__FUNCTION__ is a pre-standard extension that gcc and Visual C++ among
others support, while __func__ was standardized in C99.
Since it's more standard, replace __FUNCTION__ with __func__ throughout
UefiCpuPkg.
Signed-off-by: Rebecca Cran <rebecca@bsdio.com>
Reviewed-by: Michael D Kinney <michael.d.kinney@intel.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Sunil V L <sunilvl@ventanamicro.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=4123
VmgExitLib once was designed to provide interfaces to support #VC handler
and issue VMGEXIT instruction. After TDVF (enable TDX feature in OVMF) is
introduced, this library is updated to support #VE as well. Now the name
of VmgExitLib cannot reflect what the lib does.
This patch renames VmgExitLib to CcExitLib (Cc means Confidential
Computing). This is a simple renaming and there is no logic changes.
After renaming all the VmgExitLib related codes are updated with
CcExitLib. These changes are in OvmfPkg/UefiCpuPkg/UefiPayloadPkg.
Cc: Guo Dong <guo.dong@intel.com>
Cc: Sean Rhodes <sean@starlabs.systems>
Cc: James Lu <james.lu@intel.com>
Cc: Gua Guo <gua.guo@intel.com>
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: James Lu <james.lu@intel.com>
Reviewed-by: Gua Guo <gua.guo@intel.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Signed-off-by: Min Xu <min.m.xu@intel.com>
To remove the dependency of CPU register, 4/8 byte at the top of the
stack is occupied for CpuMpData. BIST information is also taken care
here. This modification is only for PEI phase, since in DXE phase
CpuMpData is accessed via global variable.
Signed-off-by: Yuanhao Xie <yuanhao.xie@intel.com>
Cc: Eric Dong <eric.dong@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
When switch bsp, old bsp and new bsp put CR0/CR4 into stack, and put IDT
and GDT register into a structure. After they exchange their stack, they
restore these registers. This logic is now implemented by assembly code.
This patch aims to reuse (Save/Restore)VolatileRegisters function to
replace such assembly code for better code readability.
Cc: Eric Dong <eric.dong@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Signed-off-by: Zhiguang Liu <zhiguang.liu@intel.com>
The AP vector consists of 2 parts:
1. the initial 16-bit code that should be under 1MB and page aligned.
2. the 32-bit/64-bit code that can be anywhere in the memory with any
alignment.
The need of part #2 is because the memory under 1MB is temporary
"stolen" for use and will "give" back after all AP wake up. The range
of memory is not marked as code page in page table. CPU may trigger
exception as soon as NX is enabled.
The part #2 memory allocation can be done in the MpInitLibInitialize.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Today's implementation allocates below 1MB memory for the 16bit, 32bit
and 64bit code.
But it's not necessary since now the 32bit and 64bit code run at high
memory no matter in PEI and DXE phase.
The patch simplifies the logic to remove the code that handles the
case when WakeupBufferHigh is 0.
It also reduce the memory foot print under 1MB by allocating
memory for 16bit code only.
MP_CPU_EXCHANGE_INFO is still under 1MB which is immediate
after the 16bit code.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
The patch does several simplifications:
1. Treat SwitchToRealProc as part of RendezvousFunnelProc.
So the common logic in MpLib.c doesn't need to be aware of
SwitchToRealProc.
As a result, SwitchToRealSize/Offset are removed from
MP_ASSEMBLY_ADDRESS_MAP.
2. Move SwitchToRealProc to AmdSev.nasm.
All other assembly code in AmdSev.nasm is called through
OneTimeCall.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: Michael Roth <michael.roth@amd.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Today's implementation assumes PEI phase runs at 32bit so
the execution-disable feature is not applicable.
It's not always TRUE.
The patch allocates 32bit&64bit code buffer for PEI phase as well.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3918
This reverts commit 88da06ca76.
This commit triggers the ASSERT in Non-Td guest.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Min Xu <min.m.xu@intel.com>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
RFC: https://bugzilla.tianocore.org/show_bug.cgi?id=3429
In TDVF BSP and APs are simplified. BSP is the vCPU-0, while the others
are treated as APs.
So MP intialization is rather simple. ApWorker is not supported, BSP is
always the working processor, while the APs are just in a
wait-for-precedure state.
