We already parse some boolean and integer values from named fw_cfg files
(usually into PCDs), and we're going to cover more. Add a dedicated
library for centralizing the parsing logic.
Cc: Ard Biesheuvel <ard.biesheuvel@arm.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Per Sundstrom <per_sundstrom@yahoo.com>
Cc: Philippe Mathieu-Daudé <philmd@redhat.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2681
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20200424075353.8489-2-lersek@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@arm.com>
Implement EXT_SCSI_PASS_THRU.PassThru().
Machines should be able to boot after this commit.
Tested with Ubuntu 16.04 guest.
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2567
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Message-Id: <20200328200100.60786-16-liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Implement EXT_SCSI_PASS_THRU.GetNextTarget() and
EXT_SCSI_PASS_THRU.GetNextTargetLun().
ScsiBusDxe scans all MaxTarget * MaxLun possible devices.
This can take unnecessarily long for large number of targets.
To deal with this, VirtioScsiDxe has defined PCDs to limit the
MaxTarget & MaxLun to desired values which gives sufficient
performance. It is very important in virtio-scsi as it can have
very big MaxTarget & MaxLun.
Even though a common PVSCSI device has a default MaxTarget=64 and
MaxLun=0, we implement similar mechanism as virtio-scsi for completeness.
This may be useful in the future when PVSCSI will have bigger values
for MaxTarget and MaxLun.
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2567
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Message-Id: <20200328200100.60786-7-liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
In preparation of moving the legacy x86 loading to an implementation
of the QEMU load image library class, introduce a protocol header
and GUID that we will use to identify legacy loaded x86 Linux kernels
in the protocol database.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Introduce the QemuLoadImageLib library class that we will instantiate
to load the kernel image passed via the QEMU command line using the
standard LoadImage boot service.
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2566
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
In an upcoming patch, we will introduce a separate DXE driver that
exposes the virtual SimpleFileSystem implementation that carries the
kernel and initrd passed via the QEMU command line, and a separate
library that consumes it, to be incorporated into the boot manager.
Since the GUID used for the SimpleFileSystem implementation's device
path will no longer be for internal use only, create a well defined
GUID to identify the media device path.
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2566
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Add LINUX_EFI_INITRD_MEDIA_GUID to our collection of GUID definitions,
it can be used in a media device path to specify a Linux style initrd
that can be loaded by the OS using the LoadFile2 protocol.
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2564
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
On ARM systems, the TPM does not live at a fixed address, and so we
need the platform to discover it first. So introduce a PPI that signals
that the TPM address has been discovered and recorded in the appropriate
PCD, and make Tcg2ConfigPei depex on it when built for ARM or AARCH64.
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2560
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
In the DXE phase and later, it is possible for a module to dynamically
determine whether a CSM is enabled. An example can be seen in commit
855743f717 ("OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no
CSM", 2016-05-25).
SEC and PEI phase modules cannot check the Legacy BIOS Protocol however.
For their sake, introduce a new feature PCD that simply reflects the
CSM_ENABLE build flag.
Cc: Anthony Perard <anthony.perard@citrix.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Julien Grall <julien@xen.org>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1512
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20200129214412.2361-11-lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
For supporting VCPU hotplug with SMM enabled/required, QEMU offers the
(dynamically detectable) feature called "SMRAM at default SMBASE". When
the feature is enabled, the firmware can lock down the 128 KB range
starting at the default SMBASE; that is, the [0x3_0000, 0x4_FFFF]
interval. The goal is to shield the very first SMI handler of the
hotplugged VCPU from OS influence.
Multiple modules in OVMF will have to inter-operate for locking down this
range. Introduce a dynamic PCD that will reflect the feature (to be
negotiated by PlatformPei), for coordination between drivers.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1512
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
Message-Id: <20200129214412.2361-2-lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Introduce PcdXenGrantFrames to replace a define in XenBusDxe and allow
the same value to be used in a different module.
The reason for the number of page to be 4 doesn't exist anymore, so
simply remove the comment.
Signed-off-by: Anthony PERARD <anthony.perard@citrix.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20190813113119.14804-33-anthony.perard@citrix.com>
The purpose of XenPlatformLib is to regroup the few functions that are
used in several places to detect if Xen is detected, and to get the
XenInfo HOB.
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1689
Signed-off-by: Anthony PERARD <anthony.perard@citrix.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20190813113119.14804-14-anthony.perard@citrix.com>
As described in the Xen PVH documentation [1], "ebx: contains the
physical memory address where the loader has placed the boot start info
structure". To have this pointer saved to be able to use it later in the
PEI phase, we allocate some space in the MEMFD for it. We use 'XPVH' as
a signature (for "Xen PVH").
[1] https://xenbits.xenproject.org/docs/unstable/misc/pvh.html
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1689
Signed-off-by: Anthony PERARD <anthony.perard@citrix.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20190813113119.14804-8-anthony.perard@citrix.com>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=1811
This commit will add the PCD definitions consumed by the duplicated
drivers:
* VideoDxe
* LegacyBiosDxe
into the OvmfPkg DEC file.
Please note that, instead of adding these PCDs under section:
[PcdsFixedAtBuild, PcdsDynamic, PcdsDynamicEx, PcdsPatchableInModule]
as in IntelFrameworkModulePkg.dec file, they are added in section:
[PcdsFixedAtBuild]
in OvmfPkg.dec instead.
Cc: Ray Ni <ray.ni@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hao A Wu <hao.a.wu@intel.com>
Reviewed-by: David Woodhouse <dwmw2@infradead.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=1811
The previous file-duplication commit has put all the CSM related header
files within folder: OvmfPkg/Csm/Inclue.
This commit will update the DEC file to add that folder under the
'[Include]' section.
