordan.l.justen@intel.com> Reviewed-by: Ruiyu Ni <Ruiyu.ni@intel.com>
2016-06-30 20:16:06 +02:00
OvmfPkg/PciHotPlugInitDxe/PciHotPlugInit.inf
MdeModulePkg/Bus/Pci/PciHostBridgeDxe/PciHostBridgeDxe.inf {
<LibraryClasses>
PciHostBridgeLib|OvmfPkg/Library/PciHostBridgeLib/PciHostBridgeLib.inf
NULL|OvmfPkg/Library/PlatformHasIoMmuLib/PlatformHasIoMmuLib.inf
}
MdeModulePkg/Bus/Pci/PciBusDxe/PciBusDxe.inf {
<LibraryClasses>
PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf
}
MdeModulePkg/Universal/ResetSystemRuntimeDxe/ResetSystemRuntimeDxe.inf
OvmfPkg: AcpiTimerLib: Split into multiple phase-specific instances Remove local power management register access macros in favor of factored-out ones in OvmfPkg/Include/OvmfPlatforms.h Next, AcpiTimerLib is split out into three instances, for use during various stages: - BaseRom: used during SEC, PEI_CORE, and PEIM; - Dxe: used during DXE_DRIVER and DXE_RUNTIME_DRIVER; - Base: used by default during all other stages. Most of the code remains in AcpiTimerLib.c, to be shared by all instances. The two platform-dependent methods (constructor and InternalAcpiGetTimerTick) are provided separately by source files specific to each instance, namely [BaseRom|Base|Dxe]AcpiTimerLib.c. Since pre-DXE stages can't rely on storing data in global variables, methods specific to the "BaseRom" instance will call platform detection macros each time they're invoked. The "Base" instance calls platform detection macros only from its constructor, and caches the address required by InternalAcpiTimerTick in a global variable. The "Dxe" instance is very similar to "Base", except no platform detection macros are called at all; instead, the platform type is read via a dynamic PCD set from PlatformPei. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Reviewed-by: Gerd Hoffmann <kraxel@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16376 6f19259b-4bc3-4df7-8a09-765794883524
2014-11-14 01:38:17 +01:00
MdeModulePkg/Universal/Metronome/Metronome.inf
PcAtChipsetPkg/PcatRealTimeClockRuntimeDxe/PcatRealTimeClockRuntimeDxe.inf
MdeModulePkg/Universal/DriverHealthManagerDxe/DriverHealthManagerDxe.inf
MdeModulePkg/Universal/BdsDxe/BdsDxe.inf {
<LibraryClasses>
!ifdef $(CSM_ENABLE)
NULL|OvmfPkg/Csm/CsmSupportLib/CsmSupportLib.inf
NULL|OvmfPkg/Csm/LegacyBootManagerLib/LegacyBootManagerLib.inf
!endif
}
MdeModulePkg/Logo/LogoDxe.inf
MdeModulePkg/Application/UiApp/UiApp.inf {
<LibraryClasses>
NULL|MdeModulePkg/Library/DeviceManagerUiLib/DeviceManagerUiLib.inf
NULL|MdeModulePkg/Library/BootManagerUiLib/BootManagerUiLib.inf
NULL|MdeModulePkg/Library/BootMaintenanceManagerUiLib/BootMaintenanceManagerUiLib.inf
!ifdef $(CSM_ENABLE)
NULL|OvmfPkg/Csm/LegacyBootManagerLib/LegacyBootManagerLib.inf
NULL|OvmfPkg/Csm/LegacyBootMaintUiLib/LegacyBootMaintUiLib.inf
!endif
}
OvmfPkg/QemuKernelLoaderFsDxe/QemuKernelLoaderFsDxe.inf
OvmfPkg: Make the VirtIo devices use the new VIRTIO_DEVICE_PROTOCOL This change replaces the accesses to the PCI bus from the Block, Scsi and Net drivers by the use of the new VIRTIO_DEVICE_PROTOCOL protocol that abstracts the transport layer. It means these drivers can be used on PCI and MMIO transport layer. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Olivier Martin <olivier.martin@arm.com> v5: - VirtioFlush(): update comment block in VirtioLib.[hc]; error code is propagated from VirtIo->SetQueueNotify(). - VirtioBlkInit(): jump to Failed label if SetPageSize() fails - VirtioBlkInit(): fixup comment, and add error handling, near SetQueueNum() call - VirtioBlkDriverBindingStart(): remove redundant (always false) check for a subsystem device ID different from VIRTIO_SUBSYSTEM_BLOCK_DEVICE; VirtioBlkDriverBindingSupported() handles it already - VirtioNetGetFeatures(): update stale comment block - VirtioNetGetFeatures(): retrieve MAC address byte for byte (open-coded loop) - VirtioNetDriverBindingStart(): remove redundant (always false) check for a subsystem device ID different from VIRTIO_SUBSYSTEM_NETWORK_CARD; VirtioNetDriverBindingSupported() handles it already - VirtioNetInitRing(): call SetQueueNum() and SetQueueAlign() for proper MMIO operation - VirtioNetInitialize(): fix destination error label for when SetPageSize() fails - VirtioScsi.c: fix comment block of VIRTIO_CFG_WRITE()/VIRTIO_CFG_READ() - VirtioScsiInit(): fix destination error label for when SetPageSize() fails - VirtioScsiInit(): call SetQueueNum() and SetQueueAlign() for proper MMIO operation Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14966 6f19259b-4bc3-4df7-8a09-765794883524
2013-12-11 17:58:22 +01:00
OvmfPkg/VirtioPciDeviceDxe/VirtioPciDeviceDxe.inf
OvmfPkg/Virtio10Dxe/Virtio10.inf
OvmfPkg/VirtioBlkDxe/VirtioBlk.inf
OvmfPkg/VirtioScsiDxe/VirtioScsi.inf
OvmfPkg/VirtioRngDxe/VirtioRng.inf
OvmfPkg/XenIoPciDxe/XenIoPciDxe.inf
OvmfPkg/XenBusDxe/XenBusDxe.inf
OvmfPkg/XenPvBlkDxe/XenPvBlkDxe.inf
!if $(PVSCSI_ENABLE) == TRUE
OvmfPkg/PvScsiDxe/PvScsiDxe.inf
!endif
!if $(MPT_SCSI_ENABLE) == TRUE
OvmfPkg/MptScsiDxe/MptScsiDxe.inf
!endif
!if $(LSI_SCSI_ENABLE) == TRUE
OvmfPkg/LsiScsiDxe/LsiScsiDxe.inf
!endif
MdeModulePkg/Universal/WatchdogTimerDxe/WatchdogTimer.inf
MdeModulePkg/Universal/MonotonicCounterRuntimeDxe/MonotonicCounterRuntimeDxe.inf
MdeModulePkg/Universal/CapsuleRuntimeDxe/CapsuleRuntimeDxe.inf
MdeModulePkg/Universal/Console/ConPlatformDxe/ConPlatformDxe.inf
MdeModulePkg/Universal/Console/ConSplitterDxe/ConSplitterDxe.inf
MdeModulePkg/Universal/Console/GraphicsConsoleDxe/GraphicsConsoleDxe.inf {
<LibraryClasses>
PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf
}
MdeModulePkg/Universal/Console/TerminalDxe/TerminalDxe.inf
MdeModulePkg/Universal/DevicePathDxe/DevicePathDxe.inf {
<LibraryClasses>
DevicePathLib|MdePkg/Library/UefiDevicePathLib/UefiDevicePathLib.inf
PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf
}
MdeModulePkg/Universal/PrintDxe/PrintDxe.inf
MdeModulePkg/Universal/Disk/DiskIoDxe/DiskIoDxe.inf
MdeModulePkg/Universal/Disk/PartitionDxe/PartitionDxe.inf
MdeModulePkg/Universal/Disk/RamDiskDxe/RamDiskDxe.inf
MdeModulePkg/Universal/Disk/UnicodeCollation/EnglishDxe/EnglishDxe.inf
FatPkg/EnhancedFatDxe/Fat.inf
MdeModulePkg/Universal/Disk/UdfDxe/UdfDxe.inf
MdeModulePkg/Bus/Scsi/ScsiBusDxe/ScsiBusDxe.inf
MdeModulePkg/Bus/Scsi/ScsiDiskDxe/ScsiDiskDxe.inf
OvmfPkg: enable SATA controller In this patch, we replace the traditional IDE driver stack that comes from PcAtChipsetPkg and IntelFrameworkModulePkg with more featureful drivers from OvmfPkg and MdeModulePkg. The resultant driver stack is compatible with the previous one, but provides more protocols, on more kinds of virtual hardware. Remove: - PcAtChipsetPkg/Bus/Pci/IdeControllerDxe/IdeControllerDxe.inf (removing EFI_IDE_CONTROLLER_INIT_PROTOCOL [1]) Remove the dependent: - IntelFrameworkModulePkg/Bus/Pci/IdeBusDxe/IdeBusDxe.inf (removing EFI_DISK_INFO_PROTOCOL [2], EFI_BLOCK_IO_PROTOCOL [3]) As replacement, add: - OvmfPkg/SataControllerDxe/SataControllerDxe.inf (supplying EFI_IDE_CONTROLLER_INIT_PROTOCOL [1]) On top of which, add the dependent: - MdeModulePkg/Bus/Ata/AtaAtapiPassThru/AtaAtapiPassThru.inf (providing EFI_ATA_PASS_THRU_PROTOCOL, EFI_EXT_SCSI_PASS_THRU_PROTOCOL) On top of which, add the dependent: - MdeModulePkg/Bus/Ata/AtaBusDxe/AtaBusDxe.inf (supplying EFI_DISK_INFO_PROTOCOL [2], EFI_BLOCK_IO_PROTOCOL [3], providing EFI_BLOCK_IO2PROTOCOL, EFI_STORAGE_SECURITY_COMMAND_PROTOCOL) Cc: Alexander Graf <agraf@suse.de> Cc: Reza Jelveh <reza.jelveh@tuhh.de> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Hannes Reinecke <hare@suse.de> Cc: Gabriel L. Somlo <somlo@cmu.edu> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Reza Jelveh <reza.jelveh@tuhh.de> [lersek@redhat.com: rewrote commit message] Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Tested-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18532 6f19259b-4bc3-4df7-8a09-765794883524
2015-09-22 13:18:45 +02:00
OvmfPkg/SataControllerDxe/SataControllerDxe.inf
MdeModulePkg/Bus/Ata/AtaAtapiPassThru/AtaAtapiPassThru.inf
MdeModulePkg/Bus/Ata/AtaBusDxe/AtaBusDxe.inf
MdeModulePkg/Bus/Pci/NvmExpressDxe/NvmExpressDxe.inf
MdeModulePkg/Universal/HiiDatabaseDxe/HiiDatabaseDxe.inf
MdeModulePkg/Universal/SetupBrowserDxe/SetupBrowserDxe.inf
MdeModulePkg/Universal/DisplayEngineDxe/DisplayEngineDxe.inf
MdeModulePkg/Universal/MemoryTest/NullMemoryTestDxe/NullMemoryTestDxe.inf
