audk/MdeModulePkg/Core/Pei/PeiMain/PeiMain.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

542 lines
19 KiB
C
Raw Normal View History

/** @file
Pei Core Main Entry Point
Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "PeiMain.h"
EFI_PEI_PPI_DESCRIPTOR mMemoryDiscoveredPpi = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiPeiMemoryDiscoveredPpiGuid,
NULL
};
///
/// Pei service instance
///
EFI_PEI_SERVICES gPs = {
{
PEI_SERVICES_SIGNATURE,
PEI_SERVICES_REVISION,
sizeof (EFI_PEI_SERVICES),
0,
0
},
PeiInstallPpi,
PeiReInstallPpi,
PeiLocatePpi,
PeiNotifyPpi,
PeiGetBootMode,
PeiSetBootMode,
PeiGetHobList,
PeiCreateHob,
PeiFfsFindNextVolume,
PeiFfsFindNextFile,
PeiFfsFindSectionData,
PeiInstallPeiMemory,
PeiAllocatePages,
PeiAllocatePool,
(EFI_PEI_COPY_MEM)CopyMem,
(EFI_PEI_SET_MEM)SetMem,
PeiReportStatusCode,
PeiResetSystem,
&gPeiDefaultCpuIoPpi,
&gPeiDefaultPciCfg2Ppi,
PeiFfsFindFileByName,
PeiFfsGetFileInfo,
PeiFfsGetVolumeInfo,
PeiRegisterForShadow,
PeiFfsFindSectionData3,
PeiFfsGetFileInfo2,
PeiResetSystem2,
PeiFreePages,
};
/**
Shadow PeiCore module from flash to installed memory.
@param PrivateData PeiCore's private data structure
@return PeiCore function address after shadowing.
**/
PEICORE_FUNCTION_POINTER
ShadowPeiCore (
IN PEI_CORE_INSTANCE *PrivateData
)
{
EFI_PEI_FILE_HANDLE PeiCoreFileHandle;
EFI_PHYSICAL_ADDRESS EntryPoint;
EFI_STATUS Status;
UINT32 AuthenticationState;
UINTN Index;
EFI_PEI_CORE_FV_LOCATION_PPI *PeiCoreFvLocationPpi;
UINTN PeiCoreFvIndex;
PeiCoreFileHandle = NULL;
//
// Default PeiCore is in BFV
//
PeiCoreFvIndex = 0;
//
// Find the PEI Core either from EFI_PEI_CORE_FV_LOCATION_PPI indicated FV or BFV
//
Status = PeiServicesLocatePpi (
&gEfiPeiCoreFvLocationPpiGuid,
0,
NULL,
(VOID **)&PeiCoreFvLocationPpi
);
if (!EFI_ERROR (Status) && (PeiCoreFvLocationPpi->PeiCoreFvLocation != NULL)) {
//
// If PeiCoreFvLocation present, the PEI Core should be found from indicated FV
//
for (Index = 0; Index < PrivateData->FvCount; Index++) {
if (PrivateData->Fv[Index].FvHandle == PeiCoreFvLocationPpi->PeiCoreFvLocation) {
PeiCoreFvIndex = Index;
break;
}
}
ASSERT (Index < PrivateData->FvCount);
}
//
// Find PEI Core from the given FV index
//
Status = PrivateData->Fv[PeiCoreFvIndex].FvPpi->FindFileByType (
PrivateData->Fv[PeiCoreFvIndex].FvPpi,
EFI_FV_FILETYPE_PEI_CORE,
PrivateData->Fv[PeiCoreFvIndex].FvHandle,
&PeiCoreFileHandle
);
ASSERT_EFI_ERROR (Status);
//
// Shadow PEI Core into memory so it will run faster
//
Status = PeiLoadImage (
GetPeiServicesTablePointer (),
*((EFI_PEI_FILE_HANDLE *)&PeiCoreFileHandle),
PEIM_STATE_REGISTER_FOR_SHADOW,
&EntryPoint,
&AuthenticationState
);
ASSERT_EFI_ERROR (Status);
//
// Compute the PeiCore's function address after shadowed PeiCore.
// _ModuleEntryPoint is PeiCore main function entry
//
return (PEICORE_FUNCTION_POINTER)((UINTN)EntryPoint + (UINTN)PeiCore - (UINTN)_ModuleEntryPoint);
}
/**
This routine is invoked by main entry of PeiMain module during transition
from SEC to PEI. After switching stack in the PEI core, it will restart
with the old core data.