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
Signed-off-by: Min Xu <min.m.xu@intel.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3275
Use the SEV-SNP AP Creation NAE event to create and launch APs under
SEV-SNP. This capability will be advertised in the SEV Hypervisor
Feature Support PCD (PcdSevEsHypervisorFeatures).
Cc: Michael Roth <michael.roth@amd.com>
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Ray Ni <ray.ni@intel.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
During AP bringup, just after switching to long mode, APs will do some
cpuid calls to verify that the extended topology leaf (0xB) is available
so they can fetch their x2 APIC IDs from it. In the case of SEV-ES,
these cpuid instructions must be handled by direct use of the GHCB MSR
protocol to fetch the values from the hypervisor, since a #VC handler
is not yet available due to the AP's stack not being set up yet.
For SEV-SNP, rather than relying on the GHCB MSR protocol, it is
expected that these values would be obtained from the SEV-SNP CPUID
table instead. The actual x2 APIC ID (and 8-bit APIC IDs) would still
be fetched from hypervisor using the GHCB MSR protocol however, so
introducing support for the SEV-SNP CPUID table in that part of the AP
bring-up code would only be to handle the checks/validation of the
extended topology leaf.
Rather than introducing all the added complexity needed to handle these
checks via the CPUID table, instead let the BSP do the check in advance,
since it can make use of the #VC handler to avoid the need to scan the
SNP CPUID table directly, and add a flag in ExchangeInfo to communicate
the result of this check to APs.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Ray Ni <ray.ni@intel.com>
Suggested-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3275
An SEV-SNP guest requires that the physical address of the GHCB must
be registered with the hypervisor before using it. See the GHCB
specification section 2.3.2 for more details.
Cc: Michael Roth <michael.roth@amd.com>
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Ray Ni <ray.ni@Intel.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3275
Previous commit introduced a generic confidential computing PCD that can
determine whether AMD SEV-ES is enabled. Update the MpInitLib to drop the
PcdSevEsIsEnabled in favor of PcdConfidentialComputingAttr.
Cc: Michael Roth <michael.roth@amd.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: Eric Dong <eric.dong@intel.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Ray Ni <ray.ni@intel.com>
Suggested-by: Jiewen Yao <jiewen.yao@intel.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3275
Move all the SEV specific function in AmdSev.c.
No functional change intended.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: Michael Roth <michael.roth@amd.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Suggested-by: Jiewen Yao <Jiewen.yao@intel.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3737
Apply uncrustify changes to .c/.h files in the UefiCpuPkg package
Cc: Andrew Fish <afish@apple.com>
Cc: Leif Lindholm <leif@nuviainc.com>
Cc: Michael D Kinney <michael.d.kinney@intel.com>
Signed-off-by: Michael Kubacki <michael.kubacki@microsoft.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3767
Update use of DEBUG_CODE(Expression) if Expression is a complex code
block with if/while/for/case statements that use {}.
Cc: Andrew Fish <afish@apple.com>
Cc: Leif Lindholm <leif@nuviainc.com>
Cc: Michael Kubacki <michael.kubacki@microsoft.com>
Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3760
Update all use of ', OPTIONAL' to ' OPTIONAL,' for function params.
Cc: Andrew Fish <afish@apple.com>
Cc: Leif Lindholm <leif@nuviainc.com>
Cc: Michael Kubacki <michael.kubacki@microsoft.com>
Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3324
The SEV-ES stacks currently share a page with the reset code and data.
Separate the SEV-ES stacks from the reset vector code and data to avoid
possible stack overflows from overwriting the code and/or data.
When SEV-ES is enabled, invoke the GetWakeupBuffer() routine a second time
to allocate a new area, below the reset vector and data.
Both the PEI and DXE versions of GetWakeupBuffer() are changed so that
when PcdSevEsIsEnabled is true, they will track the previous reset buffer
allocation in order to ensure that the new buffer allocation is below the
previous allocation. When PcdSevEsIsEnabled is false, the original logic
is followed.
Fixes: 7b7508ad78
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: Marvin Häuser <mhaeuser@posteo.de>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <3cae2ac836884b131725866264e0a0e1897052de.1621024125.git.thomas.lendacky@amd.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3385
A VS2012 build fails with a cast conversion warning when the SEV-ES work
area PCD is cast as a pointer to the SEV_ES_AP_JMP_FAR type.
