Once we support ACPI S3, then we can restore this to
being allocated as ACPI NVS memory.
At that time we should also have a way to disable
S3 support in QEMU. When we detect that S3 is
disabled in QEMU, then we can allocate this as regular
Boot Services Data memory.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Bill Paul <wpaul@windriver.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15198 6f19259b-4bc3-4df7-8a09-765794883524
When this option is passed to qemu, it appends the word HALT to the
"bootorder" fw_cfg file, as last entry. For example,
/pci@i0cf8/ethernet@3/ethernet-phy@0
/pci@i0cf8/scsi@4/disk@0,0
HALT
The option's purpose is to prevent SeaBIOS from booting from devices that
have not been specified explicitly (with bootindex=N device properties nor
-boot options). When SeaBIOS sees HALT, it doesn't proceed to boot from
default locations (after boot fails from all of the listed locations).
The HALT string currently causes OVMF to reject the entire "bootorder"
fw_cfg contents, with "parse error". This is not good, because since a
recent libvirt commit, libvirt unconditionally passes "-boot strict=on" to
qemu. Consequently, the boot order logic in QemuBootOrder.c has stopped
working for libvirt users.
OVMF's SetBootOrderFromQemu() function actually implements the idea behind
"-boot strict=on": it drops all boot options not in the fw_cfg list. (*)
Therefore, let's recognize HALT, and just do what we've been doing all
along.
(*) Except the UEFI shell, according to the survival policy in
BootOrderComplete(), but the memory mapped UEFI shell is not expressible
via fw_cfg anyway, and its preservation has been requested on edk2-devel.
Hence it's a good boot option to keep in any case.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15197 6f19259b-4bc3-4df7-8a09-765794883524
This will be needed to update the boot flow for S3 resume.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15196 6f19259b-4bc3-4df7-8a09-765794883524
The Xen and QEMU/KVM paths were calling this at nearly
the same time in the boot flow anyhow, so just make
the call in one spot.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15195 6f19259b-4bc3-4df7-8a09-765794883524
By splitting the PEI and DXE phases into separate FVs,
we can only reserve the PEI FV for ACPI S3 support.
This should save about 7MB.
Unfortunately, this all has to happen in a single commit.
DEC:
* Remove PcdOvmfMemFv(Base|Size)
* Add PcdOvmfPeiMemFv(Base|Size)
* Add PcdOvmfDxeMemFv(Base|Size)
FDF:
* Add new PEIFV. Move PEI modules here.
* Remove MAINFV
* Add PEIFV and DXEFV into FVMAIN_COMPACT
- They are added as 2 sections of a file, and compressed
together so they should retain good compression
* PcdOvmf(Pei|Dxe)MemFv(Base|Size) are set
SEC:
* Find both the PEI and DXE FVs after decompression.
- Copy them separately to their memory locations.
Platform PEI driver:
* Fv.c: Publish both FVs as appropriate
* MemDetect.c: PcdOvmfMemFv(Base|Size) =>
PcdOvmfDxeMemFv(Base|Size)
OVMF.fd before:
Non-volatile data storage
FVMAIN_COMPACT uncompressed
FV FFS file LZMA compressed
MAINFV uncompressed
individual PEI modules uncompressed
FV FFS file compressed with PI_NONE
DXEFV uncompressed
individual DXE modules uncompressed
SECFV uncompressed
OVMF.fd after:
Non-volatile data storage
FVMAIN_COMPACT uncompressed
FV FFS file LZMA compressed
PEIFV uncompressed
individual PEI modules uncompressed
DXEFV uncompressed
individual DXE modules uncompressed
SECFV uncompressed
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15151 6f19259b-4bc3-4df7-8a09-765794883524
This allow you to search for an 'instance' of a section
within a series of FFS sections.
For example, we will split the MAINFV into a PEI and DXE
FV, and then compress those two FV's together within a
FFS FV file. The DXE FV will appear as the second section
of the file, and therefore we will search for it using
an Instance=1 value.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15150 6f19259b-4bc3-4df7-8a09-765794883524
These are all internal functions that don't interface with
assembly code or other drivers. Therefore EFIAPI is not
required.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15149 6f19259b-4bc3-4df7-8a09-765794883524
Note: The Temporary RAM memory size is being reduced from
64KB to 32KB. This still appears to be more than
adequate for OVMF's early PEI phase. We will be adding
another 32KB range of RAM just above this range for
use on S3 resume.
The range is declared as part of MEMFD, so it is easier
to identify the memory range.
We also now assign PCDs to the memory range.
The PCDs are used to set the initial SEC/PEI stack in
SEC's assembly code.
The PCDs are also used in the SEC C code to setup
the Temporary RAM PPI.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15147 6f19259b-4bc3-4df7-8a09-765794883524
To help consolidate OVMF fixed memory uses, we declare this
range in MEMFD and thereby move it to 8MB.
We also now declare the table range in the FDF to set
PCDs. This allows us to ASSERT that CR3 is set as expected
in OVMF SEC.
OvmfPkgIa32.fdf and OvmfPkgIa32X64.fdf are updated simply
for consistency.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15146 6f19259b-4bc3-4df7-8a09-765794883524
The Linux persistent store (pstore) feature serves, among other things,
for saving the trailing portion of the dmesg in case of a kernel oops. One
backend for the pstore facility is "efivars", ie. non-volatile UEFI
variables.
Linux splits the tail of the dmesg that is to be dumped in 1KB chunks, and
tries to save each chunk as a specially (and differently) named
non-volatile variable. The 1KB chunk size accounts for the variable data
only; Linux expects this size to be available per variable *without*
accounting for the variable name or any firmware-internal overhead.
For non-authenticated (ie. non-secure-boot) variables, OvmfPkg currently
sets the per-variable limit to 0x400 (1KB) through PcdMaxVariableSize.
However this PCD determines the size *before* subtracting the internal
overhead (which is sizeof(VARIABLE_HEADER) == 0x20 bytes for
non-authenticated variables, see
"MdeModulePkg/Include/Guid/VariableFormat.h"), and also before subtracting
the given variable's UCS-2 encoded name (including the trailing 0x0000).
Linux maximizes these special variable names in DUMP_NAME_LEN==52 code
points (including the trailing NUL). Hence we must provide at least
0x020 == sizeof(VARIABLE_HEADER), for the internal overhead
0x068 == 2 * 52, for the UCS-2 encoded name, including trailing 0x0000
0x400 for the variable body
-----
0x488 == 1160
bytes in PcdMaxVariableSize, so that Linux's efivars-backed pstore can
work even on non-secure-boot builds of OVMF.
However, as PcdMaxVariableSize=0x2000 has proven reasonable when secure
boot is enabled, it should also be okay when secure boot is disabled; so
for simplicity's sake set PcdMaxVariableSize to 0x2000 unconditionally.
Tested-by: Seiji Aguchi <seiji.aguchi@hds.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15142 6f19259b-4bc3-4df7-8a09-765794883524
If GCC 4.8 or 4.9 is detected, then use the GCC48 toolchain.
Previously we would use the GCC47 toolchain, but GCC48
was recently added to the main edk2 BaseTools/Conf.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15141 6f19259b-4bc3-4df7-8a09-765794883524
The QemuFwCfgSecLib library instance
- is stateless,
- has no library constructor,
- is available to SEC client code,
- must be queried with QemuFwCfgIsAvailable() before use,
- is restricted to SEC in order to limit the explicit querying
requirement. (There is no current user.)
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15046 6f19259b-4bc3-4df7-8a09-765794883524
The current implementation of QemuFwCfgLib is:
- stateful
- implicitly initialized in the library constructor.
OVMF's SEC runs from read-only memory/flash. When the library is linked
into a SEC binary (which currently never happens), the
"mQemuFwCfgSupported" global variable becomes read-only, making the
library non-functional.
Extract the stateful, implicitly initialized library implementation into a
separate file, making room for a stateless, explicitly queried
implementation that's usable in SEC. Restrict the stateful implementation
to the current, non-SEC clients.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15045 6f19259b-4bc3-4df7-8a09-765794883524
This internal function allows separation of library-internal and
for-clients external availability of fw_cfg.
The interface contract of QemuFwCfgIsAvailable() is changed so that now it
may modify fw_cfg state. All current users are compliant with the new
contract.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15044 6f19259b-4bc3-4df7-8a09-765794883524
Rather than embedding the License information in this script,
we now read the License.txt files from MdePkg & FatBinPkg.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15043 6f19259b-4bc3-4df7-8a09-765794883524
Previously we would run 'git svn info' if a .svn directory
wasn't found. This would fail if the current local commit
was not from git-svn.
Now we look for the svn info in the output from git log.
If the svn version is not in a git-svn-id tag from
git log, then we use the git commit hash.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15042 6f19259b-4bc3-4df7-8a09-765794883524
The source control revision is still the produced filename.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15040 6f19259b-4bc3-4df7-8a09-765794883524
Remove 'Alpha' status tag. Let's just refer to the OVMF
releases by their revision control version.