@param SecCoreDataPtr Points to a data structure containing information about the PEI core's operating
environment, such as the size and location of temporary RAM, the stack location and
the BFV location.
@param PpiList Points to a list of one or more PPI descriptors to be installed initially by the PEI core.
An empty PPI list consists of a single descriptor with the end-tag
EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST. As part of its initialization
phase, the PEI Foundation will add these SEC-hosted PPIs to its PPI database such
that both the PEI Foundation and any modules can leverage the associated service
calls and/or code in these early PPIs
@param Data Pointer to old core data that is used to initialize the
core's data areas.
If NULL, it is first PeiCore entering.
**/
VOID
EFIAPI
PeiCore (
IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreDataPtr,
IN CONST EFI_PEI_PPI_DESCRIPTOR *PpiList,
IN VOID *Data
)
{
PEI_CORE_INSTANCE PrivateData;
EFI_SEC_PEI_HAND_OFF *SecCoreData;
EFI_SEC_PEI_HAND_OFF NewSecCoreData;
EFI_STATUS Status;
PEI_CORE_TEMP_POINTERS TempPtr;
PEI_CORE_INSTANCE *OldCoreData;
EFI_PEI_CPU_IO_PPI *CpuIo;
EFI_PEI_PCI_CFG2_PPI *PciCfg;
EFI_HOB_HANDOFF_INFO_TABLE *HandoffInformationTable;
EFI_PEI_TEMPORARY_RAM_DONE_PPI *TemporaryRamDonePpi;
UINTN Index;
//
// Retrieve context passed into PEI Core
//
OldCoreData = (PEI_CORE_INSTANCE *)Data;
SecCoreData = (EFI_SEC_PEI_HAND_OFF *)SecCoreDataPtr;
//
// Perform PEI Core phase specific actions.
//
if (OldCoreData == NULL) {
//
// If OldCoreData is NULL, means current is the first entry into the PEI Core before memory is available.
//
ZeroMem (&PrivateData, sizeof (PEI_CORE_INSTANCE));
PrivateData.Signature = PEI_CORE_HANDLE_SIGNATURE;
CopyMem (&PrivateData.ServiceTableShadow, &gPs, sizeof (gPs));
} else {
//
// Memory is available to the PEI Core. See if the PEI Core has been shadowed to memory yet.
//
if (OldCoreData->ShadowedPeiCore == NULL) {
//
// Fixup the PeiCore's private data
//
OldCoreData->Ps = &OldCoreData->ServiceTableShadow;
OldCoreData->CpuIo = &OldCoreData->ServiceTableShadow.CpuIo;
if (OldCoreData->HeapOffsetPositive) {
OldCoreData->HobList.Raw = (VOID *)(OldCoreData->HobList.Raw + OldCoreData->HeapOffset);
if (OldCoreData->UnknownFvInfo != NULL) {
OldCoreData->UnknownFvInfo = (PEI_CORE_UNKNOW_FORMAT_FV_INFO *)((UINT8 *)OldCoreData->UnknownFvInfo + OldCoreData->HeapOffset);
}
if (OldCoreData->CurrentFvFileHandles != NULL) {
OldCoreData->CurrentFvFileHandles = (EFI_PEI_FILE_HANDLE *)((UINT8 *)OldCoreData->CurrentFvFileHandles + OldCoreData->HeapOffset);
}
if (OldCoreData->PpiData.PpiList.PpiPtrs != NULL) {
OldCoreData->PpiData.PpiList.PpiPtrs = (PEI_PPI_LIST_POINTERS *)((UINT8 *)OldCoreData->PpiData.PpiList.PpiPtrs + OldCoreData->HeapOffset);
}
if (OldCoreData->PpiData.CallbackNotifyList.NotifyPtrs != NULL) {
OldCoreData->PpiData.CallbackNotifyList.NotifyPtrs = (PEI_PPI_LIST_POINTERS *)((UINT8 *)OldCoreData->PpiData.CallbackNotifyList.NotifyPtrs + OldCoreData->HeapOffset);
}
if (OldCoreData->PpiData.DispatchNotifyList.NotifyPtrs != NULL) {
OldCoreData->PpiData.DispatchNotifyList.NotifyPtrs = (PEI_PPI_LIST_POINTERS *)((UINT8 *)OldCoreData->PpiData.DispatchNotifyList.NotifyPtrs + OldCoreData->HeapOffset);
}
OldCoreData->Fv = (PEI_CORE_FV_HANDLE *)((UINT8 *)OldCoreData->Fv + OldCoreData->HeapOffset);
for (Index = 0; Index < OldCoreData->FvCount; Index++) {