When casting from a PCD value to a pointer, the cast should first be done
to a UINTN and then to the pointer. Update the code to perform a cast to
a UINTN before casting to a pointer to the SEV_ES_AP_JMP_FAR type.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Fixes: 7b7508ad78
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <c89bc819856d448360430c32cb3833a9667f987b.1620656694.git.thomas.lendacky@amd.com>
Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
MpInitLib contains a function MicrocodeDetect() which is called by
all threads as an AP procedure.
Today this function contains below code:
if (CurrentRevision != LatestRevision) {
AcquireSpinLock(&CpuMpData->MpLock);
DEBUG ((
EFI_D_ERROR,
"Updated microcode signature [0x%08x] does not match \
loaded microcode signature [0x%08x]\n",
CurrentRevision, LatestRevision
));
ReleaseSpinLock(&CpuMpData->MpLock);
}
When the if-check is passed, the code may call into PEI services:
1. AcquireSpinLock
When the PcdSpinTimeout is not 0, TimerLib
GetPerformanceCounterProperties() is called. And some of the
TimerLib implementations would get the information cached in
HOB. But AP procedure cannot call PEI services to retrieve the
HOB list.
2. DEBUG
Certain DebugLib relies on ReportStatusCode services and the
ReportStatusCode PPI is retrieved through the PEI services.
DebugLibSerialPort should be used.
But when SerialPortLib is implemented to depend on PEI services,
even using DebugLibSerialPort can still cause AP calls PEI
services resulting hang.
It causes a lot of debugging effort on the platform side.
There are 2 options to fix the problem:
1. make sure platform DSC chooses the proper DebugLib and set the
PcdSpinTimeout to 0. So that AcquireSpinLock and DEBUG don't call
PEI services.
2. remove the AcquireSpinLock and DEBUG call from the procedure.
Option #2 is preferred because it's not practical to ask every
platform DSC to be written properly.
Following option #2, there are two sub-options:
2.A. Just remove the if-check.
2.B. Capture the CurrentRevision and ExpectedRevision in the memory
for each AP and print them together from BSP.
The patch follows option 2.B.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
The Lock is no longer needed since "LOCK XADD" was used in
MpFuncs.nasm for ApIndex atomic increment.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3179
When BSP first time wakes all APs, each AP atomically increases
CpuMpData->CpuCount and CpuMpData->FinishedCount.
Each AP atomically increases CpuMpData->NumApsExecuting
in early assembly code and decreases it before it enters to HLT or
MWAIT state.
Putting them together, the 3 variables are changed in the following order:
1. NumApsExecuting++ // in assembly
2. CpuCpunt++
4. FinishedCount++
3. NumApsExecuting-- // in C
BSP waits for a certain timeout and then polls NumApsExecuting
until it drops to zero. It assumes all APs are waken up concurrently
and NumApsExecuting only drops to zero when all APs have checked in.
Then it additionally waits for FinishedCount == CpuCount - 1. (FinishedCount doesn't include BSP while CpuCount includes BSP.)
There is no need to additionally wait for
FinishedCount == CpuCount - 1 because when NumApsExecuting == 0,
the number of increament of FinishedCount and CpuCount should equal.
This patch simplifies the code to remove "CpuCount++" in
ApWakeupFunction() and
assigns FinishedCount + 1 to CpuCount after WakeUpAP().
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3182
Fix the order of operations in ApWakeupFunction() when PcdCpuApLoopMode
is set to HLT mode that uses INIT-SIPI-SIPI to wake APs. In this mode,
volatile state is restored and saved each time a INIT-SIPI-SIPI is sent
to an AP to request a function to be executed on the AP. When the
function is completed the volatile state of the AP is saved. However,
the counters NumApsExecuting and FinishedCount are updated before
the volatile state is saved. This allows for a race condition window
for the BSP that is waiting on these counters to request a new
INIT-SIPI-SIPI before all the APs have completely saved their volatile
state. The fix is to save the AP volatile state before updating the
NumApsExecuting and FinishedCount counters.
