This is for conformance with the TCG "Platform Reset Attack Mitigation
Specification". Because clearing the CPU caches at boot doesn't impact
performance significantly, do it unconditionally, for simplicity's
sake.
Flush the cache on all logical processors, thanks to
EFI_PEI_MP_SERVICES_PPI and CacheMaintenanceLib.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Anthony Perard <anthony.perard@citrix.com>
Cc: Julien Grall <julien.grall@linaro.org>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Tested-by: Anthony PERARD <anthony.perard@citrix.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Michael D Kinney <michael.d.kinney@intel.com>
[lersek@redhat.com: remove bogus Message-Id line from commit msg]
ResourcePublicationLib class name is ResourcePublicationLib.
INF and DSC files are updated to use the correct one.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Liming Gao <liming.gao@intel.com>
Signed-off-by: Dongao Guo <dongao.guo@intel.com>
[lersek@redhat.com: insert empty line between commit msg body and tags]
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Removing rules for Ipf sources file:
* Remove the source file which path with "ipf" and also listed in
[Sources.IPF] section of INF file.
* Remove the source file which listed in [Components.IPF] section
of DSC file and not listed in any other [Components] section.
* Remove the embedded Ipf code for MDE_CPU_IPF.
Removing rules for Inf file:
* Remove IPF from VALID_ARCHITECTURES comments.
* Remove DXE_SAL_DRIVER from LIBRARY_CLASS in [Defines] section.
* Remove the INF which only listed in [Components.IPF] section in DSC.
* Remove statements from [BuildOptions] that provide IPF specific flags.
* Remove any IPF sepcific sections.
Removing rules for Dec file:
* Remove [Includes.IPF] section from Dec.
Removing rules for Dsc file:
* Remove IPF from SUPPORTED_ARCHITECTURES in [Defines] section of DSC.
* Remove any IPF specific sections.
* Remove statements from [BuildOptions] that provide IPF specific flags.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Michael D Kinney <michael.d.kinney@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Chen A Chen <chen.a.chen@intel.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
The header defines the OVMF_INFO_PHYSICAL_ADDRESS macro and the
EFI_XEN_OVMF_INFO structure, which are used in "Xen.c".
Cc: Anthony Perard <anthony.perard@citrix.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Julien Grall <julien.grall@linaro.org>
Suggested-by: Michael Kinney <michael.d.kinney@intel.com>
Ref: http://mid.mail-archive.com/E92EE9817A31E24EB0585FDF735412F56327F7D3@ORSMSX113.amr.corp.intel.com
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
The header file declares several functions and global variables that are
shared between various translation units in this module.
Cc: Anthony Perard <anthony.perard@citrix.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Julien Grall <julien.grall@linaro.org>
Suggested-by: Michael Kinney <michael.d.kinney@intel.com>
Ref: http://mid.mail-archive.com/E92EE9817A31E24EB0585FDF735412F56327F7D3@ORSMSX113.amr.corp.intel.com
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
The header file declares the CmosRead8() and CmosWrite8() functions, which
are implemented in "Cmos.c" and called from "MemDetect.c" and
"Platform.c".
Cc: Anthony Perard <anthony.perard@citrix.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Julien Grall <julien.grall@linaro.org>
Suggested-by: Michael Kinney <michael.d.kinney@intel.com>
Ref: http://mid.mail-archive.com/E92EE9817A31E24EB0585FDF735412F56327F7D3@ORSMSX113.amr.corp.intel.com
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
The following commit:
1fea9ddb4e OvmfPkg: execute option ROM images regardless of Secure Boot
sets the OptionRomImageVerificationPolicy to ALWAYS_EXECUTE the expansion
ROMs attached to the emulated PCI devices. A expansion ROM constitute
another channel through which a cloud provider (i.e hypervisor) can
inject a code in guest boot flow to compromise it.
When SEV is enabled, the bios code has been verified by the guest owner
via the SEV guest launch sequence before its executed. When secure boot,
is enabled, lets make sure that we do not allow guest bios to execute a
code which is not signed by the guest owner.
Fixes: https://bugzilla.tianocore.org/show_bug.cgi?id=728
Cc: Chao Zhang <chao.b.zhang@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Secure Encrypted Virtualization (SEV) guest VMs have the concept of
private and shared memory. Private memory is encrypted with the
guest-specific key, while shared memory may be encrypted with hypervisor
key. Certain types of memory (namely instruction pages and guest page
tables) are always treated as private memory by the hardware.
For data memory, SEV guest VMs can choose which pages they would like
to be private. The choice is done using the standard CPU page tables
using the C-bit. When building the initial page table we mark all the
memory as private.