if (OldCoreData->Fv[Index].PeimState != NULL) {
OldCoreData->Fv[Index].PeimState = (UINT8 *)OldCoreData->Fv[Index].PeimState + OldCoreData->HeapOffset;
}
if (OldCoreData->Fv[Index].FvFileHandles != NULL) {
OldCoreData->Fv[Index].FvFileHandles = (EFI_PEI_FILE_HANDLE *)((UINT8 *)OldCoreData->Fv[Index].FvFileHandles + OldCoreData->HeapOffset);
}
}
OldCoreData->TempFileGuid = (EFI_GUID *)((UINT8 *)OldCoreData->TempFileGuid + OldCoreData->HeapOffset);
OldCoreData->TempFileHandles = (EFI_PEI_FILE_HANDLE *)((UINT8 *)OldCoreData->TempFileHandles + OldCoreData->HeapOffset);
} else {
OldCoreData->HobList.Raw = (VOID *)(OldCoreData->HobList.Raw - OldCoreData->HeapOffset);
if (OldCoreData->UnknownFvInfo != NULL) {
OldCoreData->UnknownFvInfo = (PEI_CORE_UNKNOW_FORMAT_FV_INFO *)((UINT8 *)OldCoreData->UnknownFvInfo - OldCoreData->HeapOffset);
}
if (OldCoreData->CurrentFvFileHandles != NULL) {
OldCoreData->CurrentFvFileHandles = (EFI_PEI_FILE_HANDLE *)((UINT8 *)OldCoreData->CurrentFvFileHandles - OldCoreData->HeapOffset);
}
if (OldCoreData->PpiData.PpiList.PpiPtrs != NULL) {
OldCoreData->PpiData.PpiList.PpiPtrs = (PEI_PPI_LIST_POINTERS *)((UINT8 *)OldCoreData->PpiData.PpiList.PpiPtrs - OldCoreData->HeapOffset);
}
if (OldCoreData->PpiData.CallbackNotifyList.NotifyPtrs != NULL) {
OldCoreData->PpiData.CallbackNotifyList.NotifyPtrs = (PEI_PPI_LIST_POINTERS *)((UINT8 *)OldCoreData->PpiData.CallbackNotifyList.NotifyPtrs - OldCoreData->HeapOffset);
}
if (OldCoreData->PpiData.DispatchNotifyList.NotifyPtrs != NULL) {
OldCoreData->PpiData.DispatchNotifyList.NotifyPtrs = (PEI_PPI_LIST_POINTERS *)((UINT8 *)OldCoreData->PpiData.DispatchNotifyList.NotifyPtrs - OldCoreData->HeapOffset);
}
OldCoreData->Fv = (PEI_CORE_FV_HANDLE *)((UINT8 *)OldCoreData->Fv - OldCoreData->HeapOffset);
for (Index = 0; Index < OldCoreData->FvCount; Index++) {
if (OldCoreData->Fv[Index].PeimState != NULL) {
OldCoreData->Fv[Index].PeimState = (UINT8 *)OldCoreData->Fv[Index].PeimState - OldCoreData->HeapOffset;
}
if (OldCoreData->Fv[Index].FvFileHandles != NULL) {
OldCoreData->Fv[Index].FvFileHandles = (EFI_PEI_FILE_HANDLE *)((UINT8 *)OldCoreData->Fv[Index].FvFileHandles - OldCoreData->HeapOffset);
}
}
OldCoreData->TempFileGuid = (EFI_GUID *)((UINT8 *)OldCoreData->TempFileGuid - OldCoreData->HeapOffset);
OldCoreData->TempFileHandles = (EFI_PEI_FILE_HANDLE *)((UINT8 *)OldCoreData->TempFileHandles - OldCoreData->HeapOffset);
}
//
// Fixup for PeiService's address
//
SetPeiServicesTablePointer ((CONST EFI_PEI_SERVICES **)&OldCoreData->Ps);
//
// Initialize libraries that the PEI Core is linked against
//
ProcessLibraryConstructorList (NULL, (CONST EFI_PEI_SERVICES **)&OldCoreData->Ps);
//
// Update HandOffHob for new installed permanent memory
//
HandoffInformationTable = OldCoreData->HobList.HandoffInformationTable;
if (OldCoreData->HeapOffsetPositive) {
HandoffInformationTable->EfiEndOfHobList = HandoffInformationTable->EfiEndOfHobList + OldCoreData->HeapOffset;
} else {
HandoffInformationTable->EfiEndOfHobList = HandoffInformationTable->EfiEndOfHobList - OldCoreData->HeapOffset;
}
HandoffInformationTable->EfiMemoryTop = OldCoreData->PhysicalMemoryBegin + OldCoreData->PhysicalMemoryLength;
HandoffInformationTable->EfiMemoryBottom = OldCoreData->PhysicalMemoryBegin;
HandoffInformationTable->EfiFreeMemoryTop = OldCoreData->FreePhysicalMemoryTop;
HandoffInformationTable->EfiFreeMemoryBottom = HandoffInformationTable->EfiEndOfHobList + sizeof (EFI_HOB_GENERIC_HEADER);
