ARM ArmHvcLib looks like it was created from copy of ArmSmcLib which
looks like it was created from a copy of the AArch64 version.
Both of these files include AsmMacroIoLibV8.h instead of
AsmMacroIoLib.h, although since they only use macros that are identical
between the two, there was no functional issue caused by this.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
In order to be able to produce meaningful diagnostic output when taking
synchronous exceptions that have been caused by corruption of the stack
pointer, prepare the EL0 stack pointer and switch to it when handling the
'Sync exception using SPx' exception class.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Currently, we only attempt to walk the call stack and print a backtrace
if the program counter refers to a location covered by a PE/COFF image.
However, regardless of the value of PC, the frame pointer may still have
a meaningful value, and so we can still produce the remainder of the
backtrace.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Add the gEfiDebugImageInfoTableGuid, which is referenced in the code,
to both .INF files describing this module.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Replace the duplicated and outdated code in QuietBoot.c with a reference
to BootLogoLib, which provides the same functionality. This also allows
us to drop all references to IntelFrameworkModulePkg in this module.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Instead of indirecting the reference to the Shell binary via a PCD
that is defined in IntelFrameworkModulePkg, and which invariably
gets set to the same value by all users of this library, refer to
the UEFI Shell application by its declared symbolic GUID.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Commit e7b24ec978 ("ArmPkg/UncachedMemoryAllocationLib: map uncached
allocations non-executable") adds code that manipulates the GCD memory
space attributes of a newly allocated uncached region without checking
whether this region expose these attributes in its capabilities mask.
Given that the intent is to remove executable permissions from the region,
this is a fairly pointless exercise to begin with, regardless of whether
it is correct or not. The reason is that RO/XP memory attributes in the
GCD memory space map or the UEFI memory map are completely disconnected
from the actual mapping permissions used in the page tables.
So instead, invoke the CPU arch protocol directly, and add the non-exec
attributes in the page tables directly.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Tested-by: Ryan Harkin <ryan.harkin@linaro.org>
modsi3.S references the symbol '__divsi3' by '___divsi3' which assumes
the prefix is always required and supported. Use ASM_PFX() instead
to support all compilers.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Marvin Haeuser <Marvin.Haeuser@outlook.com>
Some memory attributes are implied by the memory type, e.g., device memory
is always mapped non-executable and cached memory should have the inner
shareable attribute.
In order to prevent unnecessary memory attribute updates of mappings
created early on, make EfiAttributeToArmAttribute() return these implied
attributes in the same way as ArmMmuLib does already. This avoids false
positives when looking for differences between current and desired mapping
attributes.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
The primary use case for UncachedMemoryAllocationLib is non-coherent DMA,
which implies that such regions are not used to fetch instructions from.
So let's map them as non-executable, to avoid creating a security hole
when the rest of the platform may be enforcing strict memory permissions
on ordinary allocations.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Uncached pool allocations are aligned to the data cache line length under
the assumption that this is sufficient to prevent cache maintenance from
corrupting adjacent allocations. However, the value to use in such cases
is architecturally called the Cache Writeback Granule (CWG), which is
essentially the maximum Dcache line length rather than the minimum.
Note that this is mostly a cosmetical fix, given that the pool allocation
is turned into a page allocation later, and rounded up accordingly.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
In order to play nice with platforms that use strict memory permission
policies, restore the original mapping attributes when freeing uncached
allocations.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Now that we have the prerequisite functionality available in ArmMmuLib,
wire it up into ArmSetMemoryRegionNoExec, ArmClearMemoryRegionNoExec,
ArmSetMemoryRegionReadOnly and ArmClearMemoryRegionReadOnly. This is
used by the non-executable stack feature that is configured by DxeIpl.
NOTE: The current implementation will not combine RO and XP attributes,
i.e., setting/clearing a region no-exec will unconditionally
clear the read-only attribute, and vice versa. Currently, we
only use ArmSetMemoryRegionNoExec(), so for now, we should be
able to live with this.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
We no longer make use of the ArmMmuLib 'feature' to create aliased
memory ranges with mismatched attributes, and in fact, it was only
wired up in the ARM version to begin with.