The patch sets the memory encryption PCD. The PCD is consumed by the
following edk2 modules, which manipulate page tables:
- PEI phase modules: CapsulePei, DxeIplPeim, S3Resume2Pei.
CapsulePei is not used by OVMF. DxeIplPeim consumes the PCD at the
end of the PEI phase, when it builds the initial page tables for the
DXE core / DXE phase. S3Resume2Pei does not consume the PCD in its
entry point function, only when DxeIplPeim branches to the S3 resume
path at the end of the PEI phase, and calls S3Resume2Pei's
EFI_PEI_S3_RESUME2_PPI.S3RestoreConfig2() member function.
Therefore it is safe to set the PCD for these modules in PlatformPei.
- DXE phase modules: BootScriptExecutorDxe, CpuDxe, PiSmmCpuDxeSmm.
They are all dispatched after the PEI phase, so setting the PCD for
them in PlatformPei is safe. (BootScriptExecutorDxe is launched "for
real" in the PEI phase during S3 resume, but it caches the PCD into a
static variable when its entry point is originally invoked in DXE.)
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
At this point we're ready to retire QemuFwCfgS3Enabled() from the
QemuFwCfgLib class, together with its implementations in:
- ArmVirtPkg/Library/QemuFwCfgLib/QemuFwCfgLib.c
- OvmfPkg/Library/QemuFwCfgLib/QemuFwCfgLib.c
Extend all modules that call the function with a new QemuFwCfgS3Lib class
dependency. Thanks to the previously added library class, instances, and
class resolutions, we can do this switch now as tightly as possible.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=394
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
These settings will allow CpuMpPei and CpuDxe to wait for the initial AP
check-ins exactly as long as necessary.
It is safe to set PcdCpuMaxLogicalProcessorNumber and
PcdCpuApInitTimeOutInMicroSeconds in OvmfPkg/PlatformPei.
OvmfPkg/PlatformPei installs the permanent PEI RAM, producing
gEfiPeiMemoryDiscoveredPpiGuid, and UefiCpuPkg/CpuMpPei has a depex on
gEfiPeiMemoryDiscoveredPpiGuid.
It is safe to read the fw_cfg item QemuFwCfgItemSmpCpuCount (0x0005). It
was added to QEMU in 2008 as key FW_CFG_NB_CPUS, in commit 905fdcb5264c
("Add common keys to firmware configuration"). Even if the key is
unavailable (or if fw_cfg is entirely unavailable, for example on Xen),
QemuFwCfgRead16() will return 0, and then we stick with the current
behavior.
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jeff Fan <jeff.fan@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Michael Kinney <michael.d.kinney@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Under certain circumstances, QEMU exposes the "etc/msr_feature_control"
fw_cfg file, with a 64-bit little endian value. The firmware is supposed
to write this value to MSR_IA32_FEATURE_CONTROL (0x3a), on all processors,
on the normal and the S3 resume boot paths.
Utilize EFI_PEI_MPSERVICES_PPI to implement this feature.
Cc: Jeff Fan <jeff.fan@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Michael Kinney <michael.d.kinney@intel.com>
Fixes: https://github.com/tianocore/edk2/issues/97
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jeff Fan <jeff.fan@intel.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Move the permanent PEI memory for the S3 resume boot path to the top of
the low RAM (just below TSEG if the SMM driver stack is included in the
build). The new size is derived from CpuMpPei's approximate memory demand.
Save the base address and the size in new global variables, regardless of
the boot path. On the normal boot path, use these variables for covering
the area with EfiACPIMemoryNVS type memory.
PcdS3AcpiReservedMemoryBase and PcdS3AcpiReservedMemorySize become unused
in PlatformPei; remove them.
Cc: Jeff Fan <jeff.fan@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Michael Kinney <michael.d.kinney@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jeff Fan <jeff.fan@intel.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
In the next patches, we'll differentiate the PMBA IO port address that we
program on PIIX4 vs. Q35.
Normally we'd just turn PcdAcpiPmBaseAddress into a dynamic PCD. However,
because we need this value in BaseRomAcpiTimerLib too (which cannot access
RAM and dynamic PCDs), it must remain a build time constant. We will
introduce its Q35 counterpart later.
As first step, replace the PCD with a new macro in "OvmfPlatforms.h";
Jordan prefers the latter to fixed PCDs in this instance.
Cc: Gabriel Somlo <somlo@cmu.edu>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Ref: https://bugzilla.redhat.com/show_bug.cgi?id=1333238
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Tested-by: Gabriel Somlo <somlo@cmu.edu>
Also need to declare PcdAcpiS3Enable as DynamicDefault in *.dsc.
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Star Zeng <star.zeng@intel.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
The main observation about the 64-bit PCI host aperture is that it is the
highest part of the useful address space. It impacts the top of the GCD
memory space map, and, consequently, our maximum address width calculation
for the CPU HOB too.