Cc: Eric Dong <eric.dong@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Reviewed-by: Star Zeng <star.zeng@intel.com>
Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3008
Set the SEV-ES reset stack address for an AP based on the processor number
instead of the APIC ID in case the APIC IDs are not zero-based and densely
packed/enumerated. This will ensure an AP reset stack address does not get
set outside of the AP reset stack memory allocation.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Acked-by: Ray Ni <ray.ni@intel.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <24866de07d2a954dec71df70972f1851273020d8.1604685192.git.thomas.lendacky@amd.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3008
The QemuFlashPtrWrite() flash services runtime uses the GHCB and VmgExit()
directly to perform the flash write when running as an SEV-ES guest. If an
interrupt arrives between VmgInit() and VmgExit(), the Dr7 read in the
interrupt handler will generate a #VC, which can overwrite information in
the GHCB that QemuFlashPtrWrite() has set. This has been seen with the
timer interrupt firing and the CpuExceptionHandlerLib library code,
UefiCpuPkg/Library/CpuExceptionHandlerLib/X64/
Xcode5ExceptionHandlerAsm.nasm and
ExceptionHandlerAsm.nasm
reading the Dr7 register while QemuFlashPtrWrite() is using the GHCB. In
general, it is necessary to protect the GHCB whenever it is used, not just
in QemuFlashPtrWrite().
Disable interrupts around the usage of the GHCB by modifying the VmgInit()
and VmgDone() interfaces:
- VmgInit() will take an extra parameter that is a pointer to a BOOLEAN
that will hold the interrupt state at the time of invocation. VmgInit()
will get and save this interrupt state before updating the GHCB.
- VmgDone() will take an extra parameter that is used to indicate whether
interrupts are to be (re)enabled. Before exiting, VmgDone() will enable
interrupts if that is requested.
Fixes: 437eb3f7a8
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@arm.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Acked-by: Eric Dong <eric.dong@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <c326a4fd78253f784b42eb317589176cf7d8592a.1604685192.git.thomas.lendacky@amd.com>
The AP reset vector stack allocation is only required if running as an
SEV-ES guest. Since the reset vector allocation is below 1MB in memory,
eliminate the requirement for bare-metal systems and non SEV-ES guests
to allocate the extra stack area, which can be large if the
PcdCpuMaxLogicalProcessorNumber value is large, and also remove the
CPU_STACK_ALIGNMENT alignment.
Fixes: 7b7508ad78 ("UefiCpuPkg: Allow AP booting under SEV-ES")
Cc: Garrett Kirkendall <garrett.kirkendall@amd.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <21345cdbc906519558202b3851257ca07b9239ba.1600884239.git.thomas.lendacky@amd.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
[lersek@redhat.com: supply missing space character after "PcdGet32"]
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=2901
The DoDecrement variable in ApWakeupFunction () wasn't always being
initialized. Update the code to always fully initialize it.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <76a9f18992475b915e5f8457704676067210cacf.1597935198.git.thomas.lendacky@amd.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Tested-by: Liming Gao <liming.gao@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=2198
Typically, an AP is booted using the INIT-SIPI-SIPI sequence. This
sequence is intercepted by the hypervisor, which sets the AP's registers
to the values requested by the sequence. At that point, the hypervisor can
start the AP, which will then begin execution at the appropriate location.
Under SEV-ES, AP booting presents some challenges since the hypervisor is
not allowed to alter the AP's register state. In this situation, we have
to distinguish between the AP's first boot and AP's subsequent boots.
First boot:
Once the AP's register state has been defined (which is before the guest
is first booted) it cannot be altered. Should the hypervisor attempt to
alter the register state, the change would be detected by the hardware
and the VMRUN instruction would fail. Given this, the first boot for the
AP is required to begin execution with this initial register state, which
is typically the reset vector. This prevents the BSP from directing the
AP startup location through the INIT-SIPI-SIPI sequence.
To work around this, the firmware will provide a build time reserved area
that can be used as the initial IP value. The hypervisor can extract this
location value by checking for the SEV-ES reset block GUID that must be
located 48-bytes from the end of the firmware. The format of the SEV-ES
reset block area is:
0x00 - 0x01 - SEV-ES Reset IP
0x02 - 0x03 - SEV-ES Reset CS Segment Base[31:16]
0x04 - 0x05 - Size of the SEV-ES reset block
0x06 - 0x15 - SEV-ES Reset Block GUID
(00f771de-1a7e-4fcb-890e-68c77e2fb44e)
The total size is 22 bytes. Any expansion to this block must be done
by adding new values before existing values.