Cc: Ray Ni <ray.ni@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hao A Wu <hao.a.wu@intel.com>
Reviewed-by: David Woodhouse <dwmw2@infradead.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=1811
This commit will add the Guid definitions of the duplicated CSM-related
Guids and Protocols from IntelFramework[Module]Pkg.
Cc: Ray Ni <ray.ni@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hao A Wu <hao.a.wu@intel.com>
Reviewed-by: David Woodhouse <dwmw2@infradead.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
For the EnrollDefaultKeys application, the hypervisor is expected to add a
string entry to the "OEM Strings" (Type 11) SMBIOS table, with the
following format:
4e32566d-8e9e-4f52-81d3-5bb9715f9727:<Base64 X509 cert for PK and first KEK>
The string representation of the GUID at the front is the "application
prefix", in terms of QEMU commit
<https://git.qemu.org/?p=qemu.git;a=commit;h=2d6dcbf93fb0>.
Introduce this GUID in the usual manner.
Cc: Anthony Perard <anthony.perard@citrix.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Julien Grall <julien.grall@arm.com>
Bugzilla: https://bugzilla.tianocore.org/show_bug.cgi?id=1747
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Philippe Mathieu-Daude <philmd@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Gary Lin <glin@suse.com>
The GUID
77FA9ABD-0359-4D32-BD60-28F4E78F784B
is specified in MSDN, at
<https://msdn.microsoft.com/en-us/ie/dn932805(v=vs.94)>, therefore it
deserves an entry in the package DEC file, and a header file under
"Include/Guid".
(Arguably, this GUID declaration / definition could even live under
SecurityPkg, but the edk2 tradition has been to hoist GUIDs,
protocols/PPIs, and lib classes from OvmfPkg to a core package only when
dependent C code is added to the core package.)
Cc: Anthony Perard <anthony.perard@citrix.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Julien Grall <julien.grall@arm.com>
Bugzilla: https://bugzilla.tianocore.org/show_bug.cgi?id=1747
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Philippe Mathieu-Daude <philmd@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Gary Lin <glin@suse.com>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=1496
According to the DEC file in PcAtChipsetPkg, this commit adds the two
8259-driver-related PCDs into the OvmfPkg DEC file.
Please note that, instead of adding the two PCDs under section:
[PcdsFixedAtBuild, PcdsDynamic, PcdsDynamicEx, PcdsPatchableInModule]
as in PcAtChipsetPkg.dec file, they are added in section:
[PcdsFixedAtBuild]
in OvmfPkg.dec instead.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Ray Ni <ray.ni@intel.com>
Signed-off-by: Hao Wu <hao.a.wu@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=1496
This commit copies the exact Legacy8259 protocol header file from
IntelFrameworkPkg to OvmfPkg. Also, the protocol GUID definition is
duplicated in the OvmfPkg DEC file.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Ray Ni <ray.ni@intel.com>
Signed-off-by: Hao Wu <hao.a.wu@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Introduce the Platform Boot Manager Print Status Code Library (for short,
PlatformBmPrintScLib) class for catching and printing the LoadImage() /
StartImage() preparations, and return statuses, that are reported by
UefiBootManagerLib.
In the primary library instance, catch only such status codes that
UefiBootManagerLib reports from the same module that contains
PlatformBmPrintScLib. The intent is to establish a reporting-printing
channel within BdsDxe, between UefiBootManagerLib and
PlatformBmPrintScLib. Ignore status codes originating elsewhence, e.g.
from UiApp's copy of UefiBootManagerLib.
Cc: Anthony Perard <anthony.perard@citrix.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Julien Grall <julien.grall@linaro.org>
Cc: Ray Ni <ray.ni@intel.com>
Ref: https://bugzilla.redhat.com/show_bug.cgi?id=1515418
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Add a library class, and a UEFI_DRIVER lib instance, that are layered on
top of PciCapLib, and allow clients to plug an EFI_PCI_IO_PROTOCOL backend
into PciCapLib, for config space access.
(Side note:
Although the UEFI spec says that EFI_PCI_IO_PROTOCOL_CONFIG() returns
EFI_UNSUPPORTED if "[t]he address range specified by Offset, Width, and
Count is not valid for the PCI configuration header of the PCI
controller", this patch doesn't directly document the EFI_UNSUPPORTED
error code, for ProtoDevTransferConfig() and its callers
ProtoDevReadConfig() and ProtoDevWriteConfig(). Instead, the patch refers
to "unspecified error codes". The reason is that in edk2, the
PciIoConfigRead() and PciIoConfigWrite() functions [1] can also return
EFI_INVALID_PARAMETER for the above situation.
Namely, PciIoConfigRead() and PciIoConfigWrite() first call
PciIoVerifyConfigAccess(), which indeed produces the standard
EFI_UNSUPPORTED error code, if the device's config space is exceeded.
However, if PciIoVerifyConfigAccess() passes, and we reach
RootBridgeIoPciRead() and RootBridgeIoPciWrite() [2], then
RootBridgeIoCheckParameter() can still fail, e.g. if the root bridge
doesn't support extended config space (see commit 014b472053).
For all kinds of Limit violations in IO, MMIO, and config space,
RootBridgeIoCheckParameter() returns EFI_INVALID_PARAMETER, not
EFI_UNSUPPORTED. That error code is then propagated up to, and out of,
PciIoConfigRead() and PciIoConfigWrite().
[1] MdeModulePkg/Bus/Pci/PciBusDxe/PciIo.c
[2] MdeModulePkg/Bus/Pci/PciHostBridgeDxe/PciRootBridgeIo.c
)
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Add a library class, and a BASE lib instance, that are layered on top of
PciCapLib, and allow clients to plug a PciSegmentLib backend into
PciCapLib, for config space access.