Remove 'stabilize UEFI Linux' to-do item.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15039 6f19259b-4bc3-4df7-8a09-765794883524
Although SVN r14944 ("OvmfPkg: introduce PublishPeiMemory") copied a big
chunk of code from MemDetect(), calling the new PublishPeiMemory()
function in MemDetect() could not have replaced the original code in the
latter. However, with the help of the previous patch, we can do it now.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15023 6f19259b-4bc3-4df7-8a09-765794883524
UEFI spec virtio spec
======================================= =================================
LowestAlignedLba EFI_LBA (UINT64) alignment_offset u8
+-------------------------------------- +--------------------------------
| first LBA that is aligned to a | offset of first aligned
| physical block boundary (SCSI | logical block
| definition)
LogicalBlocksPerPhysicalBlock UINT32 physical_block_exp u8
+-------------------------------------- +--------------------------------
| number of logical blocks per | # of logical blocks per
| physical block [...] does not contain | physical block (log2)
| an exponential value
OptimalTransferLengthGranularity UINT32 opt_io_size le32
+-------------------------------------- +--------------------------------
| optimal transfer length granularity | optimal (suggested maximum) I/O
| as a number of logical blocks [...] A | size in blocks
| value of 0 means there is no reported
| optimal transfer length granularity
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15004 6f19259b-4bc3-4df7-8a09-765794883524
Lines should be no longer than 79 characters.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15003 6f19259b-4bc3-4df7-8a09-765794883524
We're going to introduce a new macro and a new VIRTIO_BLK_CONFIG member
that need realignment of existing definitions and comments. Separate out
the whitespace changes in this patch.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15001 6f19259b-4bc3-4df7-8a09-765794883524
When QemuFlashWrite() is asked to write a range that includes the last
byte of the LBA, then the byte that the function uses to switch the flash
device back to read mode (ROMD mode in KVM speak) actually falls out of
the LBA.
Normally this doesn't cause visible problems. However, if the variable
store and the firmware code are backed by separate flash devices, as
implemented by
[Qemu-devel] [PATCH v2] hw/i386/pc_sysfw: support two flash drives
http://thread.gmane.org/gmane.comp.emulators.qemu/243678
plus
[edk2] [edk2 PATCH] OvmfPkg: split the variable store to a separate file
http://thread.gmane.org/gmane.comp.bios.tianocore.devel/5045/focus=5046
then the READ_ARRAY_CMD not only reaches a different LBA, it reaches a
different qemu device. This results in a guest reboot soon after.
Fix this by ensuring that we always stay within the LBA just written when
issuing READ_ARRAY_CMD.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14996 6f19259b-4bc3-4df7-8a09-765794883524
The QemuVideoDxe driver creates child controller handles, so it is acting
as a hybrid bus driver. The child handles should open the parent's bus
protocol BY_CHILD_CONTROLLER to properly maintain the protocol usage count.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Chris Ruffin <chris.ruffin@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14987 6f19259b-4bc3-4df7-8a09-765794883524
These functions did not provide much more than the new protocol functions
VIRTIO_DEVICE_PROTOCOL.ReadDevice() / VIRTIO_DEVICE_PROTOCOL.WriteDevice().
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Olivier Martin <olivier.martin@arm.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14968 6f19259b-4bc3-4df7-8a09-765794883524
This definition is specific to VirtIo over PCI.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Olivier Martin <olivier.martin@arm.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14967 6f19259b-4bc3-4df7-8a09-765794883524
This change replaces the accesses to the PCI bus from the Block, Scsi and Net drivers by
the use of the new VIRTIO_DEVICE_PROTOCOL protocol that abstracts the transport layer.
It means these drivers can be used on PCI and MMIO transport layer.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Olivier Martin <olivier.martin@arm.com>
v5:
- VirtioFlush(): update comment block in VirtioLib.[hc]; error code is
propagated from VirtIo->SetQueueNotify().
- VirtioBlkInit(): jump to Failed label if SetPageSize() fails
- VirtioBlkInit(): fixup comment, and add error handling, near
SetQueueNum() call
- VirtioBlkDriverBindingStart(): remove redundant (always false) check for
a subsystem device ID different from VIRTIO_SUBSYSTEM_BLOCK_DEVICE;
VirtioBlkDriverBindingSupported() handles it already
- VirtioNetGetFeatures(): update stale comment block
- VirtioNetGetFeatures(): retrieve MAC address byte for byte (open-coded
loop)
- VirtioNetDriverBindingStart(): remove redundant (always false) check for
a subsystem device ID different from VIRTIO_SUBSYSTEM_NETWORK_CARD;
VirtioNetDriverBindingSupported() handles it already
- VirtioNetInitRing(): call SetQueueNum() and SetQueueAlign() for proper
MMIO operation
- VirtioNetInitialize(): fix destination error label for when
SetPageSize() fails
- VirtioScsi.c: fix comment block of VIRTIO_CFG_WRITE()/VIRTIO_CFG_READ()
- VirtioScsiInit(): fix destination error label for when SetPageSize()
fails
- VirtioScsiInit(): call SetQueueNum() and SetQueueAlign() for proper MMIO
operation
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14966 6f19259b-4bc3-4df7-8a09-765794883524
Why is the virtio-mmio implementation of the protocol a library,
instead of a driver binary?
The UEFI driver model would encourage to create a virtio-mmio driver
instead of a library. But the reasons why I created a library are:
- A virtio-mmio driver would imply an additional protocol that would
probably have a single attribute field:
typedef struct {
PHYSICAL_ADDRESS BaseAddress;
} VIRTIO_MMIO_DEVICE_PROTOCOL;
- There is no (easy) way to scan the available VirtIo devices on a
platform. So, the UEFI firmware for this platform would need a driver
to produce instances for every virtio devices it wants to expose in
UEFI. A single call to a helper library (ie: VirtioMmioDeviceLib)
make the porting easier.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Olivier Martin <olivier.martin@arm.com>
v5:
- typo fix in VirtioMmioInstallDevice() comment block
- plug MmioDevice leak in VirtioMmioUninstallDevice()
- return EFI_INVALID_PARAMETER in VirtioMmioGetQueueAddress() if
QueueAddress is NULL
- VirtioMmioSetQueueSize(): fix return value (it's a status code)
- VirtioMmioSetPageSize(): check against EFI_PAGE_SIZE with "if" plus
EFI_UNSUPPORTED, rather than ASSERT()
- VirtioMmioDeviceWrite(), VirtioMmioDeviceRead(): remove redundant
(FieldSize > 8) checks
- VirtioMmioDeviceLib.inf: drop UefiDriverEntryPoint library dependency
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14965 6f19259b-4bc3-4df7-8a09-765794883524
This change implements the VIRTIO_DEVICE_PROTOCOL for the PCI transport
layer.
The VirtIo device drivers will interact with the PCI-based VirtIo devices
through this protocol implementation.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Olivier Martin <olivier.martin@arm.com>
v5:
- updated comment block on VirtioPciDeviceRead()
- return EFI_UNSUPPORTED instead of failed ASSERT() in
VirtioPciSetPageSize()
- VirtioPciIoRead(): restore the original requirement that FieldSize equal
BufferSize exactly (not only divide it). The looping added in v4 did not
match the comment block, and the only place that used it in v4 (ie.
VirtioNetGetFeatures()) needs an open-coded loop anyway (will be done in
a later part of v5).
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14964 6f19259b-4bc3-4df7-8a09-765794883524
This protocol introduces an abstraction to access the VirtIo
Configuration and Device spaces.
The registers in these spaces are located at a different offset and have
a different width whether the transport layer is either PCI or MMIO. This
protocol would also allow to support VirtIo PCI devices with MSI-X
capability in a transparent way (Device space is at a different offset
when a PCIe device has MSI-X capability).
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Olivier Martin <olivier.martin@arm.com>
v5:
- add disclaimer (two instances) about the protocol being work in progress
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14963 6f19259b-4bc3-4df7-8a09-765794883524
This patch sets PcdPciDisableBusEnumeration to true then makes use of
PublishPeiMemory and XenMemMapInitialization to construct memory map for
Xen guest.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Wei Liu <wei.liu2@citrix.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14946 6f19259b-4bc3-4df7-8a09-765794883524
MemDetect actully does too many things, the underlying platform might
want to have more control over memory layout.
Extract the functionality of publishing PEI memory to a dedicated
function.
Also fixed wrong comment while I was there.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Wei Liu <wei.liu2@citrix.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14944 6f19259b-4bc3-4df7-8a09-765794883524
This is useful for initializing memory map.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Wei Liu <wei.liu2@citrix.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14943 6f19259b-4bc3-4df7-8a09-765794883524
EFI_XEN_OVMF_INFO is defined to accept configurations from hvmloader. It
must match the definition on Xen side.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Wei Liu <wei.liu2@citrix.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14942 6f19259b-4bc3-4df7-8a09-765794883524
QemuFlashFvbServicesRuntimeDxe provides actual persistent storage for
non-volatile variables. When it is active, any on-disk NvVars file counts
as a stale source of variables -- hence don't load these files in BDS.
This also allows Secure Boot settings (eg. enrolled keys) to survive cold
VM reboots.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14844 6f19259b-4bc3-4df7-8a09-765794883524
PcdFlashNvStorageVariableBase64 is used to arbitrate between
QemuFlashFvbServicesRuntimeDxe and EmuVariableFvbRuntimeDxe, but even the
latter driver sets it if we fall back to it.
Allow code running later than the startup of these drivers to know about
the availability of flash variables, through a dedicated PCD.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14843 6f19259b-4bc3-4df7-8a09-765794883524
If the QEMU version is found to be >= 1.6, then automatically
enable flash (using the QEMU pflash command line parameter).
QEMU supports flash since 1.2, but only if KVM is disabled.