The hypervisor will use the IP and CS values obtained from the SEV-ES
reset block to set as the AP's initial values. The CS Segment Base
represents the upper 16 bits of the CS segment base and must be left
shifted by 16 bits to form the complete CS segment base value.
Before booting the AP for the first time, the BSP must initialize the
SEV-ES reset area. This consists of programming a FAR JMP instruction
to the contents of a memory location that is also located in the SEV-ES
reset area. The BSP must program the IP and CS values for the FAR JMP
based on values drived from the INIT-SIPI-SIPI sequence.
Subsequent boots:
Again, the hypervisor cannot alter the AP register state, so a method is
required to take the AP out of halt state and redirect it to the desired
IP location. If it is determined that the AP is running in an SEV-ES
guest, then instead of calling CpuSleep(), a VMGEXIT is issued with the
AP Reset Hold exit code (0x80000004). The hypervisor will put the AP in
a halt state, waiting for an INIT-SIPI-SIPI sequence. Once the sequence
is recognized, the hypervisor will resume the AP. At this point the AP
must transition from the current 64-bit long mode down to 16-bit real
mode and begin executing at the derived location from the INIT-SIPI-SIPI
sequence.
Another change is around the area of obtaining the (x2)APIC ID during AP
startup. During AP startup, the AP can't take a #VC exception before the
AP has established a stack. However, the AP stack is set by using the
(x2)APIC ID, which is obtained through CPUID instructions. A CPUID
instruction will cause a #VC, so a different method must be used. The
GHCB protocol supports a method to obtain CPUID information from the
hypervisor through the GHCB MSR. This method does not require a stack,
so it is used to obtain the necessary CPUID information to determine the
(x2)APIC ID.
The new 16-bit protected mode GDT entry is used in order to transition
from 64-bit long mode down to 16-bit real mode.
A new assembler routine is created that takes the AP from 64-bit long mode
to 16-bit real mode. This is located under 1MB in memory and transitions
from 64-bit long mode to 32-bit compatibility mode to 16-bit protected
mode and finally 16-bit real mode.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=2198
When starting APs in an SMP configuration, the AP needs to know if it is
running as an SEV-ES guest in order to assign a GHCB page.
Add a field to the CPU_MP_DATA structure that will indicate if SEV-ES is
enabled. This new field is set during MP library initialization with the
PCD value PcdSevEsIsEnabled. This flag can then be used to determine if
SEV-ES is enabled.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
Refactor StandardSignatureIsAuthenticAMD into BaseUefiCpuLib from
separate copies in BaseXApicLib, BaseXApicX2ApicLib, and MpInitLib.
This allows for future use of StandarSignatureIsAuthinticAMD without
creating more instances in other modules.
This function allows IA32/X64 code to determine if it is running on an
AMD brand processor.
UefiCpuLib is already included directly or indirectly in all modified
modules. Complete move is made in this change.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Garrett Kirkendall <garrett.kirkendall@amd.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Message-Id: <20200622131825.1352-4-Garrett.Kirkendall@amd.com>
Intel SDM introduces 6-levels for describing the CPU topology:
* Package
* Module
* Tile
* Die
* Core
* Thread
A PI spec ECR was submitted to enhance CPU_MP PPI/Protocol to
support returning such information through GetProcessorInfo().
An accordingly change was implemented and pushed to edk2-staging.
Now the PI spec has been published.
The patch is cherry-picked from edk2-staging to edk2.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=2683
In PEI phase, AP already been waked up through ApInitConfig,
so it can directly wake up it through change wakup buffer
instead of use ApInitReconfig flag. It can save some time.
Change code to only use ApInitReconfig flag in DXE phase
which must need to update the wake up buffer.
Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
Cc: Chandana Kumar <chandana.c.kumar@intel.com>
Signed-off-by: Eric Dong <eric.dong@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=2683
This patch fixes an assertion because AP can't find the CpuMpData.
When AP is waken up through Init-Sipi-Sipi, AP's IDT should
be restored to pre-allocated buffer so AP can get the CpuMpData
through the IDT base address.
Current code already has logic to handle this when CpuMpData->
InitFlag is ApInitConfig but misses the logic
when CpuMpData->InitFlag is ApInitReconfig.
This patch fixes this gap.