(Side note:
The "MaxDomain" parameter is provided because, in practice, platforms
exist where a PCI Express device may show up on a root bridge such that
the root bridge doesn't support access to extended config space. Earlier
the same issue was handled for MdeModulePkg/PciHostBridgeDxe in commit
014b472053. However, that solution does not apply to the PciSegmentLib
class, because:
(1) The config space accessor functions of the PciSegmentLib class, such
as PciSegmentReadBuffer(), have no way of informing the caller whether
access to extended config space actually succeeds.
(For example, in the UefiPciSegmentLibPciRootBridgeIo instace, which
could in theory benefit from commit 014b472053, the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read() status code is explicitly
ignored, because there's no way for the lib instance to propagate it
to the PciSegmentLib caller. If the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read() call fails, then
DxePciSegmentLibPciRootBridgeIoReadWorker() returns Data with
indeterminate value.)
(2) There is no *general* way for any firmware platform to provide, or
use, a PciSegmentLib instance in which access to extended config space
always succeeds.
In brief, on a platform where config space may be limited to 256 bytes,
access to extended config space through PciSegmentLib may invoke undefined
behavior; therefore PciCapPciSegmentLib must give platforms a way to
prevent such access.)
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Add a library class, and a BASE lib instance, to work more easily with PCI
capabilities in PCI config space. Functions are provided to parse
capabilities lists, and to locate, describe, read and write capabilities.
PCI config space access is abstracted away.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Suggested-by: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
BLOCK_MMIO_PROTOCOL and BlockMmioToBlockIoDxe were introduced to OvmfPkg
in March 2010, in adjacent commits b0f5144676 and efd82c5794. In the
past eight years, no driver or application seems to have materialized that
produced BLOCK_MMIO_PROTOCOL instances. Meanwhile the UEFI spec has
developed the EFI_RAM_DISK_PROTOCOL, which edk2 implements (and OVMF
includes) as RamDiskDxe.
Rather than fixing issues in the unused BlockMmioToBlockIoDxe driver,
remove the driver, together with the BLOCK_MMIO_PROTOCOL definition that
now becomes unused too.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Steven Shi <steven.shi@intel.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=926
Reported-by: Steven Shi <steven.shi@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Platforms that optionally provide an IOMMU protocol should do so by
including a DXE driver (usually called IoMmuDxe) that produces either
the IOMMU protocol -- if the underlying capabilities are available --,
or gIoMmuAbsentProtocolGuid, to signal that the IOMMU capability
detection completed with negative result (i.e., no IOMMU will be
available in the system).
In turn, DXE drivers (and library instances) that are supposed to use
the IOMMU protocol if it is available should add the following to
their DEPEX:
gEdkiiIoMmuProtocolGuid OR gIoMmuAbsentProtocolGuid
This ensures these client modules will only be dispatched after IOMMU
detection completes (with positive or negative result).
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Leo Duran <leo.duran@amd.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Suggested-by: Jordan Justen <jordan.l.justen@intel.com>
Suggested-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
PlatformPei can now overwrite PcdQ35TsegMbytes; document this in
"OvmfPkg/OvmfPkg.dec".
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
We can now make PcdQ35TsegMbytes dynamic, in preparation for the extended
TSEG size feature. At the moment we only move the declaration in
OvmfPkg.dec from [PcdsFixedAtBuild] to [PcdsDynamic, PcdsDynamicEx], and
provide the dynamic defaults (with the same value, 8) in the DSC files if
SMM_REQUIRE is TRUE.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Suggested-by: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Widen PcdQ35TsegMbytes to UINT16, in preparation for setting it
dynamically to the QEMU-advertized extended TSEG size (which is 16-bits
wide).
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
This PCD is no longer used.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
This library class will enable driver modules (a) to query whether S3
support was enabled on the QEMU command line, (b) to produce fw_cfg DMA
operations that are to be replayed at S3 resume time.
Declare the library class in OvmfPkg/OvmfPkg.dec, and add the library
class header under OvmfPkg/Include/Library/. At the moment, the only API
we expose is QemuFwCfgS3Enabled(), which we'll first migrate from
QemuFwCfgLib. Further interfaces will be added in later patches.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=394
Suggested-by: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
No module in OvmfPkg uses these PCDs any longer.
The first PCD mentioned is declared by OvmfPkg, so we can remove even the
declaration.
The second PCD comes from IntelFrameworkModulePkg. The module that
consumes PcdS3AcpiReservedMemorySize is called
"IntelFrameworkModulePkg/Universal/Acpi/AcpiS3SaveDxe", and it is built
into OVMF. However, AcpiS3SaveDxe consumes the PCD only conditionally: it
depends on the feature PCD called PcdFrameworkCompatibilitySupport, which
we never enable in OVMF.
The 32KB gap that used to be the S3 permanent PEI memory is left unused in
MEMFD for now; it never hurts to have a few KB available there, for future
features.
Cc: Jeff Fan <jeff.fan@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Michael Kinney <michael.d.kinney@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jeff Fan <jeff.fan@intel.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Make PcdPciIoBase and PcdPciIoSize dynamic PCDs, and set them in
MemMapInitialization(), where we produce our EFI_RESOURCE_IO descriptor
HOB. (The PCD is consumed by the core PciHostBridgeDxe driver, through our
PciHostBridgeLib instance.)
Take special care to keep the GCD IO space map unchanged on all platforms
OVMF runs on.
Cc: Gabriel Somlo <somlo@cmu.edu>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Ref: https://bugzilla.redhat.com/show_bug.cgi?id=1333238
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Tested-by: Gabriel Somlo <somlo@cmu.edu>
In the next patches, we'll differentiate the PMBA IO port address that we
program on PIIX4 vs. Q35.