Thus, modify the GetFirstNonAddress() function to consider the following
areas above the high RAM, while calculating the first non-address (i.e.,
the highest inclusive address, plus one):
- the memory hotplug area (optional, the size comes from QEMU),
- the 64-bit PCI host aperture (we set a default size).
While computing the first non-address, capture the base and the size of
the 64-bit PCI host aperture at once in PCDs, since they are natural parts
of the calculation.
(Similarly to how PcdPciMmio32* are not rewritten on the S3 resume path
(see the InitializePlatform() -> MemMapInitialization() condition), nor
are PcdPciMmio64*. Only the core PciHostBridgeDxe driver consumes them,
through our PciHostBridgeLib instance.)
Set 32GB as the default size for the aperture. Issue#59 mentions the
NVIDIA Tesla K80 as an assignable device. According to nvidia.com, these
cards may have 24GB of memory (probably 16GB + 8GB BARs).
As a strictly experimental feature, the user can specify the size of the
aperture (in MB) as well, with the QEMU option
-fw_cfg name=opt/ovmf/X-PciMmio64Mb,string=65536
The "X-" prefix follows the QEMU tradition (spelled "x-" there), meaning
that the property is experimental, unstable, and might go away any time.
Gerd has proposed heuristics for sizing the aperture automatically (based
on 1GB page support and PCPU address width), but such should be delayed to
a later patch (which may very well back out "X-PciMmio64Mb" then).
For "everyday" guests, the 32GB default for the aperture size shouldn't
impact the PEI memory demand (the size of the page tables that the DXE IPL
PEIM builds). Namely, we've never reported narrower than 36-bit addresses;
the DXE IPL PEIM has always built page tables for 64GB at least.
For the aperture to bump the address width above 36 bits, either the guest
must have quite a bit of memory itself (in which case the additional PEI
memory demand shouldn't matter), or the user must specify a large aperture
manually with "X-PciMmio64Mb" (and then he or she is also responsible for
giving enough RAM to the VM, to satisfy the PEI memory demand).
Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Marcel Apfelbaum <marcel@redhat.com>
Cc: Thomas Lamprecht <t.lamprecht@proxmox.com>
Ref: https://github.com/tianocore/edk2/issues/59
Ref: http://www.nvidia.com/object/tesla-servers.html
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
The comments in the code should speak for themselves; here we note only
two facts:
- The PCI config space writes (to the PCIEXBAR register) are performed
using the 0xCF8 / 0xCFC IO ports, by virtue of PciLib being resolved to
BasePciLibCf8. (This library resolution will permanently remain in place
for the PEI phase.)
- Since PCIEXBAR counts as a chipset register, it is the responsibility of
the firmware to reprogram it at S3 resume. Therefore
PciExBarInitialization() is called regardless of the boot path. (Marcel
recently posted patches for SeaBIOS that implement this.)
This patch suffices to enable PCIEXBAR (and the dependent ACPI table
generation in QEMU), for the sake of "PCIeHotplug" in the Linux guest:
ACPI: MCFG 0x000000007E17F000 00003C
(v01 BOCHS BXPCMCFG 00000001 BXPC 00000001)
PCI: MMCONFIG for domain 0000 [bus 00-ff] at [mem 0x80000000-0x8fffffff]
(base 0x80000000)
PCI: MMCONFIG at [mem 0x80000000-0x8fffffff] reserved in E820
acpi PNP0A08:00: _OSC: OS supports
[ExtendedConfig ASPM ClockPM Segments MSI]
acpi PNP0A08:00: _OSC: OS now controls
[PCIeHotplug PME AER PCIeCapability]
In the following patches, we'll equip the core PCI host bridge / root
bridge driver and the rest of DXE as well to utilize ECAM on Q35.
Cc: Gabriel Somlo <somlo@cmu.edu>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Marcel Apfelbaum <marcel@redhat.com>
Cc: Micha Zegan <webczat_200@poczta.onet.pl>
Ref: https://github.com/tianocore/edk2/issues/32
Ref: http://thread.gmane.org/gmane.comp.bios.coreboot.seabios/10548
Suggested-by: Marcel Apfelbaum <marcel@redhat.com>
Reported-by: Micha Zegan <webczat_200@poczta.onet.pl>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Marcel Apfelbaum <marcel@redhat.com>
Tested-by: Gabriel Somlo <somlo@cmu.edu>
Tested-by: Micha Zegan <webczat_200@poczta.onet.pl>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Going forward, two modules will need to know about the aperture:
PlatformPei (as before), and OVMF's upcoming PciHostBridgeLib instance
(because the core PciHostBridgeDxe driver requires the library to state
the exact apertures for all root bridges).