Reviewed-by: Ray Ni <ray.ni@intel.com>
Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
Cc: Chandana Kumar <chandana.c.kumar@intel.com>
Signed-off-by: Eric Dong <eric.dong@intel.com>
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=2556
This patch uses CPUID signature check to skip reading the PlatformId MSR,
which is not implemented on AMD processors.
The PlatformId is used for loading microcode patches, which is also not
supported and AMD-based platforms. To mitigate the PlatformId dependency,
PcdCpuMicrocodePatchAddress and PcdCpuMicrodePatchRegionSize must be set
to 0 (default value), in order to bypass microcode loading code paths.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Leo Duran <leo.duran@amd.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=2465
Commit 89164babec:
UefiCpuPkg/MpInitLib: don't shadow the microcode patch twice.
attempted to use 'MicrocodePatchRegionSize' and 'MicrocodePatchAddress'
fields to avoid loading the microcode patches data into memory again in
the DXE phase.
However, the CPU_MP_DATA structure has members with type 'UINTN' or
pointer before the microcode patch related fields. This may cause issues
when PEI and DXE are of different archs (e.g. PEI - IA32, DXE - x64),
since the microcode patch related fields will have different offsets in
the CPU_MP_DATA structure.
Commit 88bd066166:
UefiCpuPkg/MpInitLib: Relocate microcode patch fields in CPU_MP_DATA
tried to resolve the above-mentioned issue by relocating the fields
'MicrocodePatchRegionSize' and 'MicrocodePatchAddress' before members with
different size between different archs. But it failed to take the case of
pre-built binaries (e.g. FSP) into consideration.
Binaries can be built when the code base had a different version of the
CPU_MP_DATA structure definition. This may cause issues when accessing
these microcode patch related fields, since their offsets are different
(between PEI phase in the binaries and DXE phase in current code
implementation).
This commit will use the newly introduced EDKII microcode patch HOB
instead for the DXE phase to get the information of the loaded microcode
patches data done in the PEI phase. And the 'MicrocodePatchRegionSize' and
'MicrocodePatchAddress' fields in CPU_MP_DATA will not be used to pass
information between phases.
For pre-built binaries, they can be classified into 3 types with regard to
the time when they are being built:
A. Before commit 89164babec
(In other words, 'MicrocodePatchRegionSize' and 'MicrocodePatchAddress'
were not being used to skip microcode load in DXE)
For this case, the EDKII microcode patch HOB will not be produced. This
commit will load the microcode patches data again in DXE. Such behavior is
the same with the code base back then.
B. After commit 89164babec, before commit e1ed55738e
(In other words, 'MicrocodePatchRegionSize' and 'MicrocodePatchAddress'
being used to skip microcode load in DXE, but failed to work properly
between differnt archs.)
For this case, the EDKII microcode patch HOB will not be produced as well.
This commit will also load the microcode patches data again in DXE.
But since commit 89164babec failed to keep the detection and application
of microcode patches working properly in DXE after skipping the load, we
fall back to the origin behavior (that is to load the microcode patches
data again in DXE).
C. After commit e1ed55738e
(In other words, EDKII microcode patch HOB will be produced.)
For this case, it will have the same behavior with the BIOS built from
the current source codes.
Cc: Michael Kubacki <michael.a.kubacki@intel.com>
Cc: Michael D Kinney <michael.d.kinney@intel.com>
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Hao A Wu <hao.a.wu@intel.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=2474
Previous commit d786a17232:
UefiCpuPkg/MpInitLib: Reduce the size when loading microcode patches
Removed the below assignments for the 'InitFlag' field of CPU_MP_DATA
structure in function MpInitLibInitialize() when APs are waken up to do
some initialize sync:
CpuMpData->InitFlag = ApInitReconfig;
...
CpuMpData->InitFlag = ApInitDone;
The above commit mistakenly assumed the 'InitFlag' field will have a value
of 'ApInitDone' when the APs have been successfully waken up before. And
since there is no explicit comparision for the 'InitFlag' field with the
'ApInitReconfig' value. The commit removed those assignments.
However, under some cases (e.g. when variable OldCpuMpData is not NULL,
which means function CollectProcessorCount() will not be called), removing
the above assignments will left the 'InitFlag' field being uninitialized
with a value of 0, which is a invalid value for the type of 'InitFlag'
(AP_INIT_STATE).