Normally we'd just turn PcdAcpiPmBaseAddress into a dynamic PCD. However,
because we need this value in BaseRomAcpiTimerLib too (which cannot access
RAM and dynamic PCDs), it must remain a build time constant. We will
introduce its Q35 counterpart later.
As first step, replace the PCD with a new macro in "OvmfPlatforms.h";
Jordan prefers the latter to fixed PCDs in this instance.
Cc: Gabriel Somlo <somlo@cmu.edu>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Ref: https://bugzilla.redhat.com/show_bug.cgi?id=1333238
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Tested-by: Gabriel Somlo <somlo@cmu.edu>
The main observation about the 64-bit PCI host aperture is that it is the
highest part of the useful address space. It impacts the top of the GCD
memory space map, and, consequently, our maximum address width calculation
for the CPU HOB too.
Thus, modify the GetFirstNonAddress() function to consider the following
areas above the high RAM, while calculating the first non-address (i.e.,
the highest inclusive address, plus one):
- the memory hotplug area (optional, the size comes from QEMU),
- the 64-bit PCI host aperture (we set a default size).
While computing the first non-address, capture the base and the size of
the 64-bit PCI host aperture at once in PCDs, since they are natural parts
of the calculation.
(Similarly to how PcdPciMmio32* are not rewritten on the S3 resume path
(see the InitializePlatform() -> MemMapInitialization() condition), nor
are PcdPciMmio64*. Only the core PciHostBridgeDxe driver consumes them,
through our PciHostBridgeLib instance.)
Set 32GB as the default size for the aperture. Issue#59 mentions the
NVIDIA Tesla K80 as an assignable device. According to nvidia.com, these
cards may have 24GB of memory (probably 16GB + 8GB BARs).
As a strictly experimental feature, the user can specify the size of the
aperture (in MB) as well, with the QEMU option
-fw_cfg name=opt/ovmf/X-PciMmio64Mb,string=65536
The "X-" prefix follows the QEMU tradition (spelled "x-" there), meaning
that the property is experimental, unstable, and might go away any time.
Gerd has proposed heuristics for sizing the aperture automatically (based
on 1GB page support and PCPU address width), but such should be delayed to
a later patch (which may very well back out "X-PciMmio64Mb" then).
For "everyday" guests, the 32GB default for the aperture size shouldn't
impact the PEI memory demand (the size of the page tables that the DXE IPL
PEIM builds). Namely, we've never reported narrower than 36-bit addresses;
the DXE IPL PEIM has always built page tables for 64GB at least.
For the aperture to bump the address width above 36 bits, either the guest
must have quite a bit of memory itself (in which case the additional PEI
memory demand shouldn't matter), or the user must specify a large aperture
manually with "X-PciMmio64Mb" (and then he or she is also responsible for
giving enough RAM to the VM, to satisfy the PEI memory demand).
Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Marcel Apfelbaum <marcel@redhat.com>
Cc: Thomas Lamprecht <t.lamprecht@proxmox.com>
Ref: https://github.com/tianocore/edk2/issues/59
Ref: http://www.nvidia.com/object/tesla-servers.html
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
QEMU's ACPI table generator can only create meaningful _CRS objects --
apertures -- for the root buses if all of the PCI devices behind those
buses are actively decoding their IO and MMIO resources, at the time of
the firmware fetching the "etc/table-loader" fw_cfg file. This is not a
QEMU error; QEMU follows the definition of BARs (which are meaningless
when decoding is disabled).
Currently we hook up AcpiPlatformDxe to the PCI Bus driver's
gEfiPciEnumerationCompleteProtocolGuid cue. Unfortunately, when the PCI
Bus driver installs this protocol, it's *still* not the right time for
fetching "etc/table-loader": although resources have been allocated and
BARs have been programmed with them, the PCI Bus driver has also cleared
IO and MMIO decoding in the command registers of the devices.
Furthermore, we couldn't reenable IO and MMIO decoding temporarily in our
gEfiPciEnumerationCompleteProtocolGuid callback even if we wanted to,
because at that time the PCI Bus driver has not produced PciIo instances
yet.
Our Platform BDSes are responsible for connecting the root bridges, hence
they know exactly when the PciIo instances become available -- not when
PCI enumeration completes (signaled by the above protocol), but when the
ConnectController() calls return.
This is when our Platform BDSes should explicitly cue in AcpiPlatformDxe.
Then AcpiPlatformDxe can temporarily enable IO and MMIO decoding for all
devices, while it contacts QEMU for the ACPI payload.
This patch introduces the event group GUID that we'll use for unleashing
AcpiPlatformDxe from our Platform BDSes.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
We'll need more room in the next patch. No functional changes.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Going forward, two modules will need to know about the aperture:
PlatformPei (as before), and OVMF's upcoming PciHostBridgeLib instance
(because the core PciHostBridgeDxe driver requires the library to state
the exact apertures for all root bridges).
On QEMU, all root bridges share the same MMIO aperture, hence one pair of
PCDs suffices.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ruiyu Ni <ruiyu.ni@intel.com>
Cc: Marcel Apfelbaum <marcel@redhat.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
At the moment we don't intend to customize this aperture at runtime, but
going forward, two modules will need to know about it: PlatformPei (as
before), and OVMF's upcoming PciHostBridgeLib instance (because the core
PciHostBridgeDxe driver requires the library to state the exact apertures
for all root bridges).