On QEMU, all root bridges share the same MMIO aperture, hence one pair of
PCDs suffices.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ruiyu Ni <ruiyu.ni@intel.com>
Cc: Marcel Apfelbaum <marcel@redhat.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
At the moment we don't intend to customize this aperture at runtime, but
going forward, two modules will need to know about it: PlatformPei (as
before), and OVMF's upcoming PciHostBridgeLib instance (because the core
PciHostBridgeDxe driver requires the library to state the exact apertures
for all root bridges).
On QEMU, all root bridges share the same IO port aperture, hence one pair
of PCDs suffices.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ruiyu Ni <ruiyu.ni@intel.com>
Cc: Marcel Apfelbaum <marcel@redhat.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
At the moment, the "UefiCpuPkg/Universal/Acpi/S3Resume2Pei" module doesn't
support S3 resume if the platform has SMM enabled and the PEI phase is
built for X64. We document this in the README, but it is not conspicuous
enough.
Replace the "fine print" in the README with a runtime check in
PlatformPei.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Suggested-by: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19070 6f19259b-4bc3-4df7-8a09-765794883524
PlatformPei calls GetSystemMemorySizeBelow4gb() in three locations:
- PublishPeiMemory(): on normal boot, the permanent PEI RAM is installed
so that it ends with the RAM below 4GB,
- QemuInitializeRam(): on normal boot, memory resource descriptor HOBs are
created for the RAM below 4GB; plus MTRR attributes are set
(independently of S3 vs. normal boot)
- MemMapInitialization(): an MMIO resource descriptor HOB is created for
PCI resource allocation, on normal boot, starting at max(RAM below 4GB,
2GB).
The first two of these is adjusted for the configured TSEG size, if
PcdSmmSmramRequire is set:
- In PublishPeiMemory(), the permanent PEI RAM is kept under TSEG.
- In QemuInitializeRam(), we must keep the DXE out of TSEG.
One idea would be to simply trim the [1MB .. LowerMemorySize] memory
resource descriptor HOB, leaving a hole for TSEG in the memory space
map.
The SMM IPL will however want to massage the caching attributes of the
SMRAM range that it loads the SMM core into, with
gDS->SetMemorySpaceAttributes(), and that won't work on a hole. So,
instead of trimming this range, split the TSEG area off, and report it
as a cacheable reserved memory resource.
Finally, since reserved memory can be allocated too, pre-allocate TSEG
in InitializeRamRegions(), after QemuInitializeRam() returns. (Note that
this step alone does not suffice without the resource descriptor HOB
trickery: if we omit that, then the DXE IPL PEIM fails to load and start
the DXE core.)
- In MemMapInitialization(), the start of the PCI MMIO range is not
affected.
We choose the largest option (8MB) for the default TSEG size. Michael
Kinney pointed out that the SMBASE relocation in PiSmmCpuDxeSmm consumes
SMRAM proportionally to the number of CPUs. From the three options
available, he reported that 8MB was both necessary and sufficient for the
SMBASE relocation to succeed with 255 CPUs:
- http://thread.gmane.org/gmane.comp.bios.edk2.devel/3020/focus=3137
- http://thread.gmane.org/gmane.comp.bios.edk2.devel/3020/focus=3177
Cc: Michael Kinney <michael.d.kinney@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Michael Kinney <michael.d.kinney@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19039 6f19259b-4bc3-4df7-8a09-765794883524
If OVMF was built with -D SMM_REQUIRE, that implies that the runtime OS is
not trusted and we should defend against it tampering with the firmware's
data.
One such datum is the PEI firmware volume (PEIFV). Normally PEIFV is
decompressed on the first boot by SEC, then the OS preserves it across S3
suspend-resume cycles; at S3 resume SEC just reuses the originally
decompressed PEIFV.
However, if we don't trust the OS, then SEC must decompress PEIFV from the
pristine flash every time, lest we execute OS-injected code or work with
OS-injected data.
Due to how FVMAIN_COMPACT is organized, we can't decompress just PEIFV;
the decompression brings DXEFV with itself, plus it uses a temporary
output buffer and a scratch buffer too, which even reach above the end of
the finally installed DXEFV. For this reason we must keep away a
non-malicious OS from DXEFV too, plus the memory up to
PcdOvmfDecomprScratchEnd.
The delay introduced by the LZMA decompression on S3 resume is negligible.
If -D SMM_REQUIRE is not specified, then PcdSmmSmramRequire remains FALSE
(from the DEC file), and then this patch has no effect (not counting some
changed debug messages).