As of QEMU 1.6, flash support should also be enabled when
KVM is used. Therefore it is safest to only enable flash for
QEMU 1.6 and newer.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14842 6f19259b-4bc3-4df7-8a09-765794883524
If this argument is used, then when QEMU is run, the -pflash
parameter will be used with QEMU to enable QEMU's flash
mode.
It should be used before the 'qemu' argument, since it is
not a QEMU parameter, but instead it updates how build.sh
runs QEMU.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14841 6f19259b-4bc3-4df7-8a09-765794883524
This driver will support a flash FVB implementation if QEMU flash
is detected.
The driver is added to the apriori list to make sure it runs
before the EmuVariableFvbRuntimeDxe driver. If this driver detects
flash support, then it will disable the EmuVariableFvbRuntimeDxe
driver by setting PcdFlashNvStorageVariableBase64.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14840 6f19259b-4bc3-4df7-8a09-765794883524
If QEMU flash is detected, this module will install
FirmwareVolumeBlock support for the QEMU flash device.
It will also set PCDs with the results that:
1. OvmfPkg/EmuVariableFvbRuntimeDxe will be disabled
2. MdeModulePkg variable services will read/write flash directly
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14839 6f19259b-4bc3-4df7-8a09-765794883524
If QEMU flash is supported, then the PcdFlashNvStorageVariableBase64
will be set by the flash FVB driver. If it is set to a non-zero value,
then we disable memory based variables.
In future patches we will add the flash FVB driver and
force it to run before this driver. Therefore, if QEMU flash
writing is supported, then this driver will be disabled.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14838 6f19259b-4bc3-4df7-8a09-765794883524
In a later patch we will want to mark the flash memory as a
runtime services data memory range. This will allow a new runtime
services firmware block driver to read & write flash memory when
the OS has set up virtual memory protection.
Since this memory range will appear as runtime services data, we
need to adjust the limit when scanning for PCI window 32 down to
just below the flash device. If we don't adjust the limit, then
the algorithm in PopulateFwData will fail because it will see a
EfiGcdMemoryTypeSystemMemory memory range just below 4GB.
v2:
* This patch replaces the v1 patch:
"OvmfPkg/AcpiPlatformDxe/Qemu: Allow high runtime memory regions"
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14837 6f19259b-4bc3-4df7-8a09-765794883524
This is to prepare for QEMU flash support which will allow
non-volatile variables to be saved in the flash image.
Note two size changes:
* NV Varstore size increased from 0xc000 to 0xe000
* FTW work size decreased from 0x2000 to 0x1000
The reason for this change is that the fault-tolerant write
support requires that the work area fit within the block
just before the fault-tolerant write spare storage blocks.
Since QEMU flash blocks have a size of 0x1000, this means
that the maximum FTW work size is 0x1000.
v2:
* Update commit message and PcdVariableStoreSize
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14835 6f19259b-4bc3-4df7-8a09-765794883524
The 1MB image with full debug and the shell included is too
large to implement flash based non-volatile variable.
After this change, building with -D FD_SIZE_1MB will
force the smaller flash size.
The default size for RELEASE build remains at 1MB, so using
-b RELEASE on the build command line will result in a
1MB flash size. For RELEASE builds -D FD_SIZE_2MB can be
used to produce a 2MB flash image.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14833 6f19259b-4bc3-4df7-8a09-765794883524
If the user has set the QEMU_COMMAND environment variable,
then use it when running QEMU. This can be useful for running
OVMF with development builds of QEMU.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14825 6f19259b-4bc3-4df7-8a09-765794883524
Offsets are different between the PCI and MMIO transport layer.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Olivier Martin <olivier.martin@arm.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14808 6f19259b-4bc3-4df7-8a09-765794883524
The Device Specific Configuration region is located at different locations
for the VirtIo devices over PCI, PCI with MSI-X capability, MMIO.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Olivier Martin <olivier.martin@arm.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14807 6f19259b-4bc3-4df7-8a09-765794883524
SVN r14770 ("OvmfPkg/PlatformPei: correctly align emulated NV storage")
made sure the emulated NV storage was allocated with correct alignment.
However, the AllocateRuntimePool() -> AllocateAlignedPages() change
flipped the memory type from EfiRuntimeServicesData to
EfiBootServicesData. This causes variable services to access freed storage
at runtime. It crashes Windows 2008 R2 early at boot, for example.
Keep the alignment, but restore the memory type to EfiRuntimeServicesData,
by calling AllocateAlignedRuntimePages().
These helper functions are implemeted and documented in
"MdePkg/Library/PeiMemoryAllocationLib/MemoryAllocationLib.c".
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14806 6f19259b-4bc3-4df7-8a09-765794883524
Per 2c4b18e ("MdeModulePkg: Add the alignment check for FTW spare area
address and length, and add the check for PcdFlashNvStorageVariableSize
<= PcdFlashNvStorageFtwSpareSize."), FTWDxe refuses to initialize if
spare space base address or size is not aligned to block size.
Depending on configuration, memory for FTWDxe might be dynamically
allocated in PlatformPei. This patch makes sure that the allocated
memory region is aligned.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Wei Liu <wei.liu2@citrix.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14770 6f19259b-4bc3-4df7-8a09-765794883524
LoadLinux() is looking at the wrong field for the kernel's EFI handover
protocol flags. It's not currently possible for JumpToUefiKernel() to
ever be called (even accidentally) because BIT2 and BIT3 of
Bp->hdr.load_flags are never set in modern kernels, which means that
control is always transferred to the kernel via the legacy entry point.
Look at the correct field so that the EFI handover protocol is used
whenever it's available.
Contributed-under: TianoCore Contribution Agreement 1.0
Cc: David Woodhouse <David.Woodhouse@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14721 6f19259b-4bc3-4df7-8a09-765794883524
Since we no longer building page tables in SEC C code, we no
longer need this file.
This reverts commit r14493.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14720 6f19259b-4bc3-4df7-8a09-765794883524
Now for X64 we use a VTF0 ResetVector which puts the page
tables in RAM. Therefore SEC no longer needs to do this.
This reverts commit r14494.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14719 6f19259b-4bc3-4df7-8a09-765794883524
Since we no longer require flash tables to be stored uncompressed
in the flash image, we can now give extra space to the main/compressed
storage area.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14718 6f19259b-4bc3-4df7-8a09-765794883524
This reset vector code will build page tables in RAM at address
0x80000, rather than relying on page tables to be present within
the flash image.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14717 6f19259b-4bc3-4df7-8a09-765794883524
In UEFI X64 we use other mechanisms to disable caching.
(CD/NW in CR0 and MTRRs.)
This fixes a slow boot issue with SVM.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14716 6f19259b-4bc3-4df7-8a09-765794883524
KVM has a bug that prevents using page tables in the ROM if the ROM
region utilizes the KVM READONLY memory feature. Therefore, we
avoid using page tables stored in the ROM.
Since OVMF doesn't require memory initialization, we just build
page table entries in RAM at 0x80000 very early in the OVMF boot
process. This address is just after the 'temp RAM' which is set
up by the SEC module.
Currently we only set up 4GB of page tables for OVMF's PEI,
but DxeIpl will build identity mapped page tables that cover all
of the available processor physical address space.
Reported-by: Gary Ching-Pang Lin <glin@suse.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14715 6f19259b-4bc3-4df7-8a09-765794883524
(1) OVMF depends on
MdeModulePkg/Universal/SecurityStubDxe/SecurityStubDxe.inf
unconditionally.
(2) When OVMF is built with -D SECURE_BOOT_ENABLE, then
SecurityPkg/Library/DxeImageVerificationLib/DxeImageVerificationLib.inf
is injected into SecurityStubDxe above.
(3) SVN r14687 ("Add TPM2 implementation.") has made
DxeImageVerificationLib dependent on TpmMeasurementLib.
Currently the last link of the
OVMF -> SecurityStubDxe -> DxeImageVerificationLib -> TpmMeasurementLib
dependency chain is unresolved:
build.py...
/.../OvmfPkg/OvmfPkgX64.dsc(...): error 4000: Instance of library class [TpmMeasurementLib] is not found
in [/.../SecurityPkg/Library/DxeImageVerificationLib/DxeImageVerificationLib.inf] [X64]
consumed by module [/.../MdeModulePkg/Universal/SecurityStubDxe/SecurityStubDxe.inf]
Let's provide a library instance for TpmMeasurementLib the same way as
"SecurityPkg/SecurityPkg.dsc" does (SVN r13964.)
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14690 6f19259b-4bc3-4df7-8a09-765794883524
Some of the active boot options that have not been selected over fw_cfg
should be preserved at the end of the boot order. For now we're adding
back everything that starts with neither PciRoot() nor HD(). This includes
the UEFI shell, memory-mapped from the firmware image.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Michael Chang <mchang@suse.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14668 6f19259b-4bc3-4df7-8a09-765794883524
This will allow us to identify those UEFI boot options (while keeping
their relative order) that have *not* been selected by fw_cfg.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Michael Chang <mchang@suse.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14667 6f19259b-4bc3-4df7-8a09-765794883524
In preparation for the next patch, collect active UEFI boot options in
advance into a new array. Rebase the current inner loop (the matching
loop) to this array.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Michael Chang <mchang@suse.com>
[jordan.l.justen@intel.com: initialize *ActiveOption for GCC IA32 warning]
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14666 6f19259b-4bc3-4df7-8a09-765794883524
The prefix matching logic in Match()
[OvmfPkg/Library/PlatformBdsLib/QemuBootOrder.c] expects UEFI boot options
to specify full (absolute) device paths. However, partial (relative)
device paths starting with a HD() node are valid for booting. By not
recognizing them, QemuBootOrder.c misses (and deletes) valid boot options
that would otherwise match the user's preference.