On QEMU, all root bridges share the same IO port aperture, hence one pair
of PCDs suffices.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ruiyu Ni <ruiyu.ni@intel.com>
Cc: Marcel Apfelbaum <marcel@redhat.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
At the location of this header an earlier [PcdsFixedAtBuild] section is in
effect already.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ruiyu Ni <ruiyu.ni@intel.com>
Cc: Marcel Apfelbaum <marcel@redhat.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
PlatformPei calls GetSystemMemorySizeBelow4gb() in three locations:
- PublishPeiMemory(): on normal boot, the permanent PEI RAM is installed
so that it ends with the RAM below 4GB,
- QemuInitializeRam(): on normal boot, memory resource descriptor HOBs are
created for the RAM below 4GB; plus MTRR attributes are set
(independently of S3 vs. normal boot)
- MemMapInitialization(): an MMIO resource descriptor HOB is created for
PCI resource allocation, on normal boot, starting at max(RAM below 4GB,
2GB).
The first two of these is adjusted for the configured TSEG size, if
PcdSmmSmramRequire is set:
- In PublishPeiMemory(), the permanent PEI RAM is kept under TSEG.
- In QemuInitializeRam(), we must keep the DXE out of TSEG.
One idea would be to simply trim the [1MB .. LowerMemorySize] memory
resource descriptor HOB, leaving a hole for TSEG in the memory space
map.
The SMM IPL will however want to massage the caching attributes of the
SMRAM range that it loads the SMM core into, with
gDS->SetMemorySpaceAttributes(), and that won't work on a hole. So,
instead of trimming this range, split the TSEG area off, and report it
as a cacheable reserved memory resource.
Finally, since reserved memory can be allocated too, pre-allocate TSEG
in InitializeRamRegions(), after QemuInitializeRam() returns. (Note that
this step alone does not suffice without the resource descriptor HOB
trickery: if we omit that, then the DXE IPL PEIM fails to load and start
the DXE core.)
- In MemMapInitialization(), the start of the PCI MMIO range is not
affected.
We choose the largest option (8MB) for the default TSEG size. Michael
Kinney pointed out that the SMBASE relocation in PiSmmCpuDxeSmm consumes
SMRAM proportionally to the number of CPUs. From the three options
available, he reported that 8MB was both necessary and sufficient for the
SMBASE relocation to succeed with 255 CPUs:
- http://thread.gmane.org/gmane.comp.bios.edk2.devel/3020/focus=3137
- http://thread.gmane.org/gmane.comp.bios.edk2.devel/3020/focus=3177
Cc: Michael Kinney <michael.d.kinney@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Michael Kinney <michael.d.kinney@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19039 6f19259b-4bc3-4df7-8a09-765794883524
The DecompressMemFvs() function in "OvmfPkg/Sec/SecMain.c" uses more
memory, temporarily, than what PEIFV and DXEFV will ultimately need.
First, it uses an output buffer for decompression, second, the
decompression itself needs a scratch buffer (and this scratch buffer is
the highest area that SEC uses).
DecompressMemFvs() used to be called on normal boots only (ie. not on S3
resume), which is why the decompression output buffer and the scratch
buffer were allowed to scribble over RAM. However, we'll soon start to
worry during S3 resume that the runtime OS might tamper with the
pre-decompressed PEIFV, and we'll decompress the firmware volumes on S3
resume too, from pristine flash. For this we'll need to know the end of
the scratch buffer in advance, so we can prepare a non-malicious OS for
it.
Calculate the end of the scratch buffer statically in the FDF files, and
assert in DecompressMemFvs() that the runtime decompression will match it.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19036 6f19259b-4bc3-4df7-8a09-765794883524
This build time flag and corresponding Feature PCD will control whether
OVMF supports (and, equivalently, requires) SMM/SMRAM support from QEMU.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19034 6f19259b-4bc3-4df7-8a09-765794883524
This dynamic PCD will enable a small code de-duplication between
OvmfPkg/SmbiosPlatformDxe and OvmfPkg/Library/SmbiosVersionLib. Since both
of those are also used in ArmVirtQemu.dsc, and we should avoid
cross-package commits when possible, this patch declares
PcdQemuSmbiosValidated first, and sets defaults for it in the OvmfPkg DSC
files.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Wei Huang <wei@redhat.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Gabriel L. Somlo <somlo@cmu.edu>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18178 6f19259b-4bc3-4df7-8a09-765794883524
This adds a XenIoMmioLib declaration and implementation that can
be invoked to install the XENIO_PROTOCOL and a corresponding
grant table address on a EFI handle.
Contributed-under: TianoCore Contribution Agreement 1.0
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16979 6f19259b-4bc3-4df7-8a09-765794883524
On non-PCI Xen guests (such as ARM), the XenBus root is not a PCI
device but an abstract 'platform' device. Add a dedicated Vendor
Hardware device path GUID to identify this node.
Contributed-under: TianoCore Contribution Agreement 1.0
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16978 6f19259b-4bc3-4df7-8a09-765794883524
This introduces the abstract XENIO_PROTOCOL that will be used to
communicate the Xen grant table address to drivers supporting this
protocol. Primary purpose is allowing us to change the XenBusDxe
implementation so that it can support non-PCI Xen implementations
such as Xen on ARM.
Contributed-under: TianoCore Contribution Agreement 1.0
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Anthony PERARD <anthony.perard@citrix.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16971 6f19259b-4bc3-4df7-8a09-765794883524
This moves all of the Xen hypercall code that was private to XenBusDxe
to a new library class XenHypercallLib. This will allow us to reimplement
it for ARM, and to export the Xen hypercall functionality to other parts
of the code, such as a Xen console SerialPortLib driver.