If QEMU doesn't support S3 (or the user disabled it on the QEMU command
line), then this patch has no effect also.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19037 6f19259b-4bc3-4df7-8a09-765794883524
Control them with:
-fw_cfg name=opt/ovmf/PcdPropertiesTableEnable,file=no.txt \
-fw_cfg name=opt/ovmf/PcdSetNxForStack,file=yes.txt
where the contents of the text files can be
[0nN1yY](\n|\r\n)?
The macro trickery is not optimal, but it is caused by PcdSetBool(), which
is itself a macro, and can only take open-coded PCD names (ie. no
variables, like function parameters).
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18471 6f19259b-4bc3-4df7-8a09-765794883524
This patch de-duplicates the logic added in commit
OvmfPkg: PlatformPei: set SMBIOS entry point version dynamically
(git 37baf06b, SVN r17676) by hooking DetectSmbiosVersionLib into
SmbiosDxe.
Although said commit was supposed to work with SMBIOS 3.0 payloads from
QEMU, in practice that never worked, because the size / signature checks
in SmbiosVersionInitialization() would always fail, due to the SMBIOS 3.0
entry point being structurally different. Therefore this patch doesn't
regress OvmfPkg.
Cc: Wei Huang <wei@redhat.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Gabriel L. Somlo <somlo@cmu.edu>
Suggested-by: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18175 6f19259b-4bc3-4df7-8a09-765794883524
We'll soon increase the maximum guest-physical RAM size supported by OVMF.
For more RAM, the DXE IPL is going to build more page tables, and for that
it's going to need a bigger chunk from the permanent PEI RAM.
Otherwise CreateIdentityMappingPageTables() would fail with:
> DXE IPL Entry
> Loading PEIM at 0x000BFF61000 EntryPoint=0x000BFF61260 DxeCore.efi
> Loading DXE CORE at 0x000BFF61000 EntryPoint=0x000BFF61260
> AllocatePages failed: No 0x40201 Pages is available.
> There is only left 0x3F1F pages memory resource to be allocated.
> ASSERT .../MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c(123):
> BigPageAddress != 0
(The above example belongs to the artificially high, maximal address width
of 52, clamped by the DXE core to 48. The address width of 48 bits
corresponds to 256 TB or RAM, and requires a bit more than 1GB for paging
structures.)
Cc: Maoming <maoming.maoming@huawei.com>
Cc: Huangpeng (Peter) <peter.huangpeng@huawei.com>
Cc: Wei Liu <wei.liu2@citrix.com>
Cc: Brian J. Johnson <bjohnson@sgi.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Brian J. Johnson <bjohnson@sgi.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17719 6f19259b-4bc3-4df7-8a09-765794883524
Git commit 54753b60 (SVN r16870), "MdeModulePkg: Update SMBIOS revision to
3.0." changed PcdSmbiosVersion from 0x0208 to 0x0300. This controls the
version number of the SMBIOS entry point table (and other things) that
"MdeModulePkg/Universal/SmbiosDxe" installs.
Alas, this change breaks older Linux guests, like RHEL-6 (up to RHEL-6.7);
those are limited to 2.x (both in the guest kernel firmware driver, and in
the dmidecode utility). The SMBIOS 3.0 entry point has a different GUID --
defined in UEFI 2.5 -- pointing to it in the UEFI Configuration Table, and
guest kernels that lack upstream kernel commit e1ccbbc9d5 don't recognize
it.
The v2.1.0+ machine types of QEMU generate SMBIOS payload for the firmware
to install. The payload includes the entry point table ("anchor" table).
OvmfPkg/SmbiosPlatformDxe cannot install the anchor table (because that is
the jurisdiction of the generic "MdeModulePkg/Universal/SmbiosDxe"
driver); however, we can parse the entry point version from QEMU's anchor
table, and instruct "MdeModulePkg/Universal/SmbiosDxe" to adhere to that
version.
On machine types older than v2.1.0, the feature is not available, but
then, should anything in OVMF install SMBIOS tables, version 2.8 is simply
safer / more widely supported than 3.0 -- hence the default 2.8 value for
the dynamic PCD.
We set the PCD in PlatformPei (when not on the S3 resume path), because
that's an easy and certain way to set the PCD before a DXE driver reads
it. This follows the example of PcdEmuVariableNvStoreReserved (which is
read by EmuVariableFvbRuntimeDxe).