So remove the VirtualMask argument from ArmSetMemoryAttributes()'s
prototype, and remove the dead code that referred to it.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
... where it belongs, since AARCH64 already keeps it there, and
non DXE users of ArmMmuLib (such as DxeIpl, for the non-executable
stack) may need its functionality as well.
While at it, rename SetMemoryAttributes to ArmSetMemoryAttributes,
and make any functions that are not exported STATIC. Also, replace
an explicit gBS->AllocatePages() call [which is DXE specific] with
MemoryAllocationLib::AllocatePages().
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
The routines ArmConfigureMmu(), SetMemoryAttributes() [*] and the
various set/clear read-only/no-exec routines are declared as returning
EFI_STATUS in the respective header files, so align the definitions with
that.
* SetMemoryAttributes() is declared in the wrong header (and defined in
ArmMmuLib for AARCH64 and in CpuDxe for ARM)
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Enable the use of strict memory permissions on ARM by processing the
EFI_MEMORY_RO and EFI_MEMORY_XP rather than ignoring them. As before,
calls to CpuArchProtocol::SetMemoryAttributes that only set RO/XP
bits will preserve the cacheability attributes. Permissions attributes
are not preserved when setting the memory type only: the way the memory
permission attributes are defined does not allows for that, and so this
situation does not deviate from other architectures.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Page and section entries in the page tables are updated using the
helper ArmUpdateTranslationTableEntry(), which cleans the page
table entry to the PoC, and invalidates the TLB entry covering
the page described by the entry being updated.
Since we may be updating section entries, we might be leaving stale
TLB entries at this point (for all pages in the section except the
first one), which will be invalidated wholesale at the end of
SetMemoryAttributes(). At that point, all caches are cleaned *and*
invalidated as well.
This cache maintenance is costly and unnecessary. The TLB maintenance
is only necessary if we updated any section entries, since any page
by page entries that have been updated will have been invalidated
individually by ArmUpdateTranslationTableEntry().
So drop the clean/invalidate of the caches, and only perform the
full TLB flush if UpdateSectionEntries() was called, or if sections
were split by UpdatePageEntries(). Finally, make the cache maintenance
on the remapped regions themselves conditional on whether any memory
type attributes were modified.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Currently, any range passed to CpuArchProtocol::SetMemoryAttributes is
fully broken down into page mappings if the start or the size of the
region happens to be misaliged relative to the section size of 1 MB.
This is going to result in memory being wasted on second level page tables
when we enable strict memory permissions, given that we remap the entire
RAM space non-executable (modulo the code bits) when the CpuArchProtocol
is installed.
So refactor the code to iterate over the range in a way that ensures
that all naturally aligned section sized subregions are not broken up.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
To prevent the initial MMU->GCD memory space map synchronization from
stripping permissions attributes [which we cannot use in the GCD memory
space map, unfortunately], implement the same approach as x86, and ignore
SetMemoryAttributes() calls during the time SyncCacheConfig() is in
progress. This is a horrible hack, but is currently the only way we can
implement strict permissions on arbitrary memory regions [as opposed to
PE/COFF text/data sections only]
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
This removes the PCD PcdArmUncachedMemoryMask from ArmPkg, along with
any remaining references to it in various platform .DSC files. It is
no longer used now that we removed the virtual uncached pages protocol
and the associated DebugUncachedMemoryAllocationLib library instance.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Virtual uncached pages are simply pages that are aliased using mismatched
attributes, which is not allowed by the ARM architecture. So remove the
protocol and its implementation.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
The debug implementation of the UncachedMemoryAllocationLib library
class relies on the creation of an uncached alias of a memory range,
while keeping the original cached mapping, but with read-only attributes
to trap inadvertent write accesses.
This is not a terribly good idea, given that the ARM architecture does
not allow mismatched attributes, and so creating them deliberately is
not something we should encourage by doing it in reference code.
So remove the library, and replace all references to it with a reference
to the non-debug version (unless the platform does not require a resolution
for it in the first place, in which case all UncachedMemoryAllocationLib
references can be removed altogether).