//
// We need convert MemoryBaseAddress in memory allocation HOBs
//
ConvertMemoryAllocationHobs (OldCoreData);
//
// We need convert the PPI descriptor's pointer
//
ConvertPpiPointers (SecCoreData, OldCoreData);
//
// After the whole temporary memory is migrated, then we can allocate page in
// permanent memory.
//
OldCoreData->PeiMemoryInstalled = TRUE;
//
// Indicate that PeiCore reenter
//
OldCoreData->PeimDispatcherReenter = TRUE;
if ((PcdGet64 (PcdLoadModuleAtFixAddressEnable) != 0) && (OldCoreData->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {
//
// if Loading Module at Fixed Address is enabled, allocate the PEI code memory range usage bit map array.
// Every bit in the array indicate the status of the corresponding memory page available or not
//
OldCoreData->PeiCodeMemoryRangeUsageBitMap = AllocateZeroPool (((PcdGet32 (PcdLoadFixAddressPeiCodePageNumber)>>6) + 1)*sizeof (UINT64));
}
//
// Shadow PEI Core. When permanent memory is available, shadow
// PEI Core and PEIMs to get high performance.
//
OldCoreData->ShadowedPeiCore = (PEICORE_FUNCTION_POINTER)(UINTN)PeiCore;
MdeModulePkg/PeiCore: Enable T-RAM evacuation in PeiCore (CVE-2019-11098) REF:https://bugzilla.tianocore.org/show_bug.cgi?id=1614 Introduces new changes to PeiCore to move the contents of temporary RAM visible to the PeiCore to permanent memory. This expands on pre-existing shadowing support in the PeiCore to perform the following additional actions: 1. Migrate pointers in PPIs installed in PeiCore to the permanent memory copy of PeiCore. 2. Copy all installed firmware volumes to permanent memory. 3. Relocate and fix up the PEIMs within the firmware volumes. 4. Convert all PPIs into the migrated firmware volume to the corresponding PPI address in the permanent memory location. This applies to PPIs and PEI notifications. 5. Convert all status code callbacks in the migrated firmware volume to the corresponding address in the permanent memory location. 6. Update the FV HOB to the corresponding firmware volume in permanent memory. 7. Use PcdMigrateTemporaryRamFirmwareVolumes to control if enable the feature or not. when disable the PCD, the EvacuateTempRam() will never be called. The function control flow as below: PeiCore() DumpPpiList() EvacuateTempRam() ConvertPeiCorePpiPointers() ConvertPpiPointersFv() MigratePeimsInFv() MigratePeim() PeiGetPe32Data() LoadAndRelocatePeCoffImageInPlace() MigrateSecModulesInFv() ConvertPpiPointersFv() ConvertStatusCodeCallbacks() ConvertFvHob() RemoveFvHobsInTemporaryMemory() DumpPpiList() Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Hao A Wu <hao.a.wu@intel.com> Cc: Dandan Bi <dandan.bi@intel.com> Cc: Liming Gao <liming.gao@intel.com> Cc: Debkumar De <debkumar.de@intel.com> Cc: Harry Han <harry.han@intel.com> Cc: Catharine West <catharine.west@intel.com> Signed-off-by: Michael Kubacki <michael.a.kubacki@intel.com> Reviewed-by: Liming Gao <liming.gao@intel.com> Acked-by: Laszlo Ersek <lersek@redhat.com>
2019-04-12 00:46:02 +02:00
if (PcdGetBool (PcdMigrateTemporaryRamFirmwareVolumes) ||
((HandoffInformationTable->BootMode == BOOT_ON_S3_RESUME) && PcdGetBool (PcdShadowPeimOnS3Boot)) ||
((HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME) && PcdGetBool (PcdShadowPeimOnBoot)))
{
OldCoreData->ShadowedPeiCore = ShadowPeiCore (OldCoreData);
}
//
// PEI Core has now been shadowed to memory. Restart PEI Core in memory.