It may potentially cause the WakeUpAP() function to run some unnecessary
codes when the APs have been successfully waken up before:
if (CpuMpData->WakeUpByInitSipiSipi ||
CpuMpData->InitFlag != ApInitDone) {
ResetVectorRequired = TRUE;
AllocateResetVector (CpuMpData);
FillExchangeInfoData (CpuMpData);
SaveLocalApicTimerSetting (CpuMpData);
}
This commit will address the above-mentioned issue.
Test done:
* OS boot on a real platform with multi processors
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Michael D Kinney <michael.d.kinney@intel.com>
Signed-off-by: Hao A Wu <hao.a.wu@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
The existing MpInitLib will shadow the microcode update patches from
flash to memory and this is done by searching microcode region specified
by PCD PcdCpuMicrocodePatchAddress and PcdCpuMicrocodePatchRegionSize.
This brings a limition to platform FW that all the microcode patches must
be placed in one continuous flash space.
This patch shadows microcode update according to FIT microcode entries if
it's present, otherwise it will fallback to original logic (by PCD).
A new featured PCD gUefiCpuPkgTokenSpaceGuid.PcdCpuShadowMicrocodeByFit
is added for enabling/disabling this support.
TEST: Tested on FIT enabled platform.
BZ: https://tianocore.acgmultimedia.com/show_bug.cgi?id=2449
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Siyuan Fu <siyuan.fu@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=2430
This commit will update the MpInitLib to:
A. Collect the base address and size information after microcode patches
being loaded into memory;
B. Collect the detected microcode patch for each processor within system;
C. Based on the collected information, produce the EDKII microcode patch
HOB.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Star Zeng <star.zeng@intel.com>
Cc: Siyuan Fu <siyuan.fu@intel.com>
Cc: Michael D Kinney <michael.d.kinney@intel.com>
Signed-off-by: Hao A Wu <hao.a.wu@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=2429
This commit will attempt to reduce the copy size when loading the
microcode patches data from flash into memory.
Such optimization is done by a pre-process of the microcode patch headers
(on flash). A microcode patch will be loaded into memory only when the
below 3 criteria are met:
A. With a microcode patch header (which means the data is not padding data
between microcode patches);
B. The 'ProcessorSignature' & 'ProcessorFlags' fields in the header match
at least one processor within system;
C. If the Extended Signature Table exists in a microcode patch, the
'ProcessorSignature' & 'ProcessorFlag' fields in the table entries
match at least one processor within system.
Criterion B and C will require all the processors to be woken up once to
collect their CPUID and Platform ID information. Hence, this commit will
move the copy, detect and apply of microcode patch on BSP and APs after
all the processors have been woken up.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Star Zeng <star.zeng@intel.com>
Cc: Siyuan Fu <siyuan.fu@intel.com>
Cc: Michael D Kinney <michael.d.kinney@intel.com>
Signed-off-by: Hao A Wu <hao.a.wu@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=2429
This commit will collect the CPUID and Platform ID information for each
processor within system. They will be stored in the CPU_AP_DATA structure.
These information will be used in the next commit to decide whether a
microcode patch will be loaded into memory.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Star Zeng <star.zeng@intel.com>
Cc: Siyuan Fu <siyuan.fu@intel.com>
Cc: Michael D Kinney <michael.d.kinney@intel.com>
Signed-off-by: Hao A Wu <hao.a.wu@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
In MpLib.c, remove the white space on a new line.
In PageTbl.c and PiSmmCpuDxeSmm.h, update the comment style.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Shenglei Zhang <shenglei.zhang@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
MpInitLib sets X2ApicEnable in two places.
1. CollectProcessorCount()
This function is called when MpInitLibInitialize() hasn't been
called before.
It sets X2ApicEnable and later in the same function it configures
all CPUs to operate in X2 APIC mode.
2. MpInitLibInitialize()
The X2ApicEnable setting happens when this function is called in
second time. But after that setting, no code consumes that flag.
With the above analysis and with the purpose of simplifying the code,
the X2ApicEnable in #1 is changed to local variable and the #2 can be
changed to remove the setting of X2ApicEnable.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Today's logic sets X2ApicEnable flag in each AP's initialization
path when InitFlag == ApInitConfig.