!ifndef $(CSM_ENABLE)
OvmfPkg/QemuVideoDxe/QemuVideoDxe.inf
!endif
OvmfPkg/QemuRamfbDxe/QemuRamfbDxe.inf
OvmfPkg/VirtioGpuDxe/VirtioGpu.inf
#
# ISA Support
#
OvmfPkg/SioBusDxe/SioBusDxe.inf
MdeModulePkg/Bus/Pci/PciSioSerialDxe/PciSioSerialDxe.inf
MdeModulePkg/Bus/Isa/Ps2KeyboardDxe/Ps2KeyboardDxe.inf
#
# SMBIOS Support
#
MdeModulePkg/Universal/SmbiosDxe/SmbiosDxe.inf {
<LibraryClasses>
NULL|OvmfPkg/Library/SmbiosVersionLib/DetectSmbiosVersionLib.inf
}
OvmfPkg/SmbiosPlatformDxe/SmbiosPlatformDxe.inf
#
# ACPI Support
#
MdeModulePkg/Universal/Acpi/AcpiTableDxe/AcpiTableDxe.inf
OvmfPkg/AcpiPlatformDxe/AcpiPlatformDxe.inf
OvmfPkg/AcpiTables/AcpiTables.inf
OvmfPkg: S3 Suspend: enable creation/saving of an S3 Boot Script "MdeModulePkg/Universal/Acpi/S3SaveStateDxe/S3SaveStateDxe.inf" produces the EFI_S3_SAVE_STATE_PROTOCOL which allows creation and saving of an S3 Boot Script, to be replayed in PEI during S3 Resume. The script contains opcodes and opcode arguments to configure CPU, PCI and IO resources. S3SaveStateDxe relies on the S3BootScriptLib library. The Null implementation is not useful for actually saving the boot script, we need the PiDxeS3BootScriptLib instance. The PiDxeS3BootScriptLib library instance depends on LockBoxLib, implemented for OVMF in one of the previous patches. PiDxeS3BootScriptLib also depends on SmbusLib. For now we opt for the Null instance of the latter. It means that SMBus commands in the boot script will have no effect when interpreted during S3 Resume. This should be fine for OvmfPkg and QEMU. EFI_S3_SAVE_STATE_PROTOCOL [S3SaveStateDxe] S3BootScriptLib [PiDxeS3BootScriptLib] SmbusLib [BaseSmbusLibNull] LockBoxLib [OvmfPkg/Library/LockBoxLib] When the EFI_DXE_SMM_READY_TO_LOCK_PROTOCOL is installed by any DXE driver (purely as a form of notification), the S3SaveStateDxe driver saves the boot script to EfiACPIMemoryNVS, and links it into the LockBox. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15304 6f19259b-4bc3-4df7-8a09-765794883524
2014-03-04 09:03:50 +01:00
MdeModulePkg/Universal/Acpi/S3SaveStateDxe/S3SaveStateDxe.inf
MdeModulePkg/Universal/Acpi/BootScriptExecutorDxe/BootScriptExecutorDxe.inf
OvmfPkg: Install BGRT ACPI table While debugging OS for ACPI BGRT support (especially on VMs), it is very useful to have the EFI firmware (OVMF in most cases which use Tianocore) to export the ACPI BGRT table. This patch tries to add this support in OvmfPkg. Tested this patch in the following environments: 1. On both RHEL7.3 and Fedora-25 VM guests running on a Fedora-24 Host: - Ensured that the BGRT logo is properly prepared and can be viewed with user-space tools (like 'Gwenview' on KDE, for example): $ file /sys/firmware/acpi/bgrt/image /sys/firmware/acpi/bgrt/image: PC bitmap, Windows 3.x format, 193 x 58 x 24 2. On a Windows-10 VM Guest running on a Fedora-24 Host: - Ensured that the BGRT ACPI table is properly prepared and can be read with freeware tool like FirmwareTablesView: ================================================== Signature : BGRT Firmware Provider : ACPI Length : 56 Revision : 1 Checksum : 129 OEM ID : INTEL OEM Table ID : EDK2 OEM Revision : 0x00000002 Creator ID : 0x20202020 Creator Revision : 0x01000013 Description : ================================================== Note from Laszlo Ersek <lersek@redhat.com>: without the BGRT ACPI table, Windows 8 and Windows 10 first clear the screen, then display a blue, slanted Windows picture above the rotating white boot animation. With the BGRT ACPI table, Windows 8 and Windows 10 don't clear the screen, the blue Windows image is not displayed, and the rotating white boot animation is shown between the firmware's original TianoCore boot splash and (optional) "Start boot option" progress bar. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Bhupesh Sharma <bhsharma@redhat.com> Contributed-under: TianoCore Contribution Agreement 1.0 Reviewed-by: Laszlo Ersek <lersek@redhat.com> Tested-by: Laszlo Ersek <lersek@redhat.com> [lersek@redhat.com: cover effect on Windows 8/10 boot anim. in commit msg] Signed-off-by: Laszlo Ersek <lersek@redhat.com>
2017-01-06 10:47:15 +01:00
MdeModulePkg/Universal/Acpi/BootGraphicsResourceTableDxe/BootGraphicsResourceTableDxe.inf
#
# Network Support
#
!include NetworkPkg/NetworkComponents.dsc.inc
OvmfPkg: control PXEv4 / PXEv6 boot support from the QEMU command line Add a minimal, NULL class library called "PxeBcPcdProducerLib" for setting the "PcdIPv4PXESupport" and "PcdIPv6PXESupport" PCDs of NetworkPkg, from fw_cfg. These PCDs control whether the UefiPxeBcDxe driver supports PXEv4 / PXEv6 boot. If a PXE version is disabled, the corresponding LoadFile protocol instance is not produced by UefiPxeBcDxe, and so EfiBootManagerRefreshAllBootOption() in UefiBootManagerLib does not generate corresponding *new* boot options either. (Existent boot options are not deleted.) Hook the library into the UefiPxeBcDxe driver. (The driver is already included from "NetworkComponents.dsc.inc", but we can list it again in the DSC file, for providing <LibraryClasses> overrides.) In OVMF, the PCDs could be set in PlatformPei too, but ArmVirtQemu does not have fw_cfg access in the PEI phase. Hence a NULL class library that can be linked into UefiPxeBcDxe. When listing the PCDs under [PcdsDynamicDefault], stick with the DEC default values. QEMU switches: -fw_cfg name=opt/org.tianocore/IPv4PXESupport,string=[yn] -fw_cfg name=opt/org.tianocore/IPv6PXESupport,string=[yn] The "opt/org.tianocore" prefix follows the "opt/RFQDN/" recommendation from QEMU's "docs/specs/fw_cfg.txt". Cc: Ard Biesheuvel <ard.biesheuvel@arm.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Per Sundstrom <per_sundstrom@yahoo.com> Cc: Philippe Mathieu-Daudé <philmd@redhat.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2681 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20200424075353.8489-6-lersek@redhat.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@arm.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
2020-04-24 09:53:51 +02:00
NetworkPkg/UefiPxeBcDxe/UefiPxeBcDxe.inf {
<LibraryClasses>
NULL|OvmfPkg/Library/PxeBcPcdProducerLib/PxeBcPcdProducerLib.inf
}
!if $(NETWORK_TLS_ENABLE) == TRUE
OvmfPkg/TlsAuthConfigLib: configure trusted CA certs for HTTPS boot Introduce TlsAuthConfigLib to read the list of trusted CA certificates from fw_cfg and to store it to EFI_TLS_CA_CERTIFICATE_VARIABLE. The fw_cfg file is formatted by the "p11-kit" and "update-ca-trust" utilities on the host side, so that the host settings take effect in guest HTTPS boot as well. QEMU forwards the file intact to the firmware. The contents are sanity-checked by NetworkPkg/HttpDxe code that was added in commit 0fd13678a681. Link TlsAuthConfigLib via NULL resolution into TlsAuthConfigDxe. This sets EFI_TLS_CA_CERTIFICATE_VARIABLE in time for both NetworkPkg/TlsAuthConfigDxe (for possible HII interaction with the user) and for NetworkPkg/HttpDxe (for the effective TLS configuration). The file formatted by "p11-kit" can be large. On a RHEL-7 host, the the Mozilla CA root certificate bundle -- installed with the "ca-certificates" package -- is processed into a 182KB file. Thus, create EFI_TLS_CA_CERTIFICATE_VARIABLE as a volatile & boot-time only variable. Also, in TLS_ENABLE builds, set the cumulative limit for volatile variables (PcdVariableStoreSize) to 512KB, and the individual limit for the same (PcdMaxVolatileVariableSize) to 256KB. Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Gary Ching-Pang Lin <glin@suse.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Gary Lin <glin@suse.com> Tested-by: Gary Lin <glin@suse.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2018-03-28 03:04:06 +02:00
NetworkPkg/TlsAuthConfigDxe/TlsAuthConfigDxe.inf {
<LibraryClasses>
NULL|OvmfPkg/Library/TlsAuthConfigLib/TlsAuthConfigLib.inf
}
!endif
OvmfPkg/VirtioNetDxe/VirtioNet.inf
#
# Usb Support
#
MdeModulePkg/Bus/Pci/UhciDxe/UhciDxe.inf
MdeModulePkg/Bus/Pci/EhciDxe/EhciDxe.inf
MdeModulePkg/Bus/Pci/XhciDxe/XhciDxe.inf
MdeModulePkg/Bus/Usb/UsbBusDxe/UsbBusDxe.inf
MdeModulePkg/Bus/Usb/UsbKbDxe/UsbKbDxe.inf
MdeModulePkg/Bus/Usb/UsbMassStorageDxe/UsbMassStorageDxe.inf
!ifdef $(CSM_ENABLE)
OvmfPkg/Csm/BiosThunk/VideoDxe/VideoDxe.inf {
<LibraryClasses>
PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf
}
OvmfPkg/Csm/LegacyBiosDxe/LegacyBiosDxe.inf