RHBZ: https://bugzilla.redhat.com/show_bug.cgi?id=1232876
Cc: Gabriel Somlo <somlo@cmu.edu>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Acked-by: Gabriel Somlo <somlo@cmu.edu>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17676 6f19259b-4bc3-4df7-8a09-765794883524
Set from PEI, this PCD allows subsequent stages (specifically
DXE_DRIVER and DXE_RUNTIME_DRIVER) to infer the underlying platform
type (e.g. PIIX4 or Q35/MCH) without the need to further query the
Host Bridge for its Device ID.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16374 6f19259b-4bc3-4df7-8a09-765794883524
OVMF's SecMain is unique in the sense that it links against the following
two libraries *in combination*:
- IntelFrameworkModulePkg/Library/LzmaCustomDecompressLib/
LzmaCustomDecompressLib.inf
- MdePkg/Library/BaseExtractGuidedSectionLib/
BaseExtractGuidedSectionLib.inf
The ExtractGuidedSectionLib library class allows decompressor modules to
register themselves (keyed by GUID) with it, and it allows clients to
decompress file sections with a registered decompressor module that
matches the section's GUID.
BaseExtractGuidedSectionLib is a library instance (of type BASE) for this
library class. It has no constructor function.
LzmaCustomDecompressLib is a compatible decompressor module (of type
BASE). Its section type GUID is
gLzmaCustomDecompressGuid == EE4E5898-3914-4259-9D6E-DC7BD79403CF
When OVMF's SecMain module starts, the LzmaCustomDecompressLib constructor
function is executed, which registers its LZMA decompressor with the above
GUID, by calling into BaseExtractGuidedSectionLib:
LzmaDecompressLibConstructor() [GuidedSectionExtraction.c]
ExtractGuidedSectionRegisterHandlers() [BaseExtractGuidedSectionLib.c]
GetExtractGuidedSectionHandlerInfo()
PcdGet64 (PcdGuidedExtractHandlerTableAddress) -- NOTE THIS
Later, during a normal (non-S3) boot, SecMain utilizes this decompressor
to get information about, and to decompress, sections of the OVMF firmware
image:
SecCoreStartupWithStack() [OvmfPkg/Sec/SecMain.c]
SecStartupPhase2()
FindAndReportEntryPoints()
FindPeiCoreImageBase()
DecompressMemFvs()
ExtractGuidedSectionGetInfo() [BaseExtractGuidedSectionLib.c]
ExtractGuidedSectionDecode() [BaseExtractGuidedSectionLib.c]
Notably, only the extraction depends on full-config-boot; the registration
of LzmaCustomDecompressLib occurs unconditionally in the SecMain EFI
binary, triggered by the library constructor function.
This is where the bug happens. BaseExtractGuidedSectionLib maintains the
table of GUIDed decompressors (section handlers) at a fixed memory
location; selected by PcdGuidedExtractHandlerTableAddress (declared in
MdePkg.dec). The default value of this PCD is 0x1000000 (16 MB).
This causes SecMain to corrupt guest OS memory during S3, leading to
random crashes. Compare the following two memory dumps, the first taken
right before suspending, the second taken right after resuming a RHEL-7
guest:
crash> rd -8 -p 1000000 0x50
1000000: c0 00 08 00 02 00 00 00 00 00 00 00 00 00 00 00 ................
1000010: d0 33 0c 00 00 c9 ff ff c0 10 00 01 00 88 ff ff .3..............
1000020: 0a 6d 57 32 0f 00 00 00 38 00 00 01 00 88 ff ff .mW2....8.......
1000030: 00 00 00 00 00 00 00 00 73 69 67 6e 61 6c 6d 6f ........signalmo
1000040: 64 75 6c 65 2e 73 6f 00 00 00 00 00 00 00 00 00 dule.so.........
vs.
crash> rd -8 -p 1000000 0x50
1000000: 45 47 53 49 01 00 00 00 20 00 00 01 00 00 00 00 EGSI.... .......
1000010: 20 01 00 01 00 00 00 00 a0 01 00 01 00 00 00 00 ...............
1000020: 98 58 4e ee 14 39 59 42 9d 6e dc 7b d7 94 03 cf .XN..9YB.n.{....
1000030: 00 00 00 00 00 00 00 00 73 69 67 6e 61 6c 6d 6f ........signalmo
1000040: 64 75 6c 65 2e 73 6f 00 00 00 00 00 00 00 00 00 dule.so.........
The "EGSI" signature corresponds to EXTRACT_HANDLER_INFO_SIGNATURE
declared in
MdePkg/Library/BaseExtractGuidedSectionLib/BaseExtractGuidedSectionLib.c.
Additionally, the gLzmaCustomDecompressGuid (quoted above) is visible at
guest-phys offset 0x1000020.
Fix the problem as follows:
- Carve out 4KB from the 36KB gap that we currently have between
PcdOvmfLockBoxStorageBase + PcdOvmfLockBoxStorageSize == 8220 KB
and
PcdOvmfSecPeiTempRamBase == 8256 KB.
- Point PcdGuidedExtractHandlerTableAddress to 8220 KB (0x00807000).