Contributed-under: TianoCore Contribution Agreement 1.0
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Anthony PERARD <anthony.perard@citrix.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16970 6f19259b-4bc3-4df7-8a09-765794883524
The TranslateMmioOfwNodes() function recognizes the following OpenFirmware
device paths:
virtio-blk: /virtio-mmio@000000000a003c00/disk@0,0
virtio-scsi disk: /virtio-mmio@000000000a003a00/channel@0/disk@2,3
virtio-net NIC: /virtio-mmio@000000000a003e00/ethernet-phy@0
The new translation can be enabled with the
"PcdQemuBootOrderMmioTranslation" Feature PCD. This PCD also controls if
the "survival policy" covers unselected boot options that start with the
virtio-mmio VenHw() node.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16575 6f19259b-4bc3-4df7-8a09-765794883524
Soon there will be more than one modules (in separate packages) that need
to have an understanding about the GUID used in the VenHw() device path
nodes that describe virtio-mmio transports. Define such a GUID explicitly.
Preserve the current value (which happens to be the FILE_GUID of
ArmPlatformPkg/ArmVirtualizationPkg/VirtFdtDxe/VirtFdtDxe.inf) for
compatibility with external users.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16572 6f19259b-4bc3-4df7-8a09-765794883524
In preparation for adding OpenFirmware-to-UEFI translation for "MMIO-like"
OFW device path fragments, let's turn the currently exclusive "PCI-like"
translation into "just one" of the possible translations.
- Rename TranslateOfwNodes() to TranslatePciOfwNodes(), because it is
tightly coupled to "PCI-like" translations.
- Rename REQUIRED_OFW_NODES to REQUIRED_PCI_OFW_NODES, because this macro
is specific to TranslatePciOfwNodes().
- Introduce a new wrapper function under the original TranslateOfwNodes()
name. This function is supposed to try translations in some order until
a specific translation returns a status different from
RETURN_UNSUPPORTED.
- Introduce a new Feature PCD that controls whether PCI translation is
attempted at all.
- The boot option "survival policy" in BootOrderComplete() must take into
account if the user was able to select PCI-like boot options. If the
user had no such possibility (because the Feature PCD was off for
PCI-like translation), then we ought to keep any such unselected boot
options.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16571 6f19259b-4bc3-4df7-8a09-765794883524
and rebase OvmfPkg's PlatformBdsLib on the standalone library.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16570 6f19259b-4bc3-4df7-8a09-765794883524
Set from PEI, this PCD allows subsequent stages (specifically
DXE_DRIVER and DXE_RUNTIME_DRIVER) to infer the underlying platform
type (e.g. PIIX4 or Q35/MCH) without the need to further query the
Host Bridge for its Device ID.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gabriel Somlo <somlo@cmu.edu>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16374 6f19259b-4bc3-4df7-8a09-765794883524
This protocol will be used for communication between a PV driver (like a
PV block driver) and the XenBus/XenStore.
Change in V5:
- Replace the license by the commonly used file header text.
Change in V3:
- Add disclaimer about the volatile nature of the protocol.
- Add a description on the two introduced members to the protocol.
Change in V2:
- Comment, file header
- Protocol License
- Declare xen interface version earlier
- Rename protocol from Xenbus to XenBus
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Anthony PERARD <anthony.perard@citrix.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16262 6f19259b-4bc3-4df7-8a09-765794883524
OVMF's SecMain is unique in the sense that it links against the following
two libraries *in combination*:
- IntelFrameworkModulePkg/Library/LzmaCustomDecompressLib/
LzmaCustomDecompressLib.inf
- MdePkg/Library/BaseExtractGuidedSectionLib/
BaseExtractGuidedSectionLib.inf
The ExtractGuidedSectionLib library class allows decompressor modules to
register themselves (keyed by GUID) with it, and it allows clients to
decompress file sections with a registered decompressor module that
matches the section's GUID.
BaseExtractGuidedSectionLib is a library instance (of type BASE) for this
library class. It has no constructor function.
LzmaCustomDecompressLib is a compatible decompressor module (of type
BASE). Its section type GUID is
gLzmaCustomDecompressGuid == EE4E5898-3914-4259-9D6E-DC7BD79403CF
When OVMF's SecMain module starts, the LzmaCustomDecompressLib constructor
function is executed, which registers its LZMA decompressor with the above
GUID, by calling into BaseExtractGuidedSectionLib:
LzmaDecompressLibConstructor() [GuidedSectionExtraction.c]
ExtractGuidedSectionRegisterHandlers() [BaseExtractGuidedSectionLib.c]
GetExtractGuidedSectionHandlerInfo()
PcdGet64 (PcdGuidedExtractHandlerTableAddress) -- NOTE THIS
Later, during a normal (non-S3) boot, SecMain utilizes this decompressor
to get information about, and to decompress, sections of the OVMF firmware
image:
SecCoreStartupWithStack() [OvmfPkg/Sec/SecMain.c]
SecStartupPhase2()
FindAndReportEntryPoints()
FindPeiCoreImageBase()
DecompressMemFvs()
ExtractGuidedSectionGetInfo() [BaseExtractGuidedSectionLib.c]
ExtractGuidedSectionDecode() [BaseExtractGuidedSectionLib.c]
Notably, only the extraction depends on full-config-boot; the registration
of LzmaCustomDecompressLib occurs unconditionally in the SecMain EFI
binary, triggered by the library constructor function.
This is where the bug happens. BaseExtractGuidedSectionLib maintains the
table of GUIDed decompressors (section handlers) at a fixed memory
location; selected by PcdGuidedExtractHandlerTableAddress (declared in
MdePkg.dec). The default value of this PCD is 0x1000000 (16 MB).
This causes SecMain to corrupt guest OS memory during S3, leading to
random crashes. Compare the following two memory dumps, the first taken
right before suspending, the second taken right after resuming a RHEL-7
guest:
crash> rd -8 -p 1000000 0x50
1000000: c0 00 08 00 02 00 00 00 00 00 00 00 00 00 00 00 ................