OvmfPkg/Csm/Csm16/Csm16.inf
!endif
!if $(TOOL_CHAIN_TAG) != "XCODE5"
ShellPkg/DynamicCommand/TftpDynamicCommand/TftpDynamicCommand.inf {
<PcdsFixedAtBuild>
gEfiShellPkgTokenSpaceGuid.PcdShellLibAutoInitialize|FALSE
}
OvmfPkg/LinuxInitrdDynamicShellCommand/LinuxInitrdDynamicShellCommand.inf {
<PcdsFixedAtBuild>
gEfiShellPkgTokenSpaceGuid.PcdShellLibAutoInitialize|FALSE
}
!endif
ShellPkg/Application/Shell/Shell.inf {
<LibraryClasses>
ShellCommandLib|ShellPkg/Library/UefiShellCommandLib/UefiShellCommandLib.inf
NULL|ShellPkg/Library/UefiShellLevel2CommandsLib/UefiShellLevel2CommandsLib.inf
NULL|ShellPkg/Library/UefiShellLevel1CommandsLib/UefiShellLevel1CommandsLib.inf
NULL|ShellPkg/Library/UefiShellLevel3CommandsLib/UefiShellLevel3CommandsLib.inf
NULL|ShellPkg/Library/UefiShellDriver1CommandsLib/UefiShellDriver1CommandsLib.inf
NULL|ShellPkg/Library/UefiShellDebug1CommandsLib/UefiShellDebug1CommandsLib.inf
NULL|ShellPkg/Library/UefiShellInstall1CommandsLib/UefiShellInstall1CommandsLib.inf
NULL|ShellPkg/Library/UefiShellNetwork1CommandsLib/UefiShellNetwork1CommandsLib.inf
!if $(NETWORK_IP6_ENABLE) == TRUE
NULL|ShellPkg/Library/UefiShellNetwork2CommandsLib/UefiShellNetwork2CommandsLib.inf
!endif
HandleParsingLib|ShellPkg/Library/UefiHandleParsingLib/UefiHandleParsingLib.inf
PrintLib|MdePkg/Library/BasePrintLib/BasePrintLib.inf
BcfgCommandLib|ShellPkg/Library/UefiShellBcfgCommandLib/UefiShellBcfgCommandLib.inf
<PcdsFixedAtBuild>
gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask|0xFF
gEfiShellPkgTokenSpaceGuid.PcdShellLibAutoInitialize|FALSE
gEfiMdePkgTokenSpaceGuid.PcdUefiLibMaxPrintBufferSize|8000
}
!if $(SECURE_BOOT_ENABLE) == TRUE
OvmfPkg: disable stale fork of SecureBootConfigDxe OvmfPkg forked SecureBootConfigDxe from SecurityPkg in SVN r13635 (git commit 8c71ec8f). Since then, the original (in "SecurityPkg/VariableAuthenticated/SecureBootConfigDxe") has diverged significantly. The initial diff between the original and the fork, when the fork was made (ie. at SVN r13635), reads as follows: > diff -ur SecurityPkg/VariableAuthenticated/SecureBootConfigDxe/SecureBootConfig.vfr OvmfPkg/SecureBootConfigDxe/SecureBootConfig.vfr > --- SecurityPkg/VariableAuthenticated/SecureBootConfigDxe/SecureBootConfig.vfr 2014-09-30 23:35:28.598067147 +0200 > +++ OvmfPkg/SecureBootConfigDxe/SecureBootConfig.vfr 2014-08-09 02:40:35.824851626 +0200 > @@ -51,7 +51,7 @@ > questionid = KEY_SECURE_BOOT_ENABLE, > prompt = STRING_TOKEN(STR_SECURE_BOOT_PROMPT), > help = STRING_TOKEN(STR_SECURE_BOOT_HELP), > - flags = INTERACTIVE | RESET_REQUIRED, > + flags = INTERACTIVE, > endcheckbox; > endif; > > @@ -158,7 +158,7 @@ > questionid = KEY_SECURE_BOOT_DELETE_PK, > prompt = STRING_TOKEN(STR_DELETE_PK), > help = STRING_TOKEN(STR_DELETE_PK_HELP), > - flags = INTERACTIVE | RESET_REQUIRED, > + flags = INTERACTIVE, > endcheckbox; > endif; > endform; > diff -ur SecurityPkg/VariableAuthenticated/SecureBootConfigDxe/SecureBootConfigDxe.inf OvmfPkg/SecureBootConfigDxe/SecureBootConfigDxe.inf > --- SecurityPkg/VariableAuthenticated/SecureBootConfigDxe/SecureBootConfigDxe.inf 2014-09-30 23:35:28.598067147 +0200 > +++ OvmfPkg/SecureBootConfigDxe/SecureBootConfigDxe.inf 2014-09-30 23:35:28.577067027 +0200 > @@ -1,5 +1,8 @@ > ## @file > -# Component name for SecureBoot configuration module. > +# Component name for SecureBoot configuration module for OVMF. > +# > +# Need custom SecureBootConfigDxe for OVMF that does not force > +# resets after PK changes since OVMF doesn't have persistent variables > # > # Copyright (c) 2011 - 2012, Intel Corporation. All rights reserved.<BR> > # This program and the accompanying materials > diff -ur SecurityPkg/VariableAuthenticated/SecureBootConfigDxe/SecureBootConfigImpl.c OvmfPkg/SecureBootConfigDxe/SecureBootConfigImpl.c > --- SecurityPkg/VariableAuthenticated/SecureBootConfigDxe/SecureBootConfigImpl.c 2014-09-30 23:35:28.599067153 +0200 > +++ OvmfPkg/SecureBootConfigDxe/SecureBootConfigImpl.c 2014-09-30 23:35:28.578067033 +0200 > @@ -2559,7 +2559,7 @@ > NULL > ); > } else { > - *ActionRequest = EFI_BROWSER_ACTION_REQUEST_RESET; > + *ActionRequest = EFI_BROWSER_ACTION_REQUEST_SUBMIT; > } > break; The commit message is not overly verbose: OvmfPkg: Add custom SecureBootConfigDxe that doesn't reset We don't force a platform reset for OVMF when PK is changed in custom mode setup. But the INF file hunk is telling: Need custom SecureBootConfigDxe for OVMF that does not force resets after PK changes since OVMF doesn't have persistent variables We do have persistent variables now. Let's disable the (now obsolete) OvmfPkg fork, and revert to the (well maintained) SecurityPkg-provided config driver. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> Tested-by: Gary Lin <glin@suse.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16191 6f19259b-4bc3-4df7-8a09-765794883524
2014-10-02 10:08:05 +02:00
SecurityPkg/VariableAuthenticated/SecureBootConfigDxe/SecureBootConfigDxe.inf
OvmfPkg/EnrollDefaultKeys/EnrollDefaultKeys.inf
!endif
OvmfPkg/PlatformDxe/Platform.inf
OvmfPkg/AmdSevDxe/AmdSevDxe.inf
OvmfPkg/IoMmuDxe/IoMmuDxe.inf
!if $(SMM_REQUIRE) == TRUE
OvmfPkg/SmmAccess/SmmAccess2Dxe.inf
OvmfPkg/SmmControl2Dxe/SmmControl2Dxe.inf
OvmfPkg/CpuS3DataDxe/CpuS3DataDxe.inf
#
# SMM Initial Program Load (a DXE_RUNTIME_DRIVER)
#
MdeModulePkg/Core/PiSmmCore/PiSmmIpl.inf
#
# SMM_CORE
#
MdeModulePkg/Core/PiSmmCore/PiSmmCore.inf
#
# Privileged drivers (DXE_SMM_DRIVER modules)
#
OvmfPkg/CpuHotplugSmm/CpuHotplugSmm.inf
UefiCpuPkg/CpuIo2Smm/CpuIo2Smm.inf
OvmfPkg: LockBox: use SMM stack with -D SMM_REQUIRE During DXE, drivers save data in the LockBox. A save operation is layered as follows: - The unprivileged driver wishing to store data in the LockBox links against the "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxDxeLib.inf" library instance. The library allows the unprivileged driver to format requests for the privileged SMM LockBox driver (see below), and to parse responses. We apply this resolution for DXE_DRIVER modules. - The privileged SMM LockBox driver is built from "MdeModulePkg/Universal/LockBox/SmmLockBox/SmmLockBox.inf". This driver has module type DXE_SMM_DRIVER and can access SMRAM. The driver delegates command parsing and response formatting to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxSmmLib.inf". Therefore we include this DXE_SMM_DRIVER in the build, and apply said resolution specifically to it. (Including the driver requires us to resolve a few of other library classes for DXE_SMM_DRIVER modules.) - In PEI, the S3 Resume PEIM (UefiCpuPkg/Universal/Acpi/S3Resume2Pei) retrieves data from the LockBox. It is capable of searching SMRAM itself. We resolve LockBoxLib to "MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxPeiLib.inf" specifically for this one PEIM. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19048 6f19259b-4bc3-4df7-8a09-765794883524
2015-11-30 19:42:15 +01:00
MdeModulePkg/Universal/LockBox/SmmLockBox/SmmLockBox.inf {
<LibraryClasses>
LockBoxLib|MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxSmmLib.inf
}
UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.inf {
<LibraryClasses>
SmmCpuPlatformHookLib|OvmfPkg/Library/SmmCpuPlatformHookLibQemu/SmmCpuPlatformHookLibQemu.inf
SmmCpuFeaturesLib|OvmfPkg/Library/SmmCpuFeaturesLib/SmmCpuFeaturesLib.inf
}
#
# Variable driver stack (SMM)
#
OvmfPkg/QemuFlashFvbServicesRuntimeDxe/FvbServicesSmm.inf
MdeModulePkg/Universal/FaultTolerantWriteDxe/FaultTolerantWriteSmm.inf
MdeModulePkg/Universal/Variable/RuntimeDxe/VariableSmm.inf {
<LibraryClasses>
NULL|MdeModulePkg/Library/VarCheckUefiLib/VarCheckUefiLib.inf
}
MdeModulePkg/Universal/Variable/RuntimeDxe/VariableSmmRuntimeDxe.inf
!else
#
# Variable driver stack (non-SMM)
#
OvmfPkg/QemuFlashFvbServicesRuntimeDxe/FvbServicesRuntimeDxe.inf
OvmfPkg/EmuVariableFvbRuntimeDxe/Fvb.inf {
<LibraryClasses>
PlatformFvbLib|OvmfPkg/Library/EmuVariableFvbLib/EmuVariableFvbLib.inf
}
MdeModulePkg/Universal/FaultTolerantWriteDxe/FaultTolerantWriteDxe.inf
MdeModulePkg/Universal/Variable/RuntimeDxe/VariableRuntimeDxe.inf {
<LibraryClasses>
NULL|MdeModulePkg/Library/VarCheckUefiLib/VarCheckUefiLib.inf
}
!endif