- Cover the area with an EfiACPIMemoryNVS type memalloc HOB, if S3 is
supported and we're not currently resuming.
The 4KB size that we pick is an upper estimate for
BaseExtractGuidedSectionLib's internal storage size. The latter is
calculated as follows (see GetExtractGuidedSectionHandlerInfo()):
sizeof(EXTRACT_GUIDED_SECTION_HANDLER_INFO) + // 32
PcdMaximumGuidedExtractHandler * (
sizeof(GUID) + // 16
sizeof(EXTRACT_GUIDED_SECTION_DECODE_HANDLER) + // 8
sizeof(EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER) // 8
)
OVMF sets PcdMaximumGuidedExtractHandler to 16 decimal (which is the
MdePkg default too), yielding 32 + 16 * (16 + 8 + 8) == 544 bytes.
Regarding the lifecycle of the new area:
(a) when and how it is initialized after first boot of the VM
The library linked into SecMain finds that the area lacks the signature.
It initializes the signature, plus the rest of the structure. This is
independent of S3 support.
Consumption of the area is also limited to SEC (but consumption does
depend on full-config-boot).
(b) how it is protected from memory allocations during DXE
It is not, in the general case; and we don't need to. Nothing else links
against BaseExtractGuidedSectionLib; it's OK if DXE overwrites the area.
(c) how it is protected from the OS
When S3 is enabled, we cover it with AcpiNVS in InitializeRamRegions().
When S3 is not supported, the range is not protected.
(d) how it is accessed on the S3 resume path
Examined by the library linked into SecMain. Registrations update the
table in-place (based on GUID matches).
(e) how it is accessed on the warm reset path
If S3 is enabled, then the OS won't damage the table (due to (c)), hence
see (d).
If S3 is unsupported, then the OS may or may not overwrite the
signature. (It likely will.) This is identical to the pre-patch status.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15433 6f19259b-4bc3-4df7-8a09-765794883524
The S3 suspend/resume infrastructure depends on the LockBox library class.
The edk2 tree currently contains Null and SMM instances. The Null instance
is useless, and the SMM instance would require SMM emulation by including
the SMM core and adding several new drivers, which is deemed too complex.
Hence add a simple LockBoxLib instance for OVMF.
jordan.l.justen@intel.com:
* use PCDs instead of EmuNvramLib
- clear memory in PlatformPei on non S3 boots
* allocate NVS memory and store a pointer to that memory
- reduces memory use at fixed locations
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15301 6f19259b-4bc3-4df7-8a09-765794883524
On X64, the reset vector code in
"OvmfPkg/ResetVector/Ia32/PageTables64.asm" identity maps the first 4GB of
RAM for PEI, consuming six frames starting at 8MB.
This range is declared by the PcdOvmfSecPageTablesBase/Size PCDs.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
[jordan.l.justen@intel.com: Move to MemDetect.c; use PCDs]
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15298 6f19259b-4bc3-4df7-8a09-765794883524
This 32k section of RAM will be declared to the PEI Core on
S3 resume to allow memory allocations during S3 resume PEI.
If the boot mode is BOOT_ON_S3_RESUME, then we publish
the pre-reserved PcdS3AcpiReservedMemory range to PEI.
If the boot mode is not BOOT_ON_S3_RESUME, then we reserve
this range as ACPI NVS so the OS will not use it.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15294 6f19259b-4bc3-4df7-8a09-765794883524
QEMU indicates whether S3 is supported or not in the
fw-cfg interface.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15293 6f19259b-4bc3-4df7-8a09-765794883524
By splitting the PEI and DXE phases into separate FVs,
we can only reserve the PEI FV for ACPI S3 support.
This should save about 7MB.
Unfortunately, this all has to happen in a single commit.
DEC:
* Remove PcdOvmfMemFv(Base|Size)
* Add PcdOvmfPeiMemFv(Base|Size)
* Add PcdOvmfDxeMemFv(Base|Size)
FDF:
* Add new PEIFV. Move PEI modules here.
* Remove MAINFV
* Add PEIFV and DXEFV into FVMAIN_COMPACT
- They are added as 2 sections of a file, and compressed
together so they should retain good compression
* PcdOvmf(Pei|Dxe)MemFv(Base|Size) are set
SEC:
* Find both the PEI and DXE FVs after decompression.
- Copy them separately to their memory locations.