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Enable the hardware stack alignment check, as mandated by the UEFI spec.
This ensures that the stack pointer is 16 byte aligned at each instance
where it is used as the base address in a load/store operation.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
In preparation of enabling stack alignment checking, which is mandated
by the UEFI spec for AARCH64, add the code to manage this bit to ArmLib.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Stack and unstack the frame pointer according to the AAPCS in
AArch64AllDataCachesOperation ().
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Since the new DXE page protection for PE/COFF images may invoke
EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes() with only permission
attributes set, add support for this in the AARCH64 MMU code.
Move the EFI_MEMORY_CACHETYPE_MASK macro to a shared location between
CpuDxe and ArmMmuLib so we don't have to introduce yet another
definition.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Currently, we have not implemented support on 32-bit ARM for managing
permission bits in the page tables. Since the new DXE page protection
for PE/COFF images may invoke EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes()
with only permission attributes set, let's simply ignore those for now.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
The single user of EfiAttributeToArmAttribute () is the protocol
method EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes(), which uses the
return value to compare against the ARM attributes of an existing mapping,
to infer whether it is actually necessary to change anything, or whether
the requested update is redundant. This saves some cache and TLB
maintenance on 32-bit ARM systems that use uncached translation tables.
However, EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes() may be invoked with
only permission bits set, in which case the implied requested action is to
update the permissions of the region without modifying the cacheability
attributes. This is currently not possible, because
EfiAttributeToArmAttribute () ASSERT()s [on AArch64] on Attributes arguments
that lack a cacheability bit.
So let's simply return TT_ATTR_INDX_MASK (AArch64) or
TT_DESCRIPTOR_SECTION_TYPE_FAULT (ARM) in these cases (or'ed with the
appropriate permission bits). This way, the return value is equally
suitable for checking whether the attributes need to be modified, but
in a way that accommodates the use without a cacheability bit set.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Current Arm CpuDxe driver uses EFI_MEMORY_WP for write protection,
according to UEFI spec, we should use EFI_MEMORY_RO for write protection.
The EFI_MEMORY_WP is the cache attribute instead of memory attribute.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jiewen Yao <jiewen.yao@intel.com>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
PcdGenericWatchdogControlBase & PcdGenericWatchdogRefreshBase
are declared as UINT32 values in ArmPkg.dec, but for platforms
with addresses in the memory range above 4GB this causes build
error F000: Too large PCD value for datum type [UINT32]
of PCD gArmTokenSpaceGuid.PcdGenericWatchdogControlBase
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Alexei Fedorov <alexei.fedorov@arm.com>
Signed-off-by: Evan Lloyd <evan.lloyd@arm.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=361
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
This reverts commit d32702d2c2.
Using a pool allocation for the root translation table seemed like
a good idea at the time, but as it turns out, such allocations are
handled in a way that makes them unsuitable for this purpose: they
are backed by HOBs that don't remain in the same place during the
various PI phase changes, which means the address programmed into
the TTBR register is no longer valid, and may refer to memory that
is reported as available to the OS.
So switch back to using a page based allocation.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
The generic timer support libraries call the actual system register
accessor function via a single pair of functions ArmArchTimerReadReg()
and ArmArchTimerWriteReg(), which take an enum argument to identify
the register, and return output values by pointer reference.
Since these functions are never called with a non-immediate argument,
we can simply replace each invocation with the underlying system register
accessor instead. This is mostly functionally equivalent, with the
exception of the bounds check for the enum (which is pointless given the
fact that we never pass a variable), the check for the presence of the
architected timer (which only makes sense for ARMv7, but is highly unlikely
to vary between platforms that are similar enough to run the same firmware
image), and a check for enum values that refer to the HYP view of the timer,
which we never referred to anywhere in the code in the first place.
So get rid of the middle man, and update the ArmGenericTimerPhyCounterLib
and ArmGenericTimerVirtCounterLib implementations to call the system
register accessors directly.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Tested-by: Ryan Harkin <ryan.harkin@linaro.org>
Commit 0a99a65d2c ("fix incorrect device address of double buffer")
retained an explicit cast on the variable "Buffer" which became
incorrect with the other changes, leading to compilation failures
with some toolchains. Drop the cast.