Just like BdsLibBootViaBootOption() expands such paths with the
BdsExpandPartitionPartialDevicePathToFull() function for booting, do the
same in QemuBootOrder.c for prefix matching.
This moves the very first call to
BdsExpandPartitionPartialDevicePathToFull() to an earlier point. The
following call tree explains it:
BdsEntry() [IntelFrameworkModulePkg/Universal/BdsDxe/BdsEntry.c]
PlatformBdsPolicyBehavior() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c]
SetBootOrderFromQemu() [OvmfPkg/Library/PlatformBdsLib/QemuBootOrder.c]
Match() [OvmfPkg/Library/PlatformBdsLib/QemuBootOrder.c]
BdsExpandPartitionPartialDevicePathToFull() [IntelFrameworkModulePkg/Library/GenericBdsLib/BdsBoot.c]
BdsBootDeviceSelect() [IntelFrameworkModulePkg/Universal/BdsDxe/BdsEntry.c]
BdsLibBootViaBootOption() [IntelFrameworkModulePkg/Library/GenericBdsLib/BdsBoot.c]
BdsExpandPartitionPartialDevicePathToFull() [IntelFrameworkModulePkg/Library/GenericBdsLib/BdsBoot.c]
This should be fine, for two reasons:
- the new, earlier call is still under BdsEntry(),
- BdsExpandPartitionPartialDevicePathToFull() expects to be called
repeatedly, even with the same set of HD() device paths. This function
implements its own caching for device paths, likely for performance
reasons.
That fits this patch well because whatever device paths we expand under
PlatformBdsPolicyBehavior() can be quickly looked up in
BdsBootDeviceSelect(), so no work (ie.
BdsLibConnectAllDriversToAllControllers()) should be wasted.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Michael Chang <mchang@suse.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14665 6f19259b-4bc3-4df7-8a09-765794883524
The volatile 'NvVars' variable indicates that the variables do
not need to be loaded from the file again. After we write the
variables out to the file, there is clearly no need to load
them back from the file.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Michael Chang <mchang@suse.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14613 6f19259b-4bc3-4df7-8a09-765794883524
2. ASSERT if PCD value is set to 5 (QUERY_USER_ON_SECURITY_VIOLATION).
3. Update override PCD setting from 5 to 4 in platform DSC file.
Signed-off-by: Fu Siyuan <siyuan.fu@intel.com>
Reviewed-by: Ni Ruiyu <ruiyu.ni@intel.com>
Reviewed-by: Ye Ting <ting.ye@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14607 6f19259b-4bc3-4df7-8a09-765794883524
Enforce in-order execution of these steps even on not sequentially
consistent architectures, as discussed in [1]. These changes should be
unnecessary on x86 (the only architecture OVMF currently supports), but
they align the OVMF virtio code with the virtio specification and could be
necessary for future OVMF ports.
[1] http://lists.linuxfoundation.org/pipermail/virtualization/2013-June/024547.html
Suggested-by: Stefan Hajnoczi <stefanha@redhat.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14601 6f19259b-4bc3-4df7-8a09-765794883524
Previously OVMF included the older EFI shell binary when building.
Now we will build and use the UEFI shell (ShellPkg) instead.
v2:
* Don't bother building UEFI shell when USE_OLD_SHELL is defined
* Fix errors in OvmfPkgIa32X64.fdf
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14600 6f19259b-4bc3-4df7-8a09-765794883524
When enrolling the certificate from a file, the suffix check function
check the last 4 characters to filter out non-DER files. However,
if the length of the file name is less than 4, the address prior to
the file name will be accessed while it shouldn't. This commit checks
the length of the file name to avoid illegal access.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gary Ching-Pang Lin <glin@suse.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Guo Dong <guo.dong@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14556 6f19259b-4bc3-4df7-8a09-765794883524
In Linux, efi_memblock_x86_reserve_range() and efi_reserve_boot_services()
expect that whoever allocates the EFI memmap allocates it in Loader Data
type memory. Linux's own exit_boot()-->low_alloc() complies, but
SetupLinuxMemmap() in LoadLinuxLib doesn't.
The memory type discrepancy leads to efi_memblock_x86_reserve_range() and
efi_reserve_boot_services() both trying to reserve the range backing the
memmap, resulting in memmap entry truncation in
efi_reserve_boot_services().
This fix also makes this allocation consistent with all other persistent
allocations in "OvmfPkg/Library/LoadLinuxLib/Linux.c".
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reported-and-tested-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14555 6f19259b-4bc3-4df7-8a09-765794883524
This is based on MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c.
Previously we would run using page tables built into the
firmware device.
If a flash memory is available, it is unsafe for the page
tables to be stored in memory since the processor may try
to write to the page table data structures.
Additionally, when KVM ROM support is enabled for the
firmware device, then PEI fails to boot when the page
tables are in the firmware device.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14494 6f19259b-4bc3-4df7-8a09-765794883524
When the PM base address was moved from 0x400 to 0xb000, this
code was missed. This prevented shutdown's via the UEFI system
call from working. (For example, at the EFI shell prompt: reset -s)
We now use gUefiOvmfPkgTokenSpaceGuid.PcdAcpiPmBaseAddress
which is currently set at 0xb000.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14492 6f19259b-4bc3-4df7-8a09-765794883524
r14252 causes OVMF to crash if SECURE_BOOT_ENABLE is set,
because PcdMaxVariableSize is set to a larger value than
required. In other platforms, 0x2000 seems to be sufficient.
Reported-by: Gary Ching-Pang Lin <glin@suse.com>
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14423 6f19259b-4bc3-4df7-8a09-765794883524
Also summarize the resultant NIC driver options in the README file.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14421 6f19259b-4bc3-4df7-8a09-765794883524
These changes were needed in addition to the silence.patch
that Laszlo posted on May 28.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14420 6f19259b-4bc3-4df7-8a09-765794883524
These were found with the gcc-4.4 option "-Wconversion" after Jordan
reported the build failure under Visual Studio. The patch was originally
posted to edk2-devel as "silence.patch":
http://thread.gmane.org/gmane.comp.bios.tianocore.devel/2804/focus=2972
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14419 6f19259b-4bc3-4df7-8a09-765794883524
OvmfPkg's file-based NvVar storage is read back as follows at boot (all
paths under OvmfPkg/Library/):
PlatformBdsPolicyBehavior() [PlatformBdsLib/BdsPlatform.c]
PlatformBdsRestoreNvVarsFromHardDisk()
VisitAllInstancesOfProtocol
for each simple file system:
VisitingFileSystemInstance()
ConnectNvVarsToFileSystem() [NvVarsFileLib/NvVarsFileLib.c]
LoadNvVarsFromFs() [NvVarsFileLib/FsAccess.c]
ReadNvVarsFile()
+-------------> SerializeVariablesSetSerializedVariables() [SerializeVariablesLib/SerializeVariablesLib.c]
| SerializeVariablesIterateInstanceVariables()
| +-------------> IterateVariablesInBuffer()
| | for each loaded / deserialized variable:
| +-|-----------------> IterateVariablesCallbackSetSystemVariable()
| | | gRT->SetVariable()
| | |
| | IterateVariablesInBuffer() stops processing variables as soon as the
| | first error is encountered from the callback function.
| |
| | In this case the callback function is
| IterateVariablesCallbackSetSystemVariable(), selected by
SerializeVariablesSetSerializedVariables().
The result is that no NvVar is restored from the file after the first
gRT->SetVariable() failure.
On my system such a failure
- never happens in an OVMF build with secure boot disabled,
- happens *immediately* with SECURE_BOOT_ENABLE, because the first
variable to restore is "AuthVarKeyDatabase".
"AuthVarKeyDatabase" has the EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS
attribute set. Since the loop tries to restore it before any keys (PK, KEK
etc) are enrolled, gRT->SetVariable() rejects it with
EFI_SECURITY_VIOLATION. Consequently the NvVar restore loop terminates
immediately, and we never reach non-authenticated variables such as
Boot#### and BootOrder.
Until work on KVM-compatible flash emulation converges between qemu and
OvmfPkg, improve the SECURE_BOOT_ENABLE boot experience by masking
EFI_SECURITY_VIOLATION in the callback:
- authenticated variables continue to be rejected same as before, but
- at least we allow the loop to progress and restore non-authenticated
variables, for example boot options.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14390 6f19259b-4bc3-4df7-8a09-765794883524
DHCP, PXE, and StdLib socket apps are enabled in OVMF by the sum of:
(a) a UEFI NIC driver,
(b) the generic network stack.
The only choice for (a) used to be the proprietary Intel E1000 driver,
which is cumbersome to obtain and enable.
The iPXE UEFI NIC drivers packaged with qemu-1.5 cover (a) for each NIC
type supported by qemu, and are easy to obtain & configure, even for
earlier qemu versions. Therefore enable (b) per default as well.
This doesn't take up much space; the binaries (b) adds to the firmware
don't seem to need -D FD_SIZE_2MB.
Intel's e1000 driver remains an option, requested by the -D E1000_ENABLE
build flag.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14366 6f19259b-4bc3-4df7-8a09-765794883524
The descriptor table (also known as "queue") consists of descriptors. (The
corresponding type in the code is VRING_DESC.)