OvmfPkg: include Tcg2Dxe module This module measures and log the boot environment. It also produces the Tcg2 protocol, which allows for example to read the log from OS. The linux kernel doesn't yet read the EFI_TCG2_EVENT_LOG_FORMAT_TCG_2, which is required for crypto-agile log. In fact, only upcoming 4.16 adds support EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2: [ 0.000000] efi: EFI v2.70 by EDK II [ 0.000000] efi: SMBIOS=0x3fa1f000 ACPI=0x3fbb6000 ACPI 2.0=0x3fbb6014 MEMATTR=0x3e7d4318 TPMEventLog=0x3db21018 $ python chipsec_util.py tpm parse_log binary_bios_measurements [CHIPSEC] Version 1.3.5.dev2 [CHIPSEC] API mode: using OS native API (not using CHIPSEC kernel module) [CHIPSEC] Executing command 'tpm' with args ['parse_log', '/tmp/binary_bios_measurements'] PCR: 0 type: EV_S_CRTM_VERSION size: 0x2 digest: 1489f923c4dca729178b3e3233458550d8dddf29 + version: PCR: 0 type: EV_EFI_PLATFORM_FIRMWARE_BLOB size: 0x10 digest: fd39ced7c0d2a61f6830c78c7625f94826b05bcc + base: 0x820000 length: 0xe0000 PCR: 0 type: EV_EFI_PLATFORM_FIRMWARE_BLOB size: 0x10 digest: 39ebc6783b72bc1e73c7d5bcfeb5f54a3f105d4c + base: 0x900000 length: 0xa00000 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x35 digest: 57cd4dc19442475aa82743484f3b1caa88e142b8 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x24 digest: 9b1387306ebb7ff8e795e7be77563666bbf4516e PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x26 digest: 9afa86c507419b8570c62167cb9486d9fc809758 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x24 digest: 5bf8faa078d40ffbd03317c93398b01229a0e1e0 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x26 digest: 734424c9fe8fc71716c42096f4b74c88733b175e PCR: 7 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x3e digest: 252f8ebb85340290b64f4b06a001742be8e5cab6 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x6e digest: 22a4f6ee9af6dba01d3528deb64b74b582fc182b PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x80 digest: b7811d5bf30a7efd4e385c6179fe10d9290bb9e8 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x84 digest: 425e502c24fc924e231e0a62327b6b7d1f704573 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x9a digest: 0b5d2c98ac5de6148a4a1490ff9d5df69039f04e PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0xbd digest: 20bd5f402271d57a88ea314fe35c1705956b1f74 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x88 digest: df5d6605cb8f4366d745a8464cfb26c1efdc305c PCR: 4 type: EV_EFI_ACTION size: 0x28 digest: cd0fdb4531a6ec41be2753ba042637d6e5f7f256 PCR: 0 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 1 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 2 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 3 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 4 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 5 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 $ tpm2_pcrlist sha1 : 0 : 35bd1786b6909daad610d7598b1d620352d33b8a 1 : ec0511e860206e0af13c31da2f9e943fb6ca353d 2 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 3 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 4 : 45a323382bd933f08e7f0e256bc8249e4095b1ec 5 : d16d7e629fd8d08ca256f9ad3a3a1587c9e6cc1b 6 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 7 : 518bd167271fbb64589c61e43d8c0165861431d8 8 : 0000000000000000000000000000000000000000 9 : 0000000000000000000000000000000000000000 10 : 0000000000000000000000000000000000000000 11 : 0000000000000000000000000000000000000000 12 : 0000000000000000000000000000000000000000 13 : 0000000000000000000000000000000000000000 14 : 0000000000000000000000000000000000000000 15 : 0000000000000000000000000000000000000000 16 : 0000000000000000000000000000000000000000 17 : ffffffffffffffffffffffffffffffffffffffff 18 : ffffffffffffffffffffffffffffffffffffffff 19 : ffffffffffffffffffffffffffffffffffffffff 20 : ffffffffffffffffffffffffffffffffffffffff 21 : ffffffffffffffffffffffffffffffffffffffff 22 : ffffffffffffffffffffffffffffffffffffffff 23 : 0000000000000000000000000000000000000000 sha256 : 0 : 9ae903dbae3357ac00d223660bac19ea5c021499a56201104332ab966631ce2c 1 : acc611d90245cf04e77b0ca94901f90e7fa54770f0426f53c3049b532243d1b8 2 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 3 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 4 : 7a94ffe8a7729a566d3d3c577fcb4b6b1e671f31540375f80eae6382ab785e35 5 : a5ceb755d043f32431d63e39f5161464620a3437280494b5850dc1b47cc074e0 6 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 7 : 65caf8dd1e0ea7a6347b635d2b379c93b9a1351edc2afc3ecda700e534eb3068 8 : 0000000000000000000000000000000000000000000000000000000000000000 9 : 0000000000000000000000000000000000000000000000000000000000000000 10 : 0000000000000000000000000000000000000000000000000000000000000000 11 : 0000000000000000000000000000000000000000000000000000000000000000 12 : 0000000000000000000000000000000000000000000000000000000000000000 13 : 0000000000000000000000000000000000000000000000000000000000000000 14 : 0000000000000000000000000000000000000000000000000000000000000000 15 : 0000000000000000000000000000000000000000000000000000000000000000 16 : 0000000000000000000000000000000000000000000000000000000000000000 17 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 18 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 19 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 20 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 21 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 22 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 23 : 0000000000000000000000000000000000000000000000000000000000000000 sha384 : The PhysicalPresenceLib is required, it sets some variables, but the firmware doesn't act on it yet. Laszlo Ersek explained on the list why Tpm2DeviceLib has to be resolved differently for DXE_DRIVER modules in general and for "Tcg2Dxe.inf" specifically: * We have a library class called Tpm2DeviceLib -- this is basically the set of APIs declared in "SecurityPkg/Include/Library/Tpm2DeviceLib.h". Its leading comment says "This library abstract how to access TPM2 hardware device". There are two *sets* of APIs in "Tpm2DeviceLib.h": (a) functions that deal with the TPM2 device: - Tpm2RequestUseTpm(), - Tpm2SubmitCommand() This set of APIs is supposed to be used by clients that *consume* the TPM2 device abstraction. (b) the function Tpm2RegisterTpm2DeviceLib(), which is supposed to be used by *providers* of various TPM2 device abstractions. * Then, we have two implementations (instances) of the Tpm2DeviceLib class: (1) SecurityPkg/Library/Tpm2DeviceLibTcg2/Tpm2DeviceLibTcg2.inf (2) SecurityPkg/Library/Tpm2DeviceLibRouter/Tpm2DeviceLibRouterDxe.inf (1) The first library instance ("Tpm2DeviceLibTcg2.inf") implements the APIs listed under (a), and it does not implement (b) -- see EFI_UNSUPPORTED. In other words, this lib instance is strictly meant for drivers that *consume* the TPM2 device abstraction. And, the (a) group of APIs is implemented by forwarding the requests to the TCG2 protocol. The idea here is that all the drivers that consume the TPM2 abstraction do not have to be statically linked with a large TPM2 device library instance; instead they are only linked (statically) with this "thin" library instance, and all the actual work is delegated to whichever driver that provides the singleton TCG2 protocol. (2) The second library instance ("Tpm2DeviceLibRouterDxe.inf") is meant for the driver that offers (produces) the TCG2 protocol. This lib instance implements both (a) and (b) API groups. * Here's how things fit together: (i) The "SecurityPkg/Library/Tpm2DeviceLibDTpm/Tpm2InstanceLibDTpm.inf" library instance (which has no lib class) is linked into "Tcg2Dxe.inf" via NULL class resolution. This simply means that before the "Tcg2Dxe.inf" entry point function is entered, the constructor function of "Tpm2InstanceLibDTpm.inf" will be called. (ii) This Tpm2InstanceLibDTpmConstructor() function calls API (b), and registers its own actual TPM2 command implementation with the "Tpm2DeviceLibRouter" library instance (also linked into the Tcg2Dxe driver). This provides the back-end for the API set (a). TCG2 protocol provider (Tcg2Dxe.inf driver) launches | v NULL class: Tpm2InstanceLibDTpm instance construction | v Tpm2DeviceLib class: Tpm2DeviceLibRouter instance backend registration for API set (a) (iii) The Tcg2Dxe driver exposes the TCG2 protocol. (iv) A TPM2 consumer calls API set (a) via lib instance (1). Such calls land in Tcg2Dxe, via the protocol. (v) Tcg2Dxe serves the protocol request by forwarding it