Since all CPUs update the same global data, a spin-lock is used
to avoid modifications from multiple CPUs happen at the same time.
The spin-lock causes two problems:
1. Potential performance downgrade.
2. Undefined behavior when improper timer lib is used.
For example we saw certain platforms used AcpiTimerLib from
PcAtChipsetPkg and that library depends on retrieving PeiServices
from idtr. But in fact AP's (idtr - 4) doesn't point to
PeiServices.
The patch simplifies the code to let BSP set the X2ApicEnable flag so
the spin-lock acquisition from AP is not needed any more.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
- If a platform boots such that the boot CPU count is smaller than
PcdCpuMaxLogicalProcessorNumber, then the platform cannot use the "fast
AP detection" logic added in commit 6e1987f19a. (Which has been
documented as a subset of use case (2) in the previous patch.)
Said logic depends on the boot CPU count being equal to
PcdCpuMaxLogicalProcessorNumber. If the equality does not hold, the
platform either has to wait too long, or risk missing APs due to an
early timeout.
- The platform may not be able to use the variant added in commit
0594ec417c either. (Which has been documented as use case (1) in the
previous patch.)
See commit 861218740d. When OVMF runs on QEMU/KVM, APs may check in
with the BSP in arbitrary order, plus the individual AP may take
arbitrarily long to check-in. If "NumApsExecuting" falls to zero
mid-enumeration, APs will be missed.
Allow platforms to specify the exact boot CPU count, independently of
PcdCpuMaxLogicalProcessorNumber. In this mode, the BSP waits for all APs
to check-in regardless of timeout. If at least one AP fails to check-in,
then the AP enumeration hangs forever. That is the desired behavior when
the exact boot CPU count is known in advance. (A hung boot is better than
an AP checking-in after timeout, and executing code from released
storage.)
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1515
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Before adding another AP enumeration mode, clarify the documentation on
the current logic. No functional changes.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1515
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=2008
MpInitLib is the library that's responsible to wake up APs to provide
MP PPI and Protocol services.
The patch synchronizes BSP's CR4.LA57 to each AP's CR4.LA57.
Without this change, AP may enter to GP fault when BSP's 5-level page
table is set to AP during AP wakes up.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Eric Dong <eric.dong@intel.com>
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=1982
MpInitLibInitialize in MpLib.c will be invoked on both PEI and DXE
CPU code, MicrocodeDetect would be performed twice and copy
Microcode from flash to memory twice as well, which consider as
duplicate work to lead longer boot time.
This patch just use microcode memory copied in PEI phase if exist.
Signed-off-by: Eric Dong <eric.dong@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=1973
Add new MpInitLibStartupAllCPUs API uses to start all processors
at the same time.
Cc: Ray Ni <ray.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Chandana Kumar <chandana.c.kumar@intel.com>
Cc: Star Zeng <star.zeng@intel.com>
Signed-off-by: Eric Dong <eric.dong@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
The patch fixes the bug that the memory under 1MB is modified by
firmware in S3 boot.
Root cause is a racing condition in MpInitLib:
1. BSP: WakeUpByInitSipiSipi is set by NotifyOnS3SmmInitDonePpi()
2. BSP: WakeUpAP() wakes all APs to run certain procedure.
2.1. AllocateResetVector() uses <1MB memory for wake up vector.
2.1. FillExchangeInfoData() resets NumApsExecuting to 0.
2.2. WaitApWakeup() waits AP to clear WAKEUP_AP_SIGNAL.
3. AP: ApWakeupFunction() clears WAKEUP_AP_SIGNAL to inform BSP.
5. BSP: FreeResetVector() restores the <1MB memory
4. AP: ApWakeupFunction() calls the certain procedure.
4.1. NumApsExecuting is decreased.
#4.1 happens after the 1MB memory is restored so the result is
memory below 1MB is changed by #4.1
It happens only when the AP executes procedure a bit longer.
AP returns back to ApWakeupFunction() from procedure after
BSP restores the <1MB memory.
Since NumApsExecuting is only used when InitFlag == ApInitConfig
for counting the processor count.
The patch moves the NumApsExecuting decrease to the path when
InitFlag == ApInitConfig.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Cc: Nandagopal Sathyanarayanan <nandagopal.sathyanarayanan@intel.com>