An individual descriptor describes a contiguous buffer, to be transferred
uni-directionally between host and guest.
Several descriptors in the descriptor table can be linked into a
descriptor chain, specifying a bi-directional scatter-gather transfer
between host and guest. Such a descriptor chain is also known as "virtio
request".
(The descriptor table can host sereval descriptor chains (in-flight virtio
requests) in parallel, but the OVMF driver supports at most one chain, at
any point in time.)
The first descriptor in any descriptor chain is called "head descriptor".
In order to submit a number of parallel requests (= a set of independent
descriptor chains) from the guest to the host, the guest must put *only*
the head descriptor of each separate chain onto the Available Ring.
VirtioLib currently places the head of its one descriptor chain onto the
Available Ring repeatedly, once for each single (head *or* dependent)
descriptor in said descriptor chain. If the descriptor chain comprises N
descriptors, this error amounts to submitting the same entire chain N
times in parallel.
Available Ring Descriptor table
Ptr to head ----> Desc#0 (head of chain)
Ptr to head --/ Desc#1 (next in same chain)
... / ...
Ptr to head / Desc#(N-1) (last in same chain)
Anatomy of a single virtio-blk READ request (a descriptor chain with three
descriptors):
virtio-blk request header, prepared by guest:
VirtioAppendDesc PhysAddr=3FBC6050 Size=16 Flags=1 Head=1232 Next=1232
payload to be filled in by host:
VirtioAppendDesc PhysAddr=3B934C00 Size=32768 Flags=3 Head=1232 Next=1233
host status, to be filled in by host:
VirtioAppendDesc PhysAddr=3FBC604F Size=1 Flags=2 Head=1232 Next=1234
Processing on the host side -- the descriptor chain is processed three
times in parallel (its head is available to virtqueue_pop() thrice); the
same chain is submitted/collected separately to/from AIO three times:
virtio_queue_notify vdev VDEV vq VQ#0
virtqueue_pop vq VQ#0 elem EL#0 in_num 2 out_num 1
bdrv_aio_readv bs BDRV sector_num 585792 nb_sectors 64 opaque REQ#0
virtqueue_pop vq VQ#0 elem EL#1 in_num 2 out_num 1
bdrv_aio_readv bs BDRV sector_num 585792 nb_sectors 64 opaque REQ#1
virtqueue_pop vq VQ#0 elem EL#2 in_num 2 out_num 1
bdrv_aio_readv bs BDRV sector_num 585792 nb_sectors 64 opaque REQ#2
virtio_blk_rw_complete req REQ#0 ret 0
virtio_blk_req_complete req REQ#0 status 0
virtio_blk_rw_complete req REQ#1 ret 0
virtio_blk_req_complete req REQ#1 status 0
virtio_blk_rw_complete req REQ#2 ret 0
virtio_blk_req_complete req REQ#2 status 0
On my Thinkpad T510 laptop with RHEL-6 as host, this probably leads to
simultaneous DMA transfers targeting the same RAM area. Even though the
source of each transfer is identical, the data is corrupted in the
destination buffer -- the CRC32 calculated over the buffer varies, even
though the origin of the transfers is the same, never rewritten LBA.
SynchronousRequest Lba=585792 BufSiz=32768 ReqIsWrite=0 Crc32=BF68A44D
The problem is invisible on my HP Z400 workstation.
Fix the request submission by:
- building the only one descriptor chain supported by VirtioLib always at
the beginning of the descriptor table,
- ensuring the head descriptor of this chain is put on the Available Ring
only once,
- requesting the virtio spec's language to be cleaned up
<http://lists.linuxfoundation.org/pipermail/virtualization/2013-April/024032.html>.
Available Ring Descriptor table
Ptr to head ----> Desc#0 (head of chain)
Desc#1 (next in same chain)
...
Desc#(N-1) (last in same chain)
VirtioAppendDesc PhysAddr=3FBC6040 Size=16 Flags=1 Head=0 Next=0
VirtioAppendDesc PhysAddr=3B934C00 Size=32768 Flags=3 Head=0 Next=1
VirtioAppendDesc PhysAddr=3FBC603F Size=1 Flags=2 Head=0 Next=2
virtio_queue_notify vdev VDEV vq VQ#0
virtqueue_pop vq VQ#0 elem EL#0 in_num 2 out_num 1
bdrv_aio_readv bs BDRV sector_num 585792 nb_sectors 64 opaque REQ#0
virtio_blk_rw_complete req REQ#0 ret 0
virtio_blk_req_complete req REQ#0 status 0
SynchronousRequest Lba=585792 BufSiz=32768 ReqIsWrite=0 Crc32=1EEB2B07
(The Crc32 was double-checked with edk2's and Linux's guest IDE driver.)
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14356 6f19259b-4bc3-4df7-8a09-765794883524
The README is rather extended than trimmed, so that users grepping for the
file name have a pointer.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14243 6f19259b-4bc3-4df7-8a09-765794883524
Also, add a small delay after the 0xCF9 hard reset request -- on qemu/kvm the
port access is translated to the qemu-internal system reset request by the CPU
thread, and it might progress some more before the IO thread acts upon the
system reset request.
MicroSecondDelay() is implemented by OvmfPkg's own AcpiTimerLib.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14158 6f19259b-4bc3-4df7-8a09-765794883524
The reset requested via the keyboard controller (port 0x64) is actually a
soft reset, but qemu has supported it since forever (plus qemu has not
distinguished between hard reset and soft reset, although this is changing
now). Therefore leave the current IoWrite() in place for compatibility.
On qemu versions with commit 1ec4ba74 ("PIIX3: reset the VM when the Reset
Control Register's RCPU bit gets set"), use the PIIX3 RCR as first choice.
In the future qemu will act differently on soft vs. hard reset requests,
and we should honor that in ResetCold().
Writing to ioport 0xCF9 on qemu builds prior to commit 1ec4ba74 should
have no effect. Access to the PCI host config register went through
several implementations in qemu. Commit 9f6f0423 ("pci_host: rewrite
using rwhandler") seems safe, both before and after.
Commit d0ed8076 ("pci_host: convert conf index and data ports to memory
API") inadvertently dropped the alignment/size check, causing a boot
regression on NetBSD. It was fixed about six months later in commit
cdde6ffc, which is current. Translating that to qemu releases, the bug
was visible from v1.0 to v1.1.0.
On physical hardware cycling between reset methods is sometimes necessary
<http://mjg59.dreamwidth.org/3561.html>. On qemu the port access should
trap immediately.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14157 6f19259b-4bc3-4df7-8a09-765794883524
The value to be written corresponds to hard reset, which is what the ACPI
spec prescribes.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14156 6f19259b-4bc3-4df7-8a09-765794883524
This conversion cannot be split very well into smaller patches. Comparing
version 1 and version 2 (modulo the header fields):
> --- EFI_ACPI_1_0_FIXED_ACPI_DESCRIPTION_TABLE
> +++ EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE
> @@ -1,14 +1,14 @@
> EFI_ACPI_DESCRIPTION_HEADER Header;
> UINT32 FirmwareCtrl;
> UINT32 Dsdt;
> - UINT8 IntModel;
> - UINT8 Reserved1;
> + UINT8 Reserved0;
> + UINT8 PreferredPmProfile;
The INT_MODEL field was present in ACPI 1.0, but eliminated in 2.0.
According to the spec, "platforms should set this field to zero but field
values of one are also allowed to maintain compatibility with ACPI 1.0".
We're setting it to zero.
About Preferred_PM_Profile (taking the place of an 1.0 reserved field),
the specification says:
This field is set by the OEM to convey the preferred power management
profile to OSPM. OSPM can use this field to set default power management
policy parameters during OS installation.
>From <MdePkg/Include/IndustryStandard/Acpi20.h>:
#define EFI_ACPI_2_0_PM_PROFILE_UNSPECIFIED 0
#define EFI_ACPI_2_0_PM_PROFILE_DESKTOP 1
#define EFI_ACPI_2_0_PM_PROFILE_MOBILE 2
#define EFI_ACPI_2_0_PM_PROFILE_WORKSTATION 3
#define EFI_ACPI_2_0_PM_PROFILE_ENTERPRISE_SERVER 4
#define EFI_ACPI_2_0_PM_PROFILE_SOHO_SERVER 5
#define EFI_ACPI_2_0_PM_PROFILE_APPLIANCE_PC 6
For a virtual machine, "unspecified" is the best choice.
> UINT16 SciInt;
> UINT32 SmiCmd;
> UINT8 AcpiEnable;
> UINT8 AcpiDisable;
> UINT8 S4BiosReq;
> - UINT8 Reserved2;
> + UINT8 PstateCnt;
We've been already treating this field as PSTATE_CNT. No change in value.
> UINT32 Pm1aEvtBlk;
> UINT32 Pm1bEvtBlk;
> UINT32 Pm1aCntBlk;
> @@ -20,11 +20,11 @@
> UINT8 Pm1EvtLen;
> UINT8 Pm1CntLen;
> UINT8 Pm2CntLen;
> - UINT8 PmTmLen;
> + UINT8 PmTmrLen;
(Field renaming artifact.)
> UINT8 Gpe0BlkLen;
> UINT8 Gpe1BlkLen;
> UINT8 Gpe1Base;
> - UINT8 Reserved3;
> + UINT8 CstCnt;
We've been already treating this field as CST_CNT. No change in value.