Platform PEI driver:
* Fv.c: Publish both FVs as appropriate
* MemDetect.c: PcdOvmfMemFv(Base|Size) =>
PcdOvmfDxeMemFv(Base|Size)
OVMF.fd before:
Non-volatile data storage
FVMAIN_COMPACT uncompressed
FV FFS file LZMA compressed
MAINFV uncompressed
individual PEI modules uncompressed
FV FFS file compressed with PI_NONE
DXEFV uncompressed
individual DXE modules uncompressed
SECFV uncompressed
OVMF.fd after:
Non-volatile data storage
FVMAIN_COMPACT uncompressed
FV FFS file LZMA compressed
PEIFV uncompressed
individual PEI modules uncompressed
DXEFV uncompressed
individual DXE modules uncompressed
SECFV uncompressed
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15151 6f19259b-4bc3-4df7-8a09-765794883524
This patch sets PcdPciDisableBusEnumeration to true then makes use of
PublishPeiMemory and XenMemMapInitialization to construct memory map for
Xen guest.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Wei Liu <wei.liu2@citrix.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14946 6f19259b-4bc3-4df7-8a09-765794883524
I. There are at least three locations in OvmfPkg that manipulate the PMBA
and related PIIX4 registers.
1. MiscInitialization() [OvmfPkg/PlatformPei/Platform.c]
module type: PEIM -- Pre-EFI Initialization Module
(a) currently sets the PMBA only: 00.01.3 / 0x40 bits [15:6]
2. AcpiTimerLibConstructor() [OvmfPkg/Library/AcpiTimerLib/AcpiTimerLib.c]
module type: BASE -- probably callable anywhere after PEI
(a) sets the PMBA if needed: 00.01.3 / 0x40 bits [15:6]
(b) sets PCICMD/IOSE if needed: 00.01.3 / 0x04 bit 0
(c) sets PMREGMISC/PMIOSE: 00.01.3 / 0x80 bit 0
3. AcpiInitialization() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c]
module type: DXE_DRIVER -- Driver eXecution Environment
(a) sets SCI_EN, which depends on correct PMBA setting from earlier
(
The relative order of #1 and #3 is dictated minimally by their module
types. Said relative order can be verified with the boot log:
27 Loading PEIM at 0x00000822320 EntryPoint=0x00000822580
PlatformPei.efi
28 Platform PEIM Loaded
1259 PlatformBdsInit
1270 PlatformBdsPolicyBehavior
Line 28 is printed by InitializePlatform()
[OvmfPkg/PlatformPei/Platform.c] which is the entry point of that
module. The other two lines are printed by the corresponding functions
in "OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c".
)
Currently #2 (AcpiTimerLibConstructor()) is called in a random spot
(whenever it gets loaded from the firmware image) and masks the
insufficient setup in #1. We shouldn't depend on that, PEI should finish
with IO space being fully accessibe. In addition, PEI should program the
same PMBA value as AcpiTimerLib.
II. The PEI change notwithstanding, AcpiTimerLib should stay defensive and
ensure proper PM configuration for itself (either by confirming or by
doing).
III. Considering a possible cleanup/unification of #2 and #3: timer
functions relying on AcpiTimerLibConstructor(),
- MicroSecondDelay()
- NanoSecondDelay()
- GetPerformanceCounter()
- GetPerformanceCounterProperties()
- GetTimeInNanoSecond()
may be called before #3 is reached (in Boot Device Selection phase), so we
should not move the initialization from #2 to #3. (Again, AcpiTimerLib
should contain its own setup.)
We should also not move #3 to an earlier phase -- SCI_EN is premature
unless we're about to boot real soon ("enable generation of SCI upon
assertion of PWRBTN_STS, LID_STS, THRM_STS, or GPI_STS bits").
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13722 6f19259b-4bc3-4df7-8a09-765794883524
Fix IO-APIC range size.
Add HPET.
Take LAPIC base from PCD and fix range size.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13572 6f19259b-4bc3-4df7-8a09-765794883524
* Make PlatformPei aware of Xen
* Fix assigned PIO and MMIO ranges to be compatible with Xen
* Reserve Xen HVM address range
* Publish XenInfo HOB
* Don't program PIIX4 PMBA for Xen
Signed-off-by: Andrei Warkentin <andreiw@motorola.com>
Reviewed-by: gavinguan
Signed-off-by: jljusten
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@12091 6f19259b-4bc3-4df7-8a09-765794883524
* Only SEC is uncompressed now
* The MAIN FV with PEI & DXE can easily shrink and grow as needed
* The final output will now be OVMF.Fv rather than OVMF.fd
* The final output size will be a multiple of 64kb
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@9672 6f19259b-4bc3-4df7-8a09-765794883524
Make use of EMU Variable driver's PcdEmuVariableNvStoreReserved to allow
NV variables to persist a VM system reset. The contents of the NV variables
will still be lost when the VM is shut down, but they appear to persist
when the efi shell reset command is run. (Tested with QEMU 0.10.0.)
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@9241 6f19259b-4bc3-4df7-8a09-765794883524