//
OldCoreData->ShadowedPeiCore (SecCoreData, PpiList, OldCoreData);
//
// Should never reach here.
//
ASSERT (FALSE);
CpuDeadLoop ();
UNREACHABLE ();
}
//
// Memory is available to the PEI Core and the PEI Core has been shadowed to memory.
//
CopyMem (&NewSecCoreData, SecCoreDataPtr, sizeof (NewSecCoreData));
SecCoreData = &NewSecCoreData;
CopyMem (&PrivateData, OldCoreData, sizeof (PrivateData));
CpuIo = (VOID *)PrivateData.ServiceTableShadow.CpuIo;
PciCfg = (VOID *)PrivateData.ServiceTableShadow.PciCfg;
CopyMem (&PrivateData.ServiceTableShadow, &gPs, sizeof (gPs));
PrivateData.ServiceTableShadow.CpuIo = CpuIo;
PrivateData.ServiceTableShadow.PciCfg = PciCfg;
}
//
// Cache a pointer to the PEI Services Table that is either in temporary memory or permanent memory
//
PrivateData.Ps = &PrivateData.ServiceTableShadow;
//
// Save PeiServicePointer so that it can be retrieved anywhere.
//
SetPeiServicesTablePointer ((CONST EFI_PEI_SERVICES **)&PrivateData.Ps);
//
// Initialize libraries that the PEI Core is linked against
//
ProcessLibraryConstructorList (NULL, (CONST EFI_PEI_SERVICES **)&PrivateData.Ps);
//
// Initialize PEI Core Services
//
InitializeMemoryServices (&PrivateData, SecCoreData, OldCoreData);
//
// Update performance measurements
//
if (OldCoreData == NULL) {
PERF_EVENT ("SEC"); // Means the end of SEC phase.
//
// If first pass, start performance measurement.
//
PERF_CROSSMODULE_BEGIN ("PEI");
PERF_INMODULE_BEGIN ("PreMem");
} else {
PERF_INMODULE_END ("PreMem");
PERF_INMODULE_BEGIN ("PostMem");
}
//
// Complete PEI Core Service initialization
//
InitializeSecurityServices (&PrivateData.Ps, OldCoreData);
InitializeDispatcherData (&PrivateData, OldCoreData, SecCoreData);
InitializeImageServices (&PrivateData, OldCoreData);
//
// Perform PEI Core Phase specific actions
//
if (OldCoreData == NULL) {
//
// Report Status Code EFI_SW_PC_INIT
//
REPORT_STATUS_CODE (
EFI_PROGRESS_CODE,
(EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT)
);
//
// If SEC provided the PpiList, process it.