> UINT16 PLvl2Lat;
> UINT16 PLvl3Lat;
> UINT16 FlushSize;
> @@ -34,7 +34,19 @@
> UINT8 DayAlrm;
> UINT8 MonAlrm;
> UINT8 Century;
> - UINT8 Reserved4;
> - UINT8 Reserved5;
> - UINT8 Reserved6;
> + UINT16 IaPcBootArch;
> + UINT8 Reserved1;
The first two octets are now merged into a 16-bit short; otherwise we've
been treating those as boot architecture flags already (see SVN rev
13615). No change in value.
> UINT32 Flags;
The fixed feature flags are not modified, only the macro names (expanding
to identical values) are updated to ACPI 2.0.
The following fields are all new in ACPI 2.0:
> + EFI_ACPI_2_0_GENERIC_ADDRESS_STRUCTURE ResetReg;
> + UINT8 ResetValue;
We don't claim support for the reset register yet.
> + UINT8 Reserved2[3];
> + UINT64 XFirmwareCtrl;
> + UINT64 XDsdt;
The 64-bit physical addresses for the FACS and the DSDT are automatically
filled at installation time, see AddTableToList() and DeleteTable() in
"MdeModulePkg/Universal/Acpi/AcpiTableDxe/AcpiTableProtocol.c".
> + EFI_ACPI_2_0_GENERIC_ADDRESS_STRUCTURE XPm1aEvtBlk;
> + EFI_ACPI_2_0_GENERIC_ADDRESS_STRUCTURE XPm1bEvtBlk;
> + EFI_ACPI_2_0_GENERIC_ADDRESS_STRUCTURE XPm1aCntBlk;
> + EFI_ACPI_2_0_GENERIC_ADDRESS_STRUCTURE XPm1bCntBlk;
> + EFI_ACPI_2_0_GENERIC_ADDRESS_STRUCTURE XPm2CntBlk;
> + EFI_ACPI_2_0_GENERIC_ADDRESS_STRUCTURE XPmTmrBlk;
> + EFI_ACPI_2_0_GENERIC_ADDRESS_STRUCTURE XGpe0Blk;
> + EFI_ACPI_2_0_GENERIC_ADDRESS_STRUCTURE XGpe1Blk;
We specify the extended addresses for the required and supported PM1a
Event & Control, PM Timer, and GPE0 Register Blocks, and zero the rest, in
accordance with the ACPI 1.0 fields.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14155 6f19259b-4bc3-4df7-8a09-765794883524
In the next patch we're going to specify Extended Addresses of register
blocks in Generic Address Structure format. The GAS is easy to fill if we
want to posit either "unsupported" (all zero) or a given address in a
specific address space. However deriving "unsupported" just from a macro
expanding to zero is unwieldy, so let's avoid the need.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14154 6f19259b-4bc3-4df7-8a09-765794883524
Soon we're going to specify Extended Addresses of register blocks in
Generic Address Structure format. The GAS is easy to fill if we want to
posit either "unsupported" (all zero) or a given address in a specific
address space. However deriving "unsupported" just from a macro expanding
to zero is unwieldy, so let's avoid the need.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14153 6f19259b-4bc3-4df7-8a09-765794883524
Soon we're going to specify Extended Addresses of register blocks in
Generic Address Structure format. The GAS is easy to fill if we want to
posit either "unsupported" (all zero) or a given address in a specific
address space. However deriving "unsupported" just from a macro expanding
to zero is unwieldy, so let's avoid the need.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14152 6f19259b-4bc3-4df7-8a09-765794883524
With reference to
<http://sourceforge.net/mailarchive/message.php?msg_id=30359322>:
"MEMFD is built so MAINFV's contents will be relocated during the build to
address 0x800000", and it "is a firmware volume with most OVMF code/data
uncompressed. [...] Increasing its size has a little impact on the size of
the resulting firmware image since the blank part of the firmware volume
will compress well."
Let's increase the size to 8MB, since the current limit can get in the way
(for example when building-in the Intel3.5 drivers for e1000 with
-D FD_SIZE_2MB -D NETWORK_ENABLE -D SECURE_BOOT_ENABLE).
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14133 6f19259b-4bc3-4df7-8a09-765794883524
Usage of the EFI entry point was made feasible in the kernel
x64 boot protocol 2.12 where a 32-bit & 64-bit entry point
became well defined.
http://git.kernel.org/linus/09c205af
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14132 6f19259b-4bc3-4df7-8a09-765794883524
This should be more compatible with AML parsers in practice
since older versions of ACPICA's OS support would not accept
the previous OVMF format (despite being spec compliant).
(For example, on OpenBSD 5.2 it caused a kernel crash)
ACPICA has fixed this issue in:
https://github.com/otcshare/acpica/commit/5869690a
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: David Woodhouse <David.Woodhouse@intel.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14130 6f19259b-4bc3-4df7-8a09-765794883524
We cannot specify a pin-GSI connection for the SCI directly in the _PRT
because that implies ActiveLow polarity, clashing with both qemu and the
MADT we prepare.
With this patch the RHEL-6 guest logs the following:
ACPI: PCI Interrupt Routing Table [\_SB_.PCI0._PRT]
ACPI: PCI Interrupt Link [LNKS] (IRQs *9)
ACPI: PCI Interrupt Link [LNKA] (IRQs 5 10 *11)
ACPI: PCI Interrupt Link [LNKB] (IRQs 5 10 *11)
ACPI: PCI Interrupt Link [LNKC] (IRQs 5 *10 11)
ACPI: PCI Interrupt Link [LNKD] (IRQs 5 *10 11)
The patch amends svn rev 13625. Testing it in a RHEL-6 guest, the problems
described in
<http://sourceforge.net/mailarchive/message.php?msg_id=29660862> do not
reappear.
The code is derived from Paolo Bonzini's patch (originally appearing as
SeaBIOS commit f64a472a, "acpi: reintroduce LNKS"). Said original patch is
copyrighted by Red Hat (our common employer), and it has been relicensed
<http://sourceforge.net/mailarchive/message.php?msg_id=30393854> to form
the basis of this derived patch for edk2. The latter is therefore
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14111 6f19259b-4bc3-4df7-8a09-765794883524
Previously for IA32, we would only try to run qemu. Newer releases
of QEMU now have renamed the x86 qemu to qemu-system-i386.
Now, we search for:
1. qemu-system-i386
2. qemu-system-x86_64
3. qemu
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14101 6f19259b-4bc3-4df7-8a09-765794883524
The Xcode assembler is much pickier than GCC. Also the 64-bit
linker is not a fan of relocations so it is better to us IP
relative code, but at least it removes a relocation entry.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Andrew Fish <afish@apple.com>
[jordan.l.justen@intel.com: use .byte for retfq rather than lret]
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14055 6f19259b-4bc3-4df7-8a09-765794883524
We're supposed to zero everything in the kernel bootparams that we don't
explicitly initialise, other than the setup_header from 0x1f1 onwards
for a precisely defined length, which is copied from the bzImage.
We're *not* supposed to just pass the garbage that we happened to find
in the bzImage file surrounding the setup_header.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14052 6f19259b-4bc3-4df7-8a09-765794883524
Boot protocol 2.05 just means that the relocatable_kernel field is present
in the header. We should actually check that it's *set*.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14051 6f19259b-4bc3-4df7-8a09-765794883524
We currently just jump to offset 0x200 in the kernel image, in 64-bit
mode. This is completely broken. If it's a 32-bit kernel, we'll be
jumping into the compressed data payload.
If it's a 64-bit kernel, it'll work... but the 0x200 offset is
explicitly marked as 'may change in the future', has already changed
from 0x100 to 0x200 in the past with no fanfare, and bootloaders are
instructed that they should look at the ELF header to find the offset.
So although it does actually work today, it's still broken in the
"someone needs to whipped for doing it this way" sense of the word.
In fact, the same bug exists in other bootloaders so the 0x200 offset
probably *is* now set in stone. But still it's only valid to use it if
we *know* it's a 64-bit kernel. And we don't. There *is* no ELF header
that we can look at when we're booting a bzImage, and we can't rely on
it having a PE/COFF header either.
The 32-bit entry point is always guaranteed to work, and we need to
support it anyway. So let's just *always* use it, in 32-bit mode, and
then we don't have to make up some horrible heuristics for detecting
32-bit vs. 64-bit kernels.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14045 6f19259b-4bc3-4df7-8a09-765794883524
Move these states from the DSDT to the SSDT. Override the default
configuration if the host has the following qemu commit:
commit 459ae5ea5ad682c2b3220beb244d4102c1a4e332
Author: Gleb Natapov <gleb@redhat.com>
Date: Mon Jun 4 14:31:55 2012 +0300
Add PIIX4 properties to control PM system states.
This patch adds two things. First it allows QEMU to distinguish
between regular powerdown and S4 powerdown. Later separate QMP
notification will be added for S4 powerdown. Second it allows
S3/S4 states to be disabled from QEMU command line. Some guests
known to be broken with regards to power management, but allow to
use it anyway. Using new properties management will be able to
disable S3/S4 for such guests.
Supported system state are passed to a firmware using new fw_cfg
file. The file contains 6 byte array. Each byte represents one
system state. If byte at offset X has its MSB set it means that
system state X is supported and to enter it guest should use the
value from lowest 3 bits.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14003 6f19259b-4bc3-4df7-8a09-765794883524
The ACPI 5.0 specification says:
7.3.4.4 System \_S3 State
[...]