1000010: d0 33 0c 00 00 c9 ff ff c0 10 00 01 00 88 ff ff .3..............
1000020: 0a 6d 57 32 0f 00 00 00 38 00 00 01 00 88 ff ff .mW2....8.......
1000030: 00 00 00 00 00 00 00 00 73 69 67 6e 61 6c 6d 6f ........signalmo
1000040: 64 75 6c 65 2e 73 6f 00 00 00 00 00 00 00 00 00 dule.so.........
vs.
crash> rd -8 -p 1000000 0x50
1000000: 45 47 53 49 01 00 00 00 20 00 00 01 00 00 00 00 EGSI.... .......
1000010: 20 01 00 01 00 00 00 00 a0 01 00 01 00 00 00 00 ...............
1000020: 98 58 4e ee 14 39 59 42 9d 6e dc 7b d7 94 03 cf .XN..9YB.n.{....
1000030: 00 00 00 00 00 00 00 00 73 69 67 6e 61 6c 6d 6f ........signalmo
1000040: 64 75 6c 65 2e 73 6f 00 00 00 00 00 00 00 00 00 dule.so.........
The "EGSI" signature corresponds to EXTRACT_HANDLER_INFO_SIGNATURE
declared in
MdePkg/Library/BaseExtractGuidedSectionLib/BaseExtractGuidedSectionLib.c.
Additionally, the gLzmaCustomDecompressGuid (quoted above) is visible at
guest-phys offset 0x1000020.
Fix the problem as follows:
- Carve out 4KB from the 36KB gap that we currently have between
PcdOvmfLockBoxStorageBase + PcdOvmfLockBoxStorageSize == 8220 KB
and
PcdOvmfSecPeiTempRamBase == 8256 KB.
- Point PcdGuidedExtractHandlerTableAddress to 8220 KB (0x00807000).
- Cover the area with an EfiACPIMemoryNVS type memalloc HOB, if S3 is
supported and we're not currently resuming.
The 4KB size that we pick is an upper estimate for
BaseExtractGuidedSectionLib's internal storage size. The latter is
calculated as follows (see GetExtractGuidedSectionHandlerInfo()):
sizeof(EXTRACT_GUIDED_SECTION_HANDLER_INFO) + // 32
PcdMaximumGuidedExtractHandler * (
sizeof(GUID) + // 16
sizeof(EXTRACT_GUIDED_SECTION_DECODE_HANDLER) + // 8
sizeof(EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER) // 8
)
OVMF sets PcdMaximumGuidedExtractHandler to 16 decimal (which is the
MdePkg default too), yielding 32 + 16 * (16 + 8 + 8) == 544 bytes.
Regarding the lifecycle of the new area:
(a) when and how it is initialized after first boot of the VM
The library linked into SecMain finds that the area lacks the signature.
It initializes the signature, plus the rest of the structure. This is
independent of S3 support.
Consumption of the area is also limited to SEC (but consumption does
depend on full-config-boot).
(b) how it is protected from memory allocations during DXE
It is not, in the general case; and we don't need to. Nothing else links
against BaseExtractGuidedSectionLib; it's OK if DXE overwrites the area.
(c) how it is protected from the OS
When S3 is enabled, we cover it with AcpiNVS in InitializeRamRegions().
When S3 is not supported, the range is not protected.
(d) how it is accessed on the S3 resume path
Examined by the library linked into SecMain. Registrations update the
table in-place (based on GUID matches).
(e) how it is accessed on the warm reset path
If S3 is enabled, then the OS won't damage the table (due to (c)), hence
see (d).
If S3 is unsupported, then the OS may or may not overwrite the
signature. (It likely will.) This is identical to the pre-patch status.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15433 6f19259b-4bc3-4df7-8a09-765794883524
This GUID should become a new "namespace" for UEFI variables that are
specific to OVMF configuration (as opposed to standard UEFI global
variables). We'll also use it as the GUID of the related HII form-set (ie.
the interactive user interface).
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15363 6f19259b-4bc3-4df7-8a09-765794883524
The S3 suspend/resume infrastructure depends on the LockBox library class.
The edk2 tree currently contains Null and SMM instances. The Null instance
is useless, and the SMM instance would require SMM emulation by including
the SMM core and adding several new drivers, which is deemed too complex.
Hence add a simple LockBoxLib instance for OVMF.
jordan.l.justen@intel.com:
* use PCDs instead of EmuNvramLib
- clear memory in PlatformPei on non S3 boots
* allocate NVS memory and store a pointer to that memory
- reduces memory use at fixed locations
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15301 6f19259b-4bc3-4df7-8a09-765794883524
This 32k section of RAM will be declared to the PEI Core on
S3 resume to allow memory allocations during S3 resume PEI.
If the boot mode is BOOT_ON_S3_RESUME, then we publish
the pre-reserved PcdS3AcpiReservedMemory range to PEI.
If the boot mode is not BOOT_ON_S3_RESUME, then we reserve
this range as ACPI NVS so the OS will not use it.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15294 6f19259b-4bc3-4df7-8a09-765794883524
By splitting the PEI and DXE phases into separate FVs,
we can only reserve the PEI FV for ACPI S3 support.
This should save about 7MB.
Unfortunately, this all has to happen in a single commit.
DEC:
* Remove PcdOvmfMemFv(Base|Size)
* Add PcdOvmfPeiMemFv(Base|Size)
* Add PcdOvmfDxeMemFv(Base|Size)
FDF:
* Add new PEIFV. Move PEI modules here.
* Remove MAINFV
* Add PEIFV and DXEFV into FVMAIN_COMPACT
- They are added as 2 sections of a file, and compressed
together so they should retain good compression
* PcdOvmf(Pei|Dxe)MemFv(Base|Size) are set
SEC:
* Find both the PEI and DXE FVs after decompression.