//
if (PpiList != NULL) {
ProcessPpiListFromSec ((CONST EFI_PEI_SERVICES **)&PrivateData.Ps, PpiList);
}
} else {
MdeModulePkg/PeiCore: Enable T-RAM evacuation in PeiCore (CVE-2019-11098) REF:https://bugzilla.tianocore.org/show_bug.cgi?id=1614 Introduces new changes to PeiCore to move the contents of temporary RAM visible to the PeiCore to permanent memory. This expands on pre-existing shadowing support in the PeiCore to perform the following additional actions: 1. Migrate pointers in PPIs installed in PeiCore to the permanent memory copy of PeiCore. 2. Copy all installed firmware volumes to permanent memory. 3. Relocate and fix up the PEIMs within the firmware volumes. 4. Convert all PPIs into the migrated firmware volume to the corresponding PPI address in the permanent memory location. This applies to PPIs and PEI notifications. 5. Convert all status code callbacks in the migrated firmware volume to the corresponding address in the permanent memory location. 6. Update the FV HOB to the corresponding firmware volume in permanent memory. 7. Use PcdMigrateTemporaryRamFirmwareVolumes to control if enable the feature or not. when disable the PCD, the EvacuateTempRam() will never be called. The function control flow as below: PeiCore() DumpPpiList() EvacuateTempRam() ConvertPeiCorePpiPointers() ConvertPpiPointersFv() MigratePeimsInFv() MigratePeim() PeiGetPe32Data() LoadAndRelocatePeCoffImageInPlace() MigrateSecModulesInFv() ConvertPpiPointersFv() ConvertStatusCodeCallbacks() ConvertFvHob() RemoveFvHobsInTemporaryMemory() DumpPpiList() Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Hao A Wu <hao.a.wu@intel.com> Cc: Dandan Bi <dandan.bi@intel.com> Cc: Liming Gao <liming.gao@intel.com> Cc: Debkumar De <debkumar.de@intel.com> Cc: Harry Han <harry.han@intel.com> Cc: Catharine West <catharine.west@intel.com> Signed-off-by: Michael Kubacki <michael.a.kubacki@intel.com> Reviewed-by: Liming Gao <liming.gao@intel.com> Acked-by: Laszlo Ersek <lersek@redhat.com>
2019-04-12 00:46:02 +02:00
if (PcdGetBool (PcdMigrateTemporaryRamFirmwareVolumes)) {
//
// When PcdMigrateTemporaryRamFirmwareVolumes is TRUE, alway shadow all
// PEIMs no matter the condition of PcdShadowPeimOnBoot and PcdShadowPeimOnS3Boot
//
DEBUG ((DEBUG_VERBOSE, "PPI lists before temporary RAM evacuation:\n"));
DumpPpiList (&PrivateData);
//
// Migrate installed content from Temporary RAM to Permanent RAM
//
EvacuateTempRam (&PrivateData, SecCoreData);
DEBUG ((DEBUG_VERBOSE, "PPI lists after temporary RAM evacuation:\n"));
DumpPpiList (&PrivateData);
}
//
// Try to locate Temporary RAM Done Ppi.
//
Status = PeiServicesLocatePpi (
&gEfiTemporaryRamDonePpiGuid,
0,
NULL,
(VOID **)&TemporaryRamDonePpi
);
if (!EFI_ERROR (Status)) {
//
// Disable the use of Temporary RAM after the transition from Temporary RAM to Permanent RAM is complete.
//
TemporaryRamDonePpi->TemporaryRamDone ();
}
//
// Alert any listeners that there is permanent memory available
//
PERF_INMODULE_BEGIN ("DisMem");
Status = PeiServicesInstallPpi (&mMemoryDiscoveredPpi);
//
// Process the Notify list and dispatch any notifies for the Memory Discovered PPI
//
ProcessDispatchNotifyList (&PrivateData);
PERF_INMODULE_END ("DisMem");
}
//
// Call PEIM dispatcher
//
PeiDispatcher (SecCoreData, &PrivateData);
if (PrivateData.HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME) {
//
// Check if InstallPeiMemory service was called on non-S3 resume boot path.
//
ASSERT (PrivateData.PeiMemoryInstalled == TRUE);
}
//
// Measure PEI Core execution time.
//
PERF_INMODULE_END ("PostMem");
//
// Lookup DXE IPL PPI
//
Status = PeiServicesLocatePpi (
&gEfiDxeIplPpiGuid,
0,
NULL,
(VOID **)&TempPtr.DxeIpl
);
ASSERT_EFI_ERROR (Status);
if (EFI_ERROR (Status)) {
//
// Report status code to indicate DXE IPL PPI could not be found.
//
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MAJOR,
(EFI_SOFTWARE_PEI_CORE | EFI_SW_PEI_CORE_EC_DXEIPL_NOT_FOUND)
);
CpuDeadLoop ();
}
//
// Enter DxeIpl to load Dxe core.
//
DEBUG ((DEBUG_INFO, "DXE IPL Entry\n"));
Status = TempPtr.DxeIpl->Entry (
TempPtr.DxeIpl,
&PrivateData.Ps,
PrivateData.HobList
);
//
// Should never reach here.
//
ASSERT_EFI_ERROR (Status);
CpuDeadLoop ();
UNREACHABLE ();
}