to API set (a) from lib instance (2). (vi) Those functions call the "backend" functions registered by Tpm2DeviceLibDTpm in step (ii). TPM 2 consumer driver | v Tpm2DeviceLib class: Tpm2DeviceLibTcg2 instance | v TCG2 protocol interface | v TCG2 protocol provider: Tcg2Dxe.inf driver | v Tpm2DeviceLib class: Tpm2DeviceLibRouter instance | v NULL class: Tpm2InstanceLibDTpm instance (via earlier registration) | v TPM2 chip (actual hardware) * So that is the "router" pattern in edk2. Namely, - Consumers of an abstraction use a thin library instance. - The thin library instance calls a firmware-global (singleton) service, i.e. a PPI (in the PEI phase) or protocol (in the DXE phase). - The PEIM providing the PPI, or the DXE driver providing the protocol, don't themselves implement the actual service either. Instead they offer a "registration" service too, and they only connect the incoming "consumer" calls to the earlier registered back-end(s). - The "registration service", for back-ends to use, may take various forms. It can be exposed globally to the rest of the firmware, as another member function of the PPI / protocol structure. Then backends can be provided by separate PEIMs / DXE drivers. Or else, the registration service can be exposed as just another library API. In this case, the backends are provided as NULL class library instances, and a platform DSC file links them into the PEIM / DXE driver via NULL class resolutions. The backend lib instances call the registration service in their own respective constructor functions. Cc: Laszlo Ersek <lersek@redhat.com> Cc: Stefan Berger <stefanb@linux.vnet.ibm.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2018-02-22 17:53:16 +01:00
#
# TPM support
#
!if $(TPM_ENABLE) == TRUE
OvmfPkg: include Tcg2Dxe module This module measures and log the boot environment. It also produces the Tcg2 protocol, which allows for example to read the log from OS. The linux kernel doesn't yet read the EFI_TCG2_EVENT_LOG_FORMAT_TCG_2, which is required for crypto-agile log. In fact, only upcoming 4.16 adds support EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2: [ 0.000000] efi: EFI v2.70 by EDK II [ 0.000000] efi: SMBIOS=0x3fa1f000 ACPI=0x3fbb6000 ACPI 2.0=0x3fbb6014 MEMATTR=0x3e7d4318 TPMEventLog=0x3db21018 $ python chipsec_util.py tpm parse_log binary_bios_measurements [CHIPSEC] Version 1.3.5.dev2 [CHIPSEC] API mode: using OS native API (not using CHIPSEC kernel module) [CHIPSEC] Executing command 'tpm' with args ['parse_log', '/tmp/binary_bios_measurements'] PCR: 0 type: EV_S_CRTM_VERSION size: 0x2 digest: 1489f923c4dca729178b3e3233458550d8dddf29 + version: PCR: 0 type: EV_EFI_PLATFORM_FIRMWARE_BLOB size: 0x10 digest: fd39ced7c0d2a61f6830c78c7625f94826b05bcc + base: 0x820000 length: 0xe0000 PCR: 0 type: EV_EFI_PLATFORM_FIRMWARE_BLOB size: 0x10 digest: 39ebc6783b72bc1e73c7d5bcfeb5f54a3f105d4c + base: 0x900000 length: 0xa00000 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x35 digest: 57cd4dc19442475aa82743484f3b1caa88e142b8 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x24 digest: 9b1387306ebb7ff8e795e7be77563666bbf4516e PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x26 digest: 9afa86c507419b8570c62167cb9486d9fc809758 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x24 digest: 5bf8faa078d40ffbd03317c93398b01229a0e1e0 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x26 digest: 734424c9fe8fc71716c42096f4b74c88733b175e PCR: 7 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x3e digest: 252f8ebb85340290b64f4b06a001742be8e5cab6 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x6e digest: 22a4f6ee9af6dba01d3528deb64b74b582fc182b PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x80 digest: b7811d5bf30a7efd4e385c6179fe10d9290bb9e8 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x84 digest: 425e502c24fc924e231e0a62327b6b7d1f704573 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x9a digest: 0b5d2c98ac5de6148a4a1490ff9d5df69039f04e PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0xbd digest: 20bd5f402271d57a88ea314fe35c1705956b1f74 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x88 digest: df5d6605cb8f4366d745a8464cfb26c1efdc305c PCR: 4 type: EV_EFI_ACTION size: 0x28 digest: cd0fdb4531a6ec41be2753ba042637d6e5f7f256 PCR: 0 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 1 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 2 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 3 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 4 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 5 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 $ tpm2_pcrlist sha1 : 0 : 35bd1786b6909daad610d7598b1d620352d33b8a 1 : ec0511e860206e0af13c31da2f9e943fb6ca353d 2 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 3 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 4 : 45a323382bd933f08e7f0e256bc8249e4095b1ec 5 : d16d7e629fd8d08ca256f9ad3a3a1587c9e6cc1b 6 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 7 : 518bd167271fbb64589c61e43d8c0165861431d8 8 : 0000000000000000000000000000000000000000 9 : 0000000000000000000000000000000000000000 10 : 0000000000000000000000000000000000000000 11 : 0000000000000000000000000000000000000000 12 : 0000000000000000000000000000000000000000 13 : 0000000000000000000000000000000000000000 14 : 0000000000000000000000000000000000000000 15 : 0000000000000000000000000000000000000000 16 : 0000000000000000000000000000000000000000 17 : ffffffffffffffffffffffffffffffffffffffff 18 : ffffffffffffffffffffffffffffffffffffffff 19 : ffffffffffffffffffffffffffffffffffffffff 20 : ffffffffffffffffffffffffffffffffffffffff 21 : ffffffffffffffffffffffffffffffffffffffff 22 : ffffffffffffffffffffffffffffffffffffffff 23 : 0000000000000000000000000000000000000000 sha256 : 0 : 9ae903dbae3357ac00d223660bac19ea5c021499a56201104332ab966631ce2c 1 : acc611d90245cf04e77b0ca94901f90e7fa54770f0426f53c3049b532243d1b8 2 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 3 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 4 : 7a94ffe8a7729a566d3d3c577fcb4b6b1e671f31540375f80eae6382ab785e35 5 : a5ceb755d043f32431d63e39f5161464620a3437280494b5850dc1b47cc074e0 6 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 7 : 65caf8dd1e0ea7a6347b635d2b379c93b9a1351edc2afc3ecda700e534eb3068 8 : 0000000000000000000000000000000000000000000000000000000000000000 9 : 0000000000000000000000000000000000000000000000000000000000000000 10 : 0000000000000000000000000000000000000000000000000000000000000000 11 : 0000000000000000000000000000000000000000000000000000000000000000 12 : 0000000000000000000000000000000000000000000000000000000000000000 13 : 0000000000000000000000000000000000000000000000000000000000000000 14 : 0000000000000000000000000000000000000000000000000000000000000000 15 : 0000000000000000000000000000000000000000000000000000000000000000 16 : 0000000000000000000000000000000000000000000000000000000000000000 17 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 18 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 19 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 20 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 21 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 22 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 23 : 0000000000000000000000000000000000000000000000000000000000000000 sha384 : The PhysicalPresenceLib is required, it sets some variables, but the firmware doesn't act on it yet. Laszlo Ersek explained on the list why Tpm2DeviceLib has to be resolved differently for DXE_DRIVER modules in general and for "Tcg2Dxe.inf" specifically: * We have a library class called Tpm2DeviceLib -- this is basically the set of APIs declared in "SecurityPkg/Include/Library/Tpm2DeviceLib.h". Its leading comment says "This library abstract how to access TPM2 hardware device". There are two *sets* of APIs in "Tpm2DeviceLib.h": (a) functions that deal with the TPM2 device: - Tpm2RequestUseTpm(), - Tpm2SubmitCommand() This set of APIs is supposed to be used by clients that *consume* the TPM2 device abstraction. (b) the function Tpm2RegisterTpm2DeviceLib(), which is supposed to be used by *providers* of various TPM2 device abstractions. * Then, we have two implementations (instances) of the Tpm2DeviceLib class: (1) SecurityPkg/Library/Tpm2DeviceLibTcg2/Tpm2DeviceLibTcg2.inf (2) SecurityPkg/Library/Tpm2DeviceLibRouter/Tpm2DeviceLibRouterDxe.inf (1) The first library instance ("Tpm2DeviceLibTcg2.inf") implements the APIs listed under (a), and it does not implement (b) -- see EFI_UNSUPPORTED. In other words, this lib instance is strictly meant for drivers that *consume* the TPM2 device abstraction. And, the (a) group of APIs is implemented by forwarding the requests to the TCG2 protocol. The idea here is that all the drivers that consume the TPM2 abstraction do not have to be statically linked with a large TPM2 device library instance; instead they are only linked (statically) with this "thin" library instance, and all the actual work is delegated to whichever driver that provides the singleton TCG2 protocol. (2) The second library instance ("Tpm2DeviceLibRouterDxe.inf") is meant for the driver that offers (produces) the TCG2 protocol. This lib instance implements both (a) and (b) API groups. * Here's how things fit together: (i) The "SecurityPkg/Library/Tpm2DeviceLibDTpm/Tpm2InstanceLibDTpm.inf" library instance (which has no lib class) is linked into "Tcg2Dxe.inf" via NULL class resolution. This simply means that before the "Tcg2Dxe.inf" entry point function is entered, the constructor function of "Tpm2InstanceLibDTpm.inf" will be called. (ii) This Tpm2InstanceLibDTpmConstructor() function calls API (b), and registers its own actual TPM2 command implementation with the "Tpm2DeviceLibRouter" library instance (also linked into the Tcg2Dxe driver). This provides the back-end for the API set (a). TCG2 protocol provider (Tcg2Dxe.inf driver) launches | v NULL class: Tpm2InstanceLibDTpm instance construction | v Tpm2DeviceLib class: Tpm2DeviceLibRouter instance backend registration for API set (a) (iii) The Tcg2Dxe driver exposes the TCG2 protocol. (iv) A TPM2 consumer calls API set (a) via lib instance (1). Such calls land in Tcg2Dxe, via the protocol. (v) Tcg2Dxe serves the protocol request by forwarding it to API set (a) from lib instance (2). (vi) Those functions call the "backend" functions registered by Tpm2DeviceLibDTpm in step (ii). TPM 2 consumer driver | v Tpm2DeviceLib class: Tpm2DeviceLibTcg2 instance | v TCG2 protocol interface | v TCG2 protocol provider: Tcg2Dxe.inf driver | v Tpm2DeviceLib class: Tpm2DeviceLibRouter instance | v NULL class: Tpm2InstanceLibDTpm instance (via earlier registration) | v TPM2 chip (actual hardware) * So that is the "router" pattern in edk2. Namely, - Consumers of an abstraction use a thin library instance. - The thin library instance calls a firmware-global (singleton) service, i.e. a PPI (in the PEI phase) or protocol (in the DXE phase). - The PEIM providing the PPI, or the DXE driver providing the protocol, don't themselves implement the actual service either. Instead they offer a "registration" service too, and they only connect the incoming "consumer" calls to the earlier registered back-end(s). - The "registration service", for back-ends to use, may take various forms. It can be exposed globally to the rest of the firmware, as another member function of the PPI / protocol structure. Then backends can be provided by separate PEIMs / DXE drivers. Or else, the registration service can be exposed as just another library API. In this case, the backends are provided as NULL class library instances, and a platform DSC file links them into the PEIM / DXE driver via NULL class resolutions. The backend lib instances call the registration service in their own respective constructor functions. Cc: Laszlo Ersek <lersek@redhat.com> Cc: Stefan Berger <stefanb@linux.vnet.ibm.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2018-02-22 17:53:16 +01:00
SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.inf {
<LibraryClasses>
Tpm2DeviceLib|SecurityPkg/Library/Tpm2DeviceLibRouter/Tpm2DeviceLibRouterDxe.inf
NULL|SecurityPkg/Library/Tpm2DeviceLibDTpm/Tpm2InstanceLibDTpm.inf
HashLib|SecurityPkg/Library/HashLibBaseCryptoRouter/HashLibBaseCryptoRouterDxe.inf
NULL|SecurityPkg/Library/HashInstanceLibSha1/HashInstanceLibSha1.inf
NULL|SecurityPkg/Library/HashInstanceLibSha256/HashInstanceLibSha256.inf
NULL|SecurityPkg/Library/HashInstanceLibSha384/HashInstanceLibSha384.inf
NULL|SecurityPkg/Library/HashInstanceLibSha512/HashInstanceLibSha512.inf
NULL|SecurityPkg/Library/HashInstanceLibSm3/HashInstanceLibSm3.inf
OvmfPkg: include Tcg2Dxe module This module measures and log the boot environment. It also produces the Tcg2 protocol, which allows for example to read the log from OS. The linux kernel doesn't yet read the EFI_TCG2_EVENT_LOG_FORMAT_TCG_2, which is required for crypto-agile log. In fact, only upcoming 4.16 adds support EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2: [ 0.000000] efi: EFI v2.70 by EDK II [ 0.000000] efi: SMBIOS=0x3fa1f000 ACPI=0x3fbb6000 ACPI 2.0=0x3fbb6014 MEMATTR=0x3e7d4318 TPMEventLog=0x3db21018 $ python chipsec_util.py tpm parse_log binary_bios_measurements [CHIPSEC] Version 1.3.5.dev2 [CHIPSEC] API mode: using OS native API (not using CHIPSEC kernel module) [CHIPSEC] Executing command 'tpm' with args ['parse_log', '/tmp/binary_bios_measurements'] PCR: 0 type: EV_S_CRTM_VERSION size: 0x2 digest: 1489f923c4dca729178b3e3233458550d8dddf29 + version: PCR: 0 type: EV_EFI_PLATFORM_FIRMWARE_BLOB size: 0x10 digest: fd39ced7c0d2a61f6830c78c7625f94826b05bcc + base: 0x820000 length: 0xe0000 PCR: 0 type: EV_EFI_PLATFORM_FIRMWARE_BLOB size: 0x10 digest: 39ebc6783b72bc1e73c7d5bcfeb5f54a3f105d4c + base: 0x900000 length: 0xa00000 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x35 digest: 57cd4dc19442475aa82743484f3b1caa88e142b8 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x24 digest: 9b1387306ebb7ff8e795e7be77563666bbf4516e PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x26 digest: 9afa86c507419b8570c62167cb9486d9fc809758 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x24 digest: 5bf8faa078d40ffbd03317c93398b01229a0e1e0 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x26 digest: 734424c9fe8fc71716c42096f4b74c88733b175e PCR: 7 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x3e digest: 252f8ebb85340290b64f4b06a001742be8e5cab6 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x6e digest: 22a4f6ee9af6dba01d3528deb64b74b582fc182b PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x80 digest: b7811d5bf30a7efd4e385c6179fe10d9290bb9e8 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x84 digest: 425e502c24fc924e231e0a62327b6b7d1f704573 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x9a digest: 0b5d2c98ac5de6148a4a1490ff9d5df69039f04e PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0xbd digest: 20bd5f402271d57a88ea314fe35c1705956b1f74 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x88 digest: df5d6605cb8f4366d745a8464cfb26c1efdc305c PCR: 4 type: EV_EFI_ACTION size: 0x28 digest: cd0fdb4531a6ec41be2753ba042637d6e5f7f256 PCR: 0 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 1 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 2 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 3 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 4 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 5 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 $ tpm2_pcrlist sha1 : 0 : 35bd1786b6909daad610d7598b1d620352d33b8a 1 : ec0511e860206e0af13c31da2f9e943fb6ca353d 2 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 3 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 4 : 45a323382bd933f08e7f0e256bc8249e4095b1ec 5 : d16d7e629fd8d08ca256f9ad3a3a1587c9e6cc1b 6 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 7 : 518bd167271fbb64589c61e43d8c0165861431d8 8 : 0000000000000000000000000000000000000000 9 : 0000000000000000000000000000000000000000 10 : 0000000000000000000000000000000000000000 11 : 0000000000000000000000000000000000000000 12 : 0000000000000000000000000000000000000000 13 : 0000000000000000000000000000000000000000 14 : 0000000000000000000000000000000000000000 15 : 0000000000000000000000000000000000000000 16 : 0000000000000000000000000000000000000000 17 : ffffffffffffffffffffffffffffffffffffffff 18 : ffffffffffffffffffffffffffffffffffffffff 19 : ffffffffffffffffffffffffffffffffffffffff 20 : ffffffffffffffffffffffffffffffffffffffff 21 : ffffffffffffffffffffffffffffffffffffffff 22 : ffffffffffffffffffffffffffffffffffffffff 23 : 0000000000000000000000000000000000000000 sha256 : 0 : 