- Copy them separately to their memory locations.
Platform PEI driver:
* Fv.c: Publish both FVs as appropriate
* MemDetect.c: PcdOvmfMemFv(Base|Size) =>
PcdOvmfDxeMemFv(Base|Size)
OVMF.fd before:
Non-volatile data storage
FVMAIN_COMPACT uncompressed
FV FFS file LZMA compressed
MAINFV uncompressed
individual PEI modules uncompressed
FV FFS file compressed with PI_NONE
DXEFV uncompressed
individual DXE modules uncompressed
SECFV uncompressed
OVMF.fd after:
Non-volatile data storage
FVMAIN_COMPACT uncompressed
FV FFS file LZMA compressed
PEIFV uncompressed
individual PEI modules uncompressed
DXEFV uncompressed
individual DXE modules uncompressed
SECFV uncompressed
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15151 6f19259b-4bc3-4df7-8a09-765794883524
Note: The Temporary RAM memory size is being reduced from
64KB to 32KB. This still appears to be more than
adequate for OVMF's early PEI phase. We will be adding
another 32KB range of RAM just above this range for
use on S3 resume.
The range is declared as part of MEMFD, so it is easier
to identify the memory range.
We also now assign PCDs to the memory range.
The PCDs are used to set the initial SEC/PEI stack in
SEC's assembly code.
The PCDs are also used in the SEC C code to setup
the Temporary RAM PPI.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15147 6f19259b-4bc3-4df7-8a09-765794883524
To help consolidate OVMF fixed memory uses, we declare this
range in MEMFD and thereby move it to 8MB.
We also now declare the table range in the FDF to set
PCDs. This allows us to ASSERT that CR3 is set as expected
in OVMF SEC.
OvmfPkgIa32.fdf and OvmfPkgIa32X64.fdf are updated simply
for consistency.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15146 6f19259b-4bc3-4df7-8a09-765794883524
This protocol introduces an abstraction to access the VirtIo
Configuration and Device spaces.
The registers in these spaces are located at a different offset and have
a different width whether the transport layer is either PCI or MMIO. This
protocol would also allow to support VirtIo PCI devices with MSI-X
capability in a transparent way (Device space is at a different offset
when a PCIe device has MSI-X capability).
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Olivier Martin <olivier.martin@arm.com>
v5:
- add disclaimer (two instances) about the protocol being work in progress
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14963 6f19259b-4bc3-4df7-8a09-765794883524
PcdFlashNvStorageVariableBase64 is used to arbitrate between
QemuFlashFvbServicesRuntimeDxe and EmuVariableFvbRuntimeDxe, but even the
latter driver sets it if we fall back to it.
Allow code running later than the startup of these drivers to know about
the availability of flash variables, through a dedicated PCD.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14843 6f19259b-4bc3-4df7-8a09-765794883524
This patch adds support for a debug console on the same port that is used
by SeaBIOS. This makes it easier to debug OVMF, because it does not mix
debug and serial output on the same device. It also makes it easier to
leave some of the debug messages on even in release builds.
To enable it, pass "-debugcon stdio -global isa-debugcon.iobase=0x402" to
QEMU.
The new mechanism is enabled by default, but a regular serial console can
be chosen by adding -D DEBUG_ON_SERIAL_PORT to the build options.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
[jordan.l.justen@intel.com: MAX_DEBUG_MESSAGE_LENGTH=>0x100, p=>Ptr]
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13562 6f19259b-4bc3-4df7-8a09-765794883524
XenInfo HOB is used to pass XenInfo from PEI to DXE.
Signed-off-by: Andrei Warkentin <andreiw@motorola.com>
Reviewed-by: gavinguan
Reviewed-by: jljusten
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@12059 6f19259b-4bc3-4df7-8a09-765794883524
1) Remove section header comment blocks that do not provide any information
2) Combine PCDs listed in multiple sections into a single section that supports multiple PCD types to reduce maintenance overhead
3) Remove ModuleTypeList comments from [Includes], [Protocols], [Ppis], and [Guids] sections that do not properly describe the module type restrictions.
4) Clean up formatting of GUID structure declarations
5) Remove ".common" from section names if they are not required.
6) Order sections consistently as [Defines], [Includes], [LibraryClasses], [Guid], [Ppis], [Protocols], [PcdsFeatureFlag], [PcdsFixedAtBuild], [PcdsPatchableInModule], [PcdsDynamic], and [PcdsDynamicEx]
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@11633 6f19259b-4bc3-4df7-8a09-765794883524
This library provides an interface for converting the system
variables into a binary and also restoring the system variables
from that binary.
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@11284 6f19259b-4bc3-4df7-8a09-765794883524
This protocol is similar to the standard UEFI BlockIo protocol,
except it has no function calls and simply defines a base address
in memory where reads & writes for the block device should occur.
One planned usage is to fill a memory region with a small disk
image, and allow it to be used as a normal disk by the
standard drivers.
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@10295 6f19259b-4bc3-4df7-8a09-765794883524
* Only SEC is uncompressed now
* The MAIN FV with PEI & DXE can easily shrink and grow as needed
* The final output will now be OVMF.Fv rather than OVMF.fd
* The final output size will be a multiple of 64kb
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@9672 6f19259b-4bc3-4df7-8a09-765794883524
This library provides an interface where variables can be saved and restored
using a file in a file system accessible to the firmware. It is expected
that a platform BDS library will use this library. The platform BDS
implementation can decide which devices to connect and then to attempt to use
for saving and restoring NV variables.
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@9272 6f19259b-4bc3-4df7-8a09-765794883524