* Dynamic RAM context is maintained.
[...]
This corresponds to the following in the PIIX4 spec:
PMCNTRL -- POWER MANAGEMENT CONTROL REGISTER (IO)
[...]
Bits[12:10] Suspend Type
[...]
001 STR (Suspend To RAM)
Also, this (ie. decimal 1) is the suspend type value that qemu recognizes
as an S3 (suspend to ram) request.
Only the value for PM1a_CNT.SLP_TYP is set (PM1b_CNT.SLP_TYP is left at
zero), since in OVMF we don't report the optional PM1b_EVT_BLK register
block to OSPM. (PM1b_EVT_BLK is defined as 0 in "Platform.h"; see "4.8.1.1
PM1 Event Registers" in the ACPI 5.0 specification.)
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14002 6f19259b-4bc3-4df7-8a09-765794883524
The ACPI 5.0 specification says:
7.3.4.5 System \_S4 State
[...]
* DRAM context is not maintained.
[...]
This corresponds to the following in the PIIX4 spec:
PMCNTRL -- POWER MANAGEMENT CONTROL REGISTER (IO)
[...]
Bits[12:10] Suspend Type
[...]
010 POSCL (Powered On Suspend, Context Lost)
Also, this (ie. decimal 2) is the default suspend type value that qemu
recognizes as an S4 (suspend to disk) request.
Only the value for PM1a_CNT.SLP_TYP is corrected (PM1b_CNT.SLP_TYP is left
at zero), since in OVMF we don't report the optional PM1b_EVT_BLK register
block to OSPM. (PM1b_EVT_BLK is defined as 0 in "Platform.h"; see "4.8.1.1
PM1 Event Registers" in the ACPI 5.0 specification.)
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@14001 6f19259b-4bc3-4df7-8a09-765794883524
The qemu standard vga has a MMIO bar in qemu 1.3+.
Use it if available.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13969 6f19259b-4bc3-4df7-8a09-765794883524
Move to a table-driven hardware detection. Add a table with PCI IDs,
card name and variant enum. Use the table for hardware detection and
initialization. Rename Cirrus-specific data and code to carry "cirrus"
in the name.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13967 6f19259b-4bc3-4df7-8a09-765794883524
If QEMU's -kernel parameter was used, then download the
kernel from the FwCfg interface, and launch it. (See -kernel,
-initrd, -append) The application uses the LoadLinuxLib to boot
the kernel image.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13923 6f19259b-4bc3-4df7-8a09-765794883524
This code is based on efilinux's bzimage support.
git://git.kernel.org/pub/scm/boot/efilinux/efilinux.git
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Matt Fleming <matt.fleming@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13922 6f19259b-4bc3-4df7-8a09-765794883524
This file is from the efilinux project where it resides
under the path loaders/bzimage/bzimage.h.
git://git.kernel.org/pub/scm/boot/efilinux/efilinux.git
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Matt Fleming <matt.fleming@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13920 6f19259b-4bc3-4df7-8a09-765794883524
Structures should not be directly assigned in EDK II
code, since this leads to different behaviours on various
compilers.
Instead, use ZeroMem to zero out the structures.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13878 6f19259b-4bc3-4df7-8a09-765794883524
OvmfPkg/VirtioBlkDxe/VirtioBlk.c:667: undefined reference to `__umoddi3'
OvmfPkg/VirtioBlkDxe/VirtioBlk.c:750: undefined reference to `__udivdi3'
These operations would come from libgcc in the IA32 build, but OVMF does not
link against libgcc.
Regression-tested the X64 build with Fedora 18 Alpha XFCE and Windows 8
Consumer Preview guests.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13846 6f19259b-4bc3-4df7-8a09-765794883524
AppendDesc() should have a prefix implying its containing library,
VirtioLib. Update its sole client VirtioBlkDxe.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13843 6f19259b-4bc3-4df7-8a09-765794883524
Introduce a new library called VirtioLib, for now only collecting the
following reusable functions with as little changes as possible:
- VirtioWrite()
- VirtioRead()
- VirtioRingInit()
- VirtioRingUninit()
- AppendDesc()
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13842 6f19259b-4bc3-4df7-8a09-765794883524
Separate virtio-blk related macro and type definitions from generic virtio
related ones. Adapt the virtio-blk driver since it needs the latter too.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13841 6f19259b-4bc3-4df7-8a09-765794883524
since they are in fact virtio-blk specific.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13840 6f19259b-4bc3-4df7-8a09-765794883524
This commit consists of:
- a verbatim move ("similarity index 100%" in git parlance),
- an updated #include directive in VirtioBlkDxe/VirtioBlk.h,
- and an OvmfPkg.dec package entry in VirtioBlkDxe/VirtioBlk.inf, so that
the new include directory is searched.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13836 6f19259b-4bc3-4df7-8a09-765794883524
2 nodes in an OpenFirmware device path are sufficient for the generic
check at the beginning of TranslateOfwNodes(). The driver specific
branches check for the necessary nodes individually.
The number of nodes saved for examination is unchanged.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13800 6f19259b-4bc3-4df7-8a09-765794883524
The TimerLib in the OvmfPkg uses a global variable called mPmba and depends on that global being updated. This works for modules loaded into memory, but not XIP modules in ROM/FLASH.
This patch removes the mPmba global variable and instead reads the PIIX4 Power Management Base Address from PCI configuration space when it is needed. This patch also simplifies the initialization logic in the constructor and introduces #defines to eliminate hard coded values in the function implementations. According to the PIIX4 documentation, the IO Space enable bit in the PCI Command Register does not have to be set for the Power Management Base Address to be decoded, so that one op has been removed from the constructor.
I have tested this patch with QEMU and verified that the UDK Debugger us functional when SOURCE_DEBUG_ENABLE is set.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Michael Kinney <michael.d.kinney@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
I also tested it with RHEL-6.3 guest boot/shutdown, Fedora 18 Alpha XFCE
guest boot/shutdown, and Windows 8 Consumer Preview guest
boot/reboot/shutdown. (RHEL-6.3 host.) I didn't notice any adverse effects.
Tested-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13783 6f19259b-4bc3-4df7-8a09-765794883524
This patch preserves this information when SOURCE_DEBUG_ENABLE is set.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Michael Kinney <michael.d.kinney@intel.com>
Reviewed-by: Laszlo Ersek
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13780 6f19259b-4bc3-4df7-8a09-765794883524
In OvmfPkgIa32X64.dsc:
Paraphrasing svn rev 13350: gPcAtChipsetPkgTokenSpaceGuid is declared in
PcAtChipsetPkg.dec and used via AcpiPlatformDxe.inf, but with the latest
build tools, since this package builds multiple architectures (IA32 & X64)
and AcpiPlatformDxe is used on X64 only, it is now necessary to place the
gPcAtChipsetPkgTokenSpaceGuid PCD's in the [PcdsFixedAtBuild.X64] section.
In the two other .dsc files:
Make a similar change to keep file contents more easily comparable.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
[jordan.l.justen@intel.com: change all .dsc files to keep them diffable]
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13724 6f19259b-4bc3-4df7-8a09-765794883524
I. There are at least three locations in OvmfPkg that manipulate the PMBA
and related PIIX4 registers.
1. MiscInitialization() [OvmfPkg/PlatformPei/Platform.c]
module type: PEIM -- Pre-EFI Initialization Module
(a) currently sets the PMBA only: 00.01.3 / 0x40 bits [15:6]
2. AcpiTimerLibConstructor() [OvmfPkg/Library/AcpiTimerLib/AcpiTimerLib.c]
module type: BASE -- probably callable anywhere after PEI
(a) sets the PMBA if needed: 00.01.3 / 0x40 bits [15:6]
(b) sets PCICMD/IOSE if needed: 00.01.3 / 0x04 bit 0
(c) sets PMREGMISC/PMIOSE: 00.01.3 / 0x80 bit 0
3. AcpiInitialization() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c]
module type: DXE_DRIVER -- Driver eXecution Environment
(a) sets SCI_EN, which depends on correct PMBA setting from earlier
(
The relative order of #1 and #3 is dictated minimally by their module
types. Said relative order can be verified with the boot log:
27 Loading PEIM at 0x00000822320 EntryPoint=0x00000822580
PlatformPei.efi
28 Platform PEIM Loaded
1259 PlatformBdsInit
1270 PlatformBdsPolicyBehavior
Line 28 is printed by InitializePlatform()
[OvmfPkg/PlatformPei/Platform.c] which is the entry point of that
module. The other two lines are printed by the corresponding functions
in "OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c".
)
Currently #2 (AcpiTimerLibConstructor()) is called in a random spot
(whenever it gets loaded from the firmware image) and masks the
insufficient setup in #1. We shouldn't depend on that, PEI should finish
with IO space being fully accessibe. In addition, PEI should program the
same PMBA value as AcpiTimerLib.
II. The PEI change notwithstanding, AcpiTimerLib should stay defensive and
ensure proper PM configuration for itself (either by confirming or by
doing).
III. Considering a possible cleanup/unification of #2 and #3: timer
functions relying on AcpiTimerLibConstructor(),
- MicroSecondDelay()
- NanoSecondDelay()
- GetPerformanceCounter()
- GetPerformanceCounterProperties()
- GetTimeInNanoSecond()
may be called before #3 is reached (in Boot Device Selection phase), so we
should not move the initialization from #2 to #3. (Again, AcpiTimerLib
should contain its own setup.)