Contributed-under: TianoCore Contribution Agreement 1.0
Reported-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Some devices, such as the Raspberry Pi3, have a fixed offset between memory
addresses as seen by the host and as seen by the other bus masters. So add
a new PCD that allows this fixed offset to be recorded, and to be used when
returning device addresses from the DmaLib mapping routines.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ryan Harkin <ryan.harkin@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
In preparation of adding support to ArmDmalib for DMA bus masters whose
view of memory is offset by a constant compared to the CPU's view, clean
up some abuse of the device address.
The device address is not defined in terms of the CPU's address space,
and so it should not be used in CopyMem () or cache maintenance operations
that require a valid mapping. This not only applies to the above use case,
but also to the DebugUncachedMemoryAllocationLib that unmaps the
primary, cached mapping of an allocation, and returns a host address
which is an uncached alias offset by a constant.
Since we should never access the device address from the CPU, there is
no need to record it in the MAPINFO struct. Instead, record the buffer
address in case of double buffering, since we do need to copy the contents
(in case of a bus master write) and free the buffer (in all cases) when
DmaUnmap() is called.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ryan Harkin <ryan.harkin@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
If double buffering is not required in DmaMap(), the returned device
address is passed through ConvertToPhysicalAddress () to convert the
host address (which in case of DebugUncachedMemoryAllocationLib is not
1:1 mapped) to a physical address, which is what a device would expect
to be able to perform DMA.
By the same reasoning, a double buffer allocated using DmaAllocateBuffer ()
should be converted in the same way, considering that the buffer is allocated
using UncachedAllocatePages (), to which the above equally applies.
So add the missing ConvertToPhysicalAddress () invocation.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ryan Harkin <ryan.harkin@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Instead of depending on ArmLib to retrieve the CWG directly, use
the DMA buffer alignment exposed by the CPU arch protocol. This
removes our dependency on ArmLib, which makes the library a bit
more architecture independent.
While we're in there, rename gCpu to mCpu to better reflect its
local scope, and reflow some lines that we're modifying anyway.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ryan Harkin <ryan.harkin@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Translation table walks are always cache coherent on ARMv8-A, so cache
maintenance on page tables is never needed. Since there is a risk of
loss of coherency when using mismatched attributes, and given that memory
is mapped cacheable except for extraordinary cases (such as non-coherent
DMA), restrict the page table walker to performing cacheable accesses to
the translation tables.
For DEBUG builds, retain some of the logic so that we can double check
that the memory holding the root translation table is indeed located in
memory that is mapped cacheable.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
The LinuxLoader application boots Linux in a way that prevents the OS
from accessing UEFI runtime services. Since we have better ways now
of invoking the kernel (via GRUB, or directly via the kernel's UEFI
stub), remove the obsolete LinuxLoader so that people will no longer
mistake it for a suitable reference of how to invoke the OS from UEFI.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ryan Harkin <ryan.harkin@linaro.org>
Reviewed-by: Ryan Harkin <ryan.harkin@linaro.org>
The DmaBufferAlignment currently defaults to 4, which is dangerously
small and may result in lost data on platforms that perform non-coherent
DMA. So instead, take the CWG value from the cache info registers.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
This is ancient cruft that is no longer used, so remove it.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
The GCC ARM builds have access to ADRL/LDRL macros that emit relative
symbol references, i.e., references that do not require fixing up at
load time (or FV generation time for XIP modules)
Implement equivalent functionality for RVCT: note that this does not
use movw/movt pairs, but the more compatible add/add/add or add/add/ldr
sequences (which Clang does not support, unfortunately, hence the use
of movw/movt for the GCC toolchain family)
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Define DISABLE_NEW_DEPRECATED_INTERFACES on the compiler command line by
default, to prevent deprecated interfaces from being used in core EDK2
code.
Bug: https://bugzilla.tianocore.org/show_bug.cgi?id=164
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Ryan Harkin <ryan.harkin@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>