9ae903dbae3357ac00d223660bac19ea5c021499a56201104332ab966631ce2c 1 : acc611d90245cf04e77b0ca94901f90e7fa54770f0426f53c3049b532243d1b8 2 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 3 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 4 : 7a94ffe8a7729a566d3d3c577fcb4b6b1e671f31540375f80eae6382ab785e35 5 : a5ceb755d043f32431d63e39f5161464620a3437280494b5850dc1b47cc074e0 6 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 7 : 65caf8dd1e0ea7a6347b635d2b379c93b9a1351edc2afc3ecda700e534eb3068 8 : 0000000000000000000000000000000000000000000000000000000000000000 9 : 0000000000000000000000000000000000000000000000000000000000000000 10 : 0000000000000000000000000000000000000000000000000000000000000000 11 : 0000000000000000000000000000000000000000000000000000000000000000 12 : 0000000000000000000000000000000000000000000000000000000000000000 13 : 0000000000000000000000000000000000000000000000000000000000000000 14 : 0000000000000000000000000000000000000000000000000000000000000000 15 : 0000000000000000000000000000000000000000000000000000000000000000 16 : 0000000000000000000000000000000000000000000000000000000000000000 17 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 18 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 19 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 20 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 21 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 22 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 23 : 0000000000000000000000000000000000000000000000000000000000000000 sha384 : The PhysicalPresenceLib is required, it sets some variables, but the firmware doesn't act on it yet. Laszlo Ersek explained on the list why Tpm2DeviceLib has to be resolved differently for DXE_DRIVER modules in general and for "Tcg2Dxe.inf" specifically: * We have a library class called Tpm2DeviceLib -- this is basically the set of APIs declared in "SecurityPkg/Include/Library/Tpm2DeviceLib.h". Its leading comment says "This library abstract how to access TPM2 hardware device". There are two *sets* of APIs in "Tpm2DeviceLib.h": (a) functions that deal with the TPM2 device: - Tpm2RequestUseTpm(), - Tpm2SubmitCommand() This set of APIs is supposed to be used by clients that *consume* the TPM2 device abstraction. (b) the function Tpm2RegisterTpm2DeviceLib(), which is supposed to be used by *providers* of various TPM2 device abstractions. * Then, we have two implementations (instances) of the Tpm2DeviceLib class: (1) SecurityPkg/Library/Tpm2DeviceLibTcg2/Tpm2DeviceLibTcg2.inf (2) SecurityPkg/Library/Tpm2DeviceLibRouter/Tpm2DeviceLibRouterDxe.inf (1) The first library instance ("Tpm2DeviceLibTcg2.inf") implements the APIs listed under (a), and it does not implement (b) -- see EFI_UNSUPPORTED. In other words, this lib instance is strictly meant for drivers that *consume* the TPM2 device abstraction. And, the (a) group of APIs is implemented by forwarding the requests to the TCG2 protocol. The idea here is that all the drivers that consume the TPM2 abstraction do not have to be statically linked with a large TPM2 device library instance; instead they are only linked (statically) with this "thin" library instance, and all the actual work is delegated to whichever driver that provides the singleton TCG2 protocol. (2) The second library instance ("Tpm2DeviceLibRouterDxe.inf") is meant for the driver that offers (produces) the TCG2 protocol. This lib instance implements both (a) and (b) API groups. * Here's how things fit together: (i) The "SecurityPkg/Library/Tpm2DeviceLibDTpm/Tpm2InstanceLibDTpm.inf" library instance (which has no lib class) is linked into "Tcg2Dxe.inf" via NULL class resolution. This simply means that before the "Tcg2Dxe.inf" entry point function is entered, the constructor function of "Tpm2InstanceLibDTpm.inf" will be called. (ii) This Tpm2InstanceLibDTpmConstructor() function calls API (b), and registers its own actual TPM2 command implementation with the "Tpm2DeviceLibRouter" library instance (also linked into the Tcg2Dxe driver). This provides the back-end for the API set (a). TCG2 protocol provider (Tcg2Dxe.inf driver) launches | v NULL class: Tpm2InstanceLibDTpm instance construction | v Tpm2DeviceLib class: Tpm2DeviceLibRouter instance backend registration for API set (a) (iii) The Tcg2Dxe driver exposes the TCG2 protocol. (iv) A TPM2 consumer calls API set (a) via lib instance (1). Such calls land in Tcg2Dxe, via the protocol. (v) Tcg2Dxe serves the protocol request by forwarding it to API set (a) from lib instance (2). (vi) Those functions call the "backend" functions registered by Tpm2DeviceLibDTpm in step (ii). TPM 2 consumer driver | v Tpm2DeviceLib class: Tpm2DeviceLibTcg2 instance | v TCG2 protocol interface | v TCG2 protocol provider: Tcg2Dxe.inf driver | v Tpm2DeviceLib class: Tpm2DeviceLibRouter instance | v NULL class: Tpm2InstanceLibDTpm instance (via earlier registration) | v TPM2 chip (actual hardware) * So that is the "router" pattern in edk2. Namely, - Consumers of an abstraction use a thin library instance. - The thin library instance calls a firmware-global (singleton) service, i.e. a PPI (in the PEI phase) or protocol (in the DXE phase). - The PEIM providing the PPI, or the DXE driver providing the protocol, don't themselves implement the actual service either. Instead they offer a "registration" service too, and they only connect the incoming "consumer" calls to the earlier registered back-end(s). - The "registration service", for back-ends to use, may take various forms. It can be exposed globally to the rest of the firmware, as another member function of the PPI / protocol structure. Then backends can be provided by separate PEIMs / DXE drivers. Or else, the registration service can be exposed as just another library API. In this case, the backends are provided as NULL class library instances, and a platform DSC file links them into the PEIM / DXE driver via NULL class resolutions. The backend lib instances call the registration service in their own respective constructor functions. Cc: Laszlo Ersek <lersek@redhat.com> Cc: Stefan Berger <stefanb@linux.vnet.ibm.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2018-02-22 17:53:16 +01:00
}
!if $(TPM_CONFIG_ENABLE) == TRUE
SecurityPkg/Tcg/Tcg2Config/Tcg2ConfigDxe.inf
!endif
SecurityPkg/Tcg/TcgDxe/TcgDxe.inf {
<LibraryClasses>
Tpm12DeviceLib|SecurityPkg/Library/Tpm12DeviceLibDTpm/Tpm12DeviceLibDTpm.inf
}
OvmfPkg: include Tcg2Dxe module This module measures and log the boot environment. It also produces the Tcg2 protocol, which allows for example to read the log from OS. The linux kernel doesn't yet read the EFI_TCG2_EVENT_LOG_FORMAT_TCG_2, which is required for crypto-agile log. In fact, only upcoming 4.16 adds support EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2: [ 0.000000] efi: EFI v2.70 by EDK II [ 0.000000] efi: SMBIOS=0x3fa1f000 ACPI=0x3fbb6000 ACPI 2.0=0x3fbb6014 MEMATTR=0x3e7d4318 TPMEventLog=0x3db21018 $ python chipsec_util.py tpm parse_log binary_bios_measurements [CHIPSEC] Version 1.3.5.dev2 [CHIPSEC] API mode: using OS native API (not using CHIPSEC kernel module) [CHIPSEC] Executing command 'tpm' with args ['parse_log', '/tmp/binary_bios_measurements'] PCR: 0 type: EV_S_CRTM_VERSION size: 0x2 digest: 1489f923c4dca729178b3e3233458550d8dddf29 + version: PCR: 0 type: EV_EFI_PLATFORM_FIRMWARE_BLOB size: 0x10 digest: fd39ced7c0d2a61f6830c78c7625f94826b05bcc + base: 0x820000 length: 0xe0000 PCR: 0 type: EV_EFI_PLATFORM_FIRMWARE_BLOB size: 0x10 digest: 39ebc6783b72bc1e73c7d5bcfeb5f54a3f105d4c + base: 0x900000 length: 0xa00000 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x35 digest: 57cd4dc19442475aa82743484f3b1caa88e142b8 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x24 digest: 9b1387306ebb7ff8e795e7be77563666bbf4516e PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x26 digest: 9afa86c507419b8570c62167cb9486d9fc809758 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x24 digest: 5bf8faa078d40ffbd03317c93398b01229a0e1e0 PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x26 digest: 734424c9fe8fc71716c42096f4b74c88733b175e PCR: 7 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x3e digest: 252f8ebb85340290b64f4b06a001742be8e5cab6 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x6e digest: 22a4f6ee9af6dba01d3528deb64b74b582fc182b PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x80 digest: b7811d5bf30a7efd4e385c6179fe10d9290bb9e8 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x84 digest: 425e502c24fc924e231e0a62327b6b7d1f704573 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x9a digest: 0b5d2c98ac5de6148a4a1490ff9d5df69039f04e PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0xbd digest: 20bd5f402271d57a88ea314fe35c1705956b1f74 PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x88 digest: df5d6605cb8f4366d745a8464cfb26c1efdc305c PCR: 4 type: EV_EFI_ACTION size: 0x28 digest: cd0fdb4531a6ec41be2753ba042637d6e5f7f256 PCR: 0 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 1 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 2 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 3 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 4 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 PCR: 5 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473 $ tpm2_pcrlist sha1 : 0 : 35bd1786b6909daad610d7598b1d620352d33b8a 1 : ec0511e860206e0af13c31da2f9e943fb6ca353d 2 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 3 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 4 : 45a323382bd933f08e7f0e256bc8249e4095b1ec 5 : d16d7e629fd8d08ca256f9ad3a3a1587c9e6cc1b 6 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236 7 : 518bd167271fbb64589c61e43d8c0165861431d8 8 : 0000000000000000000000000000000000000000 9 : 0000000000000000000000000000000000000000 10 : 0000000000000000000000000000000000000000 11 : 0000000000000000000000000000000000000000 12 : 0000000000000000000000000000000000000000 13 : 0000000000000000000000000000000000000000 14 : 0000000000000000000000000000000000000000 15 : 0000000000000000000000000000000000000000 16 : 0000000000000000000000000000000000000000 17 : ffffffffffffffffffffffffffffffffffffffff 18 : ffffffffffffffffffffffffffffffffffffffff 19 : ffffffffffffffffffffffffffffffffffffffff 20 : ffffffffffffffffffffffffffffffffffffffff 21 : ffffffffffffffffffffffffffffffffffffffff 22 : ffffffffffffffffffffffffffffffffffffffff 23 : 0000000000000000000000000000000000000000 sha256 : 0 : 9ae903dbae3357ac00d223660bac19ea5c021499a56201104332ab966631ce2c 1 : acc611d90245cf04e77b0ca94901f90e7fa54770f0426f53c3049b532243d1b8 2 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 3 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 4 : 7a94ffe8a7729a566d3d3c577fcb4b6b1e671f31540375f80eae6382ab785e35 5 : a5ceb755d043f32431d63e39f5161464620a3437280494b5850dc1b47cc074e0 6 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969 7 : 65caf8dd1e0ea7a6347b635d2b379c93b9a1351edc2afc3ecda700e534eb3068 8 : 0000000000000000000000000000000000000000000000000000000000000000 9 : 0000000000000000000000000000000000000000000000000000000000000000 10 : 0000000000000000000000000000000000000000000000000000000000000000 11 : 0000000000000000000000000000000000000000000000000000000000000000 12 : 0000000000000000000000000000000000000000000000000000000000000000 13 : 0000000000000000000000000000000000000000000000000000000000000000 14 : 0000000000000000000000000000000000000000000000000000000000000000 15 : 0000000000000000000000000000000000000000000000000000000000000000 16 : 0000000000000000000000000000000000000000000000000000000000000000 17 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 18 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 19 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 20 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 21 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 22 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 23 : 0000000000000000000000000000000000000000000000000000000000000000 sha384 : The PhysicalPresenceLib is required, it sets some variables, but the firmware doesn't act on it yet. Laszlo Ersek explained on the list why Tpm2DeviceLib has to be resolved differently for DXE_DRIVER modules in general and for "Tcg2Dxe.inf" specifically: * We have a library class called Tpm2DeviceLib -- this is basically the set of APIs declared in "SecurityPkg/Include/Library/Tpm2DeviceLib.h". Its leading comment says "This library abstract how to access TPM2 hardware device". There are two *sets* of APIs in "Tpm2DeviceLib.h": (a) functions that deal with the TPM2 device: - Tpm2RequestUseTpm(), - Tpm2SubmitCommand() This set of APIs is supposed to be used by clients that *consume* the TPM2 device abstraction. (b) the function Tpm2RegisterTpm2DeviceLib(), which is supposed to be used by *providers* of various TPM2 device abstractions. * Then, we have two implementations (instances) of the Tpm2DeviceLib class: (1) SecurityPkg/Library/Tpm2DeviceLibTcg2/Tpm2DeviceLibTcg2.inf (2) SecurityPkg/Library/Tpm2DeviceLibRouter/Tpm2DeviceLibRouterDxe.inf (1) The first library instance ("Tpm2DeviceLibTcg2.inf") implements the APIs listed under (a), and it does not implement (b) -- see EFI_UNSUPPORTED. In other words, this lib instance is strictly meant for drivers that *consume* the TPM2 device abstraction. And, the (a) group of APIs is implemented by forwarding the requests to the TCG2 protocol. The idea here is that all the drivers that consume the TPM2 abstraction do not have to be statically linked with a large TPM2 device library instance; instead they are only linked (statically) with this "thin" library instance, and all the actual work is delegated to whichever driver that provides the singleton TCG2 protocol. (2) The second library instance ("Tpm2DeviceLibRouterDxe.inf") is meant for the driver that offers (produces) the TCG2 protocol. This lib instance implements both (a) and (b) API groups. * Here's how things fit together: (i) The "SecurityPkg/Library/Tpm2DeviceLibDTpm/Tpm2InstanceLibDTpm.inf" library instance (which has no lib class) is linked into "Tcg2Dxe.inf" via NULL class resolution. This simply means that before the "Tcg2Dxe.inf" entry point function is entered, the constructor function of "Tpm2InstanceLibDTpm.inf" will be called. (ii) This Tpm2InstanceLibDTpmConstructor() function calls API (b), and registers its own actual TPM2 command implementation with the "Tpm2DeviceLibRouter" library instance (also linked into the Tcg2Dxe driver). This provides the back-end for the API set (a). TCG2 protocol provider (Tcg2Dxe.inf driver) launches | v NULL class: Tpm2InstanceLibDTpm instance construction | v Tpm2DeviceLib class: Tpm2DeviceLibRouter instance backend registration for API set (a) (iii) The Tcg2Dxe driver exposes the TCG2 protocol. (iv) A TPM2 consumer calls API set (a) via lib instance (1). Such calls land in Tcg2Dxe, via the protocol. (v) Tcg2Dxe serves the protocol request by forwarding it to API set (a) from lib instance (2). (vi) Those functions call the "backend" functions registered by Tpm2DeviceLibDTpm in step (ii). TPM 2 consumer driver | v Tpm2DeviceLib class: Tpm2DeviceLibTcg2 instance | v TCG2 protocol interface | v TCG2 protocol provider: Tcg2Dxe.inf driver | v Tpm2DeviceLib class: Tpm2DeviceLibRouter instance | v NULL class: Tpm2InstanceLibDTpm instance (via earlier registration) | v TPM2 chip (actual hardware) * So that is the "router" pattern in edk2. Namely, - Consumers of an abstraction use a thin library instance. - The thin library instance calls a firmware-global (singleton) service, i.e. a PPI (in the PEI phase) or protocol (in the DXE phase). - The PEIM providing the PPI, or the DXE driver providing the protocol, don't themselves implement the actual service either. Instead they offer a "registration" service too, and they only connect the incoming "consumer" calls to the earlier registered back-end(s). - The "registration service", for back-ends to use, may take various forms. It can be exposed globally to the rest of the firmware, as another member function of the PPI / protocol structure. Then backends can be provided by separate PEIMs / DXE drivers. Or else, the registration service can be exposed as just another library API. In this case, the backends are provided as NULL class library instances, and a platform DSC file links them into the PEIM / DXE driver via NULL class resolutions. The backend lib instances call the registration service in their own respective constructor functions. Cc: Laszlo Ersek <lersek@redhat.com> Cc: Stefan Berger <stefanb@linux.vnet.ibm.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2018-02-22 17:53:16 +01:00
!endif