We should also not move #3 to an earlier phase -- SCI_EN is premature
unless we're about to boot real soon ("enable generation of SCI upon
assertion of PWRBTN_STS, LID_STS, THRM_STS, or GPI_STS bits").
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13722 6f19259b-4bc3-4df7-8a09-765794883524
The Index Register Base Address bitfield is selected by the binary mask
00000000 00000000 11111111 11000000, 0xFFC0; fix the typo.
Reported-by: Gleb Natapov <gleb@redhat.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13720 6f19259b-4bc3-4df7-8a09-765794883524
When allocating the BLOCK_MMIO_TO_BLOCK_IO_DEVICE structure, we were
not allocating a large enough amount. We were allocating the size of
the pointer, rather than the size of the structure.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13688 6f19259b-4bc3-4df7-8a09-765794883524
Currently if SOURCE_DEBUG_ENABLE is enabled when building with
GCC44, then the SEC module will not fit into SECFV.
This change increases the size of SECFV to allow this.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13687 6f19259b-4bc3-4df7-8a09-765794883524
Set the boot order based on configuration retrieved from QEMU.
Attempt to retrieve the "bootorder" fw_cfg file from QEMU. Translate the
OpenFirmware device paths therein to UEFI device path fragments. Match the
translated fragments against the enumerated BootOptionList, and rewrite
the BootOrder NvVar so that it corresponds to the order described in
fw_cfg.
The user is expected to configure working boot options first.
Tested via virt-manager's boot order widget.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13683 6f19259b-4bc3-4df7-8a09-765794883524
Including the range of [0xFC000000, 0xFD000000) for PCI MMIO
allocation created a conflict for Xen's HVM loader.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13682 6f19259b-4bc3-4df7-8a09-765794883524
We don't force a platform reset for OVMF when PK is changed in
custom mode setup.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Lee Rosenbaum <lee.g.rosenbaum@intel.com>
Reviewed-by: Erik Bjorge <erik.c.bjorge@intel.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13635 6f19259b-4bc3-4df7-8a09-765794883524
Represent the set of possible PCI link target IRQs with
Pcd8259LegacyModeEdgeLevel. This ensures that the 8259 Interrupt
Controller code in PcAtChipsetPkg will treat them as level-triggered too.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13628 6f19259b-4bc3-4df7-8a09-765794883524
Rotate links over devices and pins so that they match qemu.
PIIX4 function 3 (Power Management Module) unconditionally uses the INTA
interrupt pin. SCI from this module requires IRQ9.
Keep other assignments off IRQ9. Only IRQ5, IRQ10, IRQ11 remain for PCI
devices.
Bump OEMRevision in the DSDT.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13625 6f19259b-4bc3-4df7-8a09-765794883524
Kill PDIS and PSRS as they are writing to copies of PIR[A-D], not PIR[A-D]
themselves. Use specialized _DIS and _SRS methods that access PIR[A-D]
directly.
(This should be solvable by passing RefOf (PIRA) etc to PDIS/PSRS, however
the RHEL-6.3 kernel AML parser seems to choke on it. The rules described
in ACPIspec5.0 Table 19-316 "Object Storing and Copying Rules" don't seem
to work:
ACPI Error: Needed [Integer/String/Buffer], found [Reference]
ffff88003ee02420 (20090903/exresop-422)
ACPI Exception: AE_AML_OPERAND_TYPE, While resolving operands for
[OpcodeName unavailable] (20090903/dswexec-445)
ACPI Error (psparse-0537): Method parse/execution failed
[\_SB_.PCI0.LPC_.PDIS] (Node ffff88003f638b50), AE_AML_OPERAND_TYPE
ACPI Error (psparse-0537): Method parse/execution failed
[\_SB_.PCI0.LPC_.LNKA._DIS] (Node ffff88003f638a10),
AE_AML_OPERAND_TYPE
When changing the method too, so that it writes to DerefOf (Arg0) instead
of Arg0, ie. explicitly dereferencing rather than expecting the auto-deref
to work:
ACPI Error: Needed type [Reference], found [RegionField]
ffff88003f639858 (20090903/exresop-104)
ACPI Exception: AE_AML_OPERAND_TYPE, While resolving operands for
[OpcodeName unavailable] (20090903/dswexec-445)
ACPI Error (psparse-0537): Method parse/execution failed
[\_SB_.PCI0.LPC_.PDIS] (Node ffff88003f638b50), AE_AML_OPERAND_TYPE
ACPI Error (psparse-0537): Method parse/execution failed
[\_SB_.PCI0.LPC_.LNKA._DIS] (Node ffff88003f638a10),
AE_AML_OPERAND_TYPE
In short, when passing a RefOf, it is recognized as a reference inside the
method but mistakenly refused. When trying to deref it explicitly with
DerefOf, then it's suddenly not recognized as a reference.)
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13621 6f19259b-4bc3-4df7-8a09-765794883524
"RTC day of the month alarm feature is not supported".
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13614 6f19259b-4bc3-4df7-8a09-765794883524
- Qemu's PIIX emulation actually supports SMM and ACPI_ENABLE /
ACPI_DISABLE.
- After enabling SMI_CMD (SMI_CMD_IO_PORT), further values to be written
there must be synchronized with qemu: PSTATE_CNT, CST_CNT.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13611 6f19259b-4bc3-4df7-8a09-765794883524
"FWDT" ("firmware data") is allocated as EfiReservedMemoryType, with
AllocateReservedPool(). <MdePkg/Include/Library/MemoryAllocationLib.h>
doesn't seem to provide direct access to EfiACPIReclaimMemory, but at this
point the former seems sufficient.
Based on SeaBIOS commit 2062f2ba by Gerd Hoffmann <kraxel@redhat.com>.
v3:
- coding style fixes:
- BDAT -> FWDT
- __packed -> #pragma pack(1)
- BFLD -> FIRMWARE_DATA, PCI_WINDOW
- Bfld -> FwData
- Ssdt.asl: changed license to 2-clause BSDL, paraphrasing Dsdt.asl
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13573 6f19259b-4bc3-4df7-8a09-765794883524
Fix IO-APIC range size.
Add HPET.
Take LAPIC base from PCD and fix range size.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13572 6f19259b-4bc3-4df7-8a09-765794883524
ConSplitterDxe (UEFI_DRIVER) now uses this library class.
Move the library mapping to the common LibraryClasses section.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13570 6f19259b-4bc3-4df7-8a09-765794883524
UNIXGCC builds larger images than GCC44, and can have issues
fitting into the FD image. Therefore, when using UNIXGCC,
debug will be disabled by default.
The README file is updated with instructions for selectively
enabling debug for UNIXGCC.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13569 6f19259b-4bc3-4df7-8a09-765794883524
This patch adds support for a debug console on the same port that is used
by SeaBIOS. This makes it easier to debug OVMF, because it does not mix
debug and serial output on the same device. It also makes it easier to
leave some of the debug messages on even in release builds.
To enable it, pass "-debugcon stdio -global isa-debugcon.iobase=0x402" to
QEMU.
The new mechanism is enabled by default, but a regular serial console can
be chosen by adding -D DEBUG_ON_SERIAL_PORT to the build options.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
[jordan.l.justen@intel.com: MAX_DEBUG_MESSAGE_LENGTH=>0x100, p=>Ptr]
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13562 6f19259b-4bc3-4df7-8a09-765794883524
Tested with the "bootorder" fw_cfg file. Example contents (leading space
added and line terminators transcribed for readability):
/pci@i0cf8/ide@1,1/drive@0/disk@0<LF>
/pci@i0cf8/ide@1,1/drive@1/disk@0<LF>
/pci@i0cf8/ethernet@3/ethernet-phy@0<NUL>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13549 6f19259b-4bc3-4df7-8a09-765794883524
This patch adds Xen ACPI tables support to OVMF.
Use EFI_ACPI_TABLE_PROTOCOL to publish all Xen ACPI tables in OVMF,
while keeping the Qemu and KVM support.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Bei Guan <gbtju85@gmail.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13541 6f19259b-4bc3-4df7-8a09-765794883524
Older QEMU versions would load vgabios-cirrus.bin at 0xc0000 in
system RAM. We would then find this ROM, and try to run it, since
it would be our QEMU Video driver.
Now, the QEMU Video driver is just merged into the main OVMF
firmware image, so this support is unused.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13522 6f19259b-4bc3-4df7-8a09-765794883524
This enables qemu to use OVMF with a single -bios option. Based on
<http://lists.xen.org/archives/html/xen-devel/2012-03/msg01992.html>.
v1->v2:
- move xen-devel link from code to commit message
- cover all three FDF files
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
[jordan.l.justen@intel.com: remove vgabios-cirrus.bin from build.sh/README]
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13520 6f19259b-4bc3-4df7-8a09-765794883524
Update MADT processing for QEMU to add additional Local APIC
entries to the MADT.
The MADT is still built with a single Local APIC entry.
If the AcpiPlatformDxe driver determines that more processors
are available, then additional Local APIC entries are added
to the MADT at runtime.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13387 6f19259b-4bc3-4df7-8a09-765794883524
Detect QEMU & Xen, and allow each to choose how to publish
the individual ACPI tables.
Currently both paths simply publish the tables unmodified.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13385 6f19259b-4bc3-4df7-8a09-765794883524
This driver is currently a direct copy of
MdeModulePkg/Universal/Acpi/AcpiPlatformDxe.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13384 6f19259b-4bc3-4df7-